首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transmembrane ligand ephrinB2 and its receptor tyrosine kinase EphB4 are molecular markers of embryonic arterial and venous endothelial cells, respectively, and are essential for angiogenesis. Here we show that expression of ephrinB2 persists in adult arteries where it extends into some of the smallest diameter microvessels, challenging the classical view that capillaries have neither arterial nor venous identity. EphrinB2 also identifies arterial microvessels in several settings of adult neovascularization, including tumor angiogenesis, contravening the dogma that tumor vessels arise exclusively from postcapillary venules. Unexpectedly, expression of ephrinB2 also defines a stable genetic difference between arterial and venous vascular smooth muscle cells. These observations argue for revisions of classical concepts of capillary identity and the topography of neovascularization. They also imply that ephrinB2 may be functionally important in neovascularization and in arterial smooth muscle, as well as in embryonic angiogenesis.  相似文献   

2.
近年来,有关ephrin及其Eph受体的作用研究已从神经系统方面逐步向血管生长扩展。已有研究表明ephrinB2/EphB4及其独特的双向信号转导几乎参与血管生长的每个方面,涉及血管发育过程中的动静脉分化、胚胎后血管新生包括内皮细胞增殖、迁移、粘附和分化等过程,且与VEGF、Notch等血管新生调控因子关系密切。另外,实验表明活血化瘀名方血府逐瘀汤显著的促血管新生作用与ephrinB2/EphB4相关,说明中医药促血管新生中ephrinB2/EphB4具有重要作用。本文部分总结了ephrinB2/EphB4在血管生长中的作用,并提出中医药在这方面的展望。  相似文献   

3.
Signaling between the ligand ephrinB2 and the respective receptors of the EphB class is known to play a vital role during vascular morphogenesis and angiogenesis. The relative contribution of each EphB receptor type present on endothelial cells to these processes remains to be determined. It has been shown that ephrinB2-EphB receptor signal transduction leads to a repulsive migratory behavior of endothelial cells. It remained unclear whether this anti-migratory effect can be mediated by EphB4 signaling alone or whether other EphB receptors are necessary. It also remained unclear whether the kinase activity of EphB4 is pivotal to its action. To answer these questions, we developed a cellular migration system solely dependent on ephrinB2-EphB4 signaling. Using this system, we could show that EphB4 activation leads to the inhibition of cell migration. Furthermore we identified PP2, a known inhibitor of kinases of the Src family, and PD 153035, a known inhibitor of EGF receptor kinase, as inhibitors of EphB4 kinase activity. Using PP2, the inhibition of cell migration by ephrinB2 could be relieved, demonstrating that the kinase function of EphB4 is of prominent importance in this process. These results show that EphB4 activation is not only accompanying ephrinB2 induced repulsive behavior of cells, but is capable of directly mediating this effect.  相似文献   

4.
The Notch pathway is involved in multiple aspects of vascular development, including arterial-venous differentiation. Here, we show that Notch stimulation instructively induces arterial characteristics in endothelial cells (EC). Forced expression of Notch intracellular domain (NICD, activated form of Notch) induced mRNA expression for a subset of arterial-specific markers such as ephrinB2, connexin40, and HERP1 only in EC but not other cell lines. In co-culture experiments using EC and either Dll4- or Jagged1-expressing cells, we found that Dll4 stimulation but not Jagged1 markedly induced ephrinB2 expression. An inducible expression of HERP1 and HERP2 by NICD has no measurable effects on expression of ephrinB2 and venous marker EphB4 although either HERP1 or HERP2 overexpression exerts potent inhibitory effects on EphB4 expression without ephrinB2 induction. We also found no functional interaction between Notch and TGF-beta-ALK1 signalings in an induction of ephrinB2 expression. These results suggest that Dll4-stimulated Notch signaling induces a part of arterial characteristics only in EC via HERP-independent mechanism. Our data provide new insight into the molecular mechanism of ligand-selective Notch activation during differentiation of arterial EC.  相似文献   

5.
Vascular endothelial growth factor is an angiogenic factor in vivo and in vitro that plays a crucial role in the control of blood vessel development and in pathological angiogenesis. The vascularized extraembryonic membranes of the chick embryo include the area vasculosa and the chorioallantoic membrane. In this study, we investigated the expression of vascular endothelial growth factor and of its receptor-2, specifically expressed by the endothelial cells, in the chick area vasculosa at days 6, 10 and 14 of incubation. Our results indicate that, in all the three developmental stages examined, vascular endothelial growth factor is clearly expressed in the endodermal cells immediately adjacent to the mesodermal endothelial cells which, in turn, expressed vascular endothelial growth factor receptor-2. These observations suggest that during the development of the vascular system, endodermal cells, expressing vascular endothelial growth factor, initiate angiogenesis by stimulating directly mesodermal cells, which express vascular endothelial growth factor receptor-2. Moreover, our data demonstrate that vascular endothelial growth factor receptor-2 expression is also maintained by endothelial cells in the later stages of development, until day 14 of incubation. In accord with other literature data, this suggests that vascular endothelial growth factor is required not only for proliferation, but also for the survival of endothelial cells.  相似文献   

6.
The tyrosine kinase receptor EphB4 interacts with its ephrinB2 ligand to act as a bidirectional signaling system that mediates adhesion, migration, and guidance by controlling attractive and repulsive activities. Recent findings have shown that hematopoietic cells expressing EphB4 exert adhesive functions towards endothelial cells expressing ephrinB2. We therefore hypothesized that EphB4/ephrinB2 interactions may be involved in the preferential adhesion of EphB4-expressing tumor cells to ephrinB2-expressing endothelial cells. Screening of a panel of human tumor cell lines identified EphB4 expression in nearly all analyzed tumor cell lines. Human A375 melanoma cells engineered to express either full-length EphB4 or truncated EphB4 variants which lack the cytoplasmic catalytic domain (ΔC-EphB4) adhered preferentially to ephrinB2-expressing endothelial cells. Force spectroscopy by atomic force microscopy confirmed, on the single cell level, the rapid and direct adhesive interaction between EphB4 and ephrinB2. Tumor cell trafficking experiments in vivo using sensitive luciferase detection techniques revealed significantly more EphB4-expressing A375 cells but not ΔC-EphB4-expressing or mock-transduced control cells in the lungs, the liver, and the kidneys. Correspondingly, ephrinB2 expression was detected in the microvessels of these organs. The specificity of the EphB4-mediated tumor homing phenotype was validated by blocking the EphB4/ephrinB2 interaction with soluble EphB4-Fc. Taken together, these experiments identify adhesive EphB4/ephrinB2 interactions between tumor cells and endothelial cells as a mechanism for the site-specific metastatic dissemination of tumor cells. AACR.  相似文献   

7.
Eph receptors comprise the largest family of receptor tyrosine kinases consisting of eight EphA receptors (with five corresponding glycosyl-phosphatidyl-inositol-anchored ephrinA ligands) and six EphB receptors (with three corresponding transmembrane ephrinB ligands). Originally identified as neuronal pathfinding molecules, genetic loss of function experiments have identified EphB receptors and ephrinB ligands as crucial regulators of vascular assembly, orchestrating arteriovenous differentiation and boundary formation. Despite these clearly defined rate-limiting roles of the EphB/ephrinB system for developmental angiogenesis, the mechanisms of the functions of EphB receptors and ephrinB ligands in the cells of the vascular system are poorly understood. Moreover, little evidence can be found in the recent literature regarding complementary EphB and ephrinB expression patterns that occur in the vascular system and that may bring cells into juxtapositional contact to allow bi-directional signaling between neighboring cells. This review summarizes the current knowledge of the role of EphB receptors and ephrinB ligands during embryonic vascular assembly and discusses recent findings on EphB/ephrinB-mediated cellular functions pointing to the crucial role of the Eph/ephrin system in controlling vascular homeostasis in the adult.Eph/ephrin work in the laboratory of the authors is supported by a grant from the Deutsche Forschungsgemeinschaft (Au83/3–2 within the SPP1069 "Angiogenesis")  相似文献   

8.
Guidance molecules have attracted interest by demonstration that they regulate patterning of the blood vascular system during development. However, their significance during postnatal angiogenesis has remained unknown. Here, we demonstrate that endothelial cells of human malignant brain tumors also express guidance molecules, such as EphB4 and its ligand ephrinB2. To study their function, EphB4 variants were overexpressed in blood vessels of tumor xenografts. Our studies revealed that EphB4 acts as a negative regulator of blood vessel branching and vascular network formation, switching the vascularization program from sprouting angiogenesis to circumferential vessel growth. In parallel, EphB4 reduces the permeability of the tumor vascular system via activation of the angiopoietin-1/Tie2 system at the endothelium/pericyte interface. Furthermore, overexpression of EphB4 variants in blood vessels during (i) vascularization of non-neoplastic cell grafts and (ii) retinal vascularization revealed that these functions of EphB4 apply to postnatal, non-neoplastic angiogenesis in general. This implies that both neoplastic and non-neoplastic vascularization is driven not only by a vascular initiation program but also by a vascular patterning program mediated by guidance molecules.  相似文献   

9.
Endothelial cells express two classic cadherins, VE-cadherin and N-cadherin. The importance of VE-cadherin in vascular development is well known; however, the function of N-cadherin in endothelial cells remains poorly understood. Contrary to previous studies, we found that N-cadherin localizes to endothelial cell-cell junctions in addition to its well-known diffusive membrane expression. To investigate the role of N-cadherin in vascular development, N-cadherin was specifically deleted from endothelial cells in mice. Loss of N-cadherin in endothelial cells results in embryonic lethality at mid-gestation due to severe vascular defects. Intriguingly, loss of N-cadherin caused a significant decrease in VE-cadherin and its cytoplasmic binding partner, p120ctn. The down-regulation of both VE-cadherin and p120ctn was confirmed in cultured endothelial cells using small interfering RNA to knockdown N-cadherin. We also show that N-cadherin is important for endothelial cell proliferation and motility. These findings provide a novel paradigm by which N-cadherin regulates angiogenesis, in part, by controlling VE-cadherin expression at the cell membrane.  相似文献   

10.
Kang Y  Wang F  Feng J  Yang D  Yang X  Yan X 《Cell research》2006,16(3):313-318
Our previous study has demonstrated that CD 146 molecule is a biomarker on vascular endothelium,which is involvedin angiogenesis and tumor growth.However the mechanism behind is not clear.Here we have for the first time devel-oped a novel CD146 blockade system using CD146 siRNA to study its function on endothelial cells.Our data showedthat CD146 siRNA specifically blocked the expression of CD146 on both mRNA and protein levels,leading to thesignificant suppression of HUVEC proliferation,adhesion and migration.These results demonstrate that CD146 playsa key role in vascular endothelial cell activity and angiogenesis,and CD146 siRNA can be used as a new inhibitor foranti-angiogenesis therapy.  相似文献   

11.
Endothelial cell spreading, migration, and morphogenesis are essential for angiogenesis, the formation of new blood vessels. In the present study, we explored roles of tyrosine kinase Pyk2 in angiogenesis of pulmonary endothelial cells. We found that tyrosine kinase Pyk2 was particularly enriched in pulmonary vascular endothelial cells and lung, a major organ site for tumor metastasis. By using adenovirus-mediated expression of various Pyk2 mutants, we demonstrated that Pyk2 tyrosine kinase activity was essential for the pulmonary vascular endothelial cell spreading, migration, morphogenesis, as well as pulmonary vein and artery angiogenesis ex vivo. We further showed that Pyk2 kinase activity was required for the expression of focal adhesion kinase, p130Crk-associated substrate, and its homologue human enhancer of filamentation 1, thus regulating formation of focal adhesions and cytoskeletal reorganization. These results indicate that Pyk2 plays a crucial role in the pulmonary endothelial cell motility such as spreading and migration necessary for angiogenesis.  相似文献   

12.
Ephrin-B2 is a transmembrane ligand that is specifically expressed on arteries but not veins and that is essential for cardiovascular development. However, ephrin-B2 is also expressed in nonvascular tissues and interacts with multiple EphB class receptors expressed in both endothelial and nonendothelial cell types. Thus, the identity of the relevant receptor for ephrin-B2 and the site(s) where these molecules interact to control angiogenesis were not clear. Here we show that EphB4, a specific receptor for ephrin-B2, is exclusively expressed by vascular endothelial cells in embryos and is preferentially expressed on veins. A targeted mutation in EphB4 essentially phenocopies the mutation in ephrin-B2. These data indicate that ephrin-B2-EphB4 interactions are intrinsically required in vascular endothelial cells and are consistent with the idea that they mediate bidirectional signaling essential for angiogenesis.  相似文献   

13.
Previous studies have identified two zebrafish mutants, cloche and groom of cloche, which lack the majority of the endothelial lineage at early developmental stages. However, at later stages, these avascular mutant embryos generate rudimentary vessels, indicating that they retain the ability to generate endothelial cells despite this initial lack of endothelial progenitors. To further investigate molecular mechanisms that allow the emergence of the endothelial lineage in these avascular mutant embryos, we analyzed the gene expression profile using microarray analysis on isolated endothelial cells. We find that the expression of the genes characteristic of the mesodermal lineages are substantially elevated in the kdrl + cells isolated from avascular mutant embryos. Subsequent validation and analyses of the microarray data identifies Sox11b, a zebrafish ortholog of SRY-related HMG box 11 (SOX11), which have not previously implicated in vascular development. We further define the function sox11b during vascular development, and find that Sox11b function is essential for developmental angiogenesis in zebrafish embryos, specifically regulating sprouting angiogenesis. Taken together, our analyses illustrate a complex regulation of endothelial specification and differentiation during vertebrate development.  相似文献   

14.
Thrombospondin-1 (TSP1) can inhibit angiogenesis by interacting with endothelial cell CD36 or proteoglycan receptors. We have now identified alpha3beta1 integrin as an additional receptor for TSP1 that modulates angiogenesis and the in vitro behavior of endothelial cells. Recognition of TSP1 and an alpha3beta1 integrin-binding peptide from TSP1 by normal endothelial cells is induced after loss of cell-cell contact or ligation of CD98. Although confluent endothelial cells do not spread on a TSP1 substrate, alpha3beta1 integrin mediates efficient spreading on TSP1 substrates of endothelial cells deprived of cell-cell contact or vascular endothelial cadherin signaling. Activation of this integrin is independent of proliferation, but ligation of the alpha3beta1 integrin modulates endothelial cell proliferation. In solution, both intact TSP1 and the alpha3beta1 integrin-binding peptide from TSP1 inhibit proliferation of sparse endothelial cell cultures independent of their CD36 expression. However, TSP1 or the same peptide immobilized on the substratum promotes their proliferation. The TSP1 peptide, when added in solution, specifically inhibits endothelial cell migration and inhibits angiogenesis in the chick chorioallantoic membrane, whereas a fragment of TSP1 containing this sequence stimulates angiogenesis. Therefore, recognition of immobilized TSP1 by alpha3beta1 integrin may stimulate endothelial cell proliferation and angiogenesis. Peptides that inhibit this interaction are a novel class of angiogenesis inhibitors.  相似文献   

15.
Bidirectional signaling triggered by interacting ephrinB receptors (EphB) and ephrinB ligands is crucial for development and function of the vascular and nervous systems. A signaling cascade triggered by this interaction involves activation of Src kinase and phosphorylation of ephrinB. The mechanism, however, by which EphB activates Src in the ephrinB-expressing cells is unknown. Here we show that EphB stimulates a metalloproteinase cleavage of ephrinB2, producing a carboxy-terminal fragment that is further processed by PS1/gamma-secretase to produce intracellular peptide ephrinB2/CTF2. This peptide binds Src and inhibits its association with inhibitory kinase Csk, allowing autophosphorylation of Src at residue tyr418. EphrinB2/CTF2-activated Src phosphorylates ephrinB2 and inhibits its processing by gamma-secretase. These data show that the PS1/gamma-secretase system controls Src activation and ephrinB phosphorylation by regulating production of Src activator ephrinB2/CTF2. Accordingly, gamma-secretase inhibitors prevented the EphB-induced sprouting of endothelial cells and the recruitment of Grb4 to ephrinB. PS1 FAD and gamma-secretase dominant-negative mutants inhibited the EphB-induced cleavage of ephrinB2 and Src autophosphorylation, raising the possibility that FAD mutants interfere with the functions of Src and ephrinB2 in the CNS.  相似文献   

16.
Endothelial cells express two classical cadherins, VE-cadherin and N-cadherin. VE-cadherin is absolutely required for vascular morphogenesis, but N-cadherin is thought to participate in vessel stabilization by interacting with periendothelial cells during vessel formation. However, recent data suggest a more critical role for N-cadherin in endothelium that would regulate angiogenesis, in part by controlling VE-cadherin expression. In this study, we have assessed N-cadherin function in vascular development using an in vitro model derived from embryonic stem (ES) cell differentiation. We show that pluripotent ES cells genetically null for N-cadherin can differentiate normally into endothelial cells. In addition, sprouting angiogenesis was unaltered, suggesting that N-cadherin is not essential for the early events of angiogenesis. However, the lack of N-cadherin led to an impairment in pericyte covering of endothelial outgrowths. We conclude that N-cadherin is necessary neither for vasculogenesis nor proliferation and migration of endothelial cells but is required for the subsequent maturation of endothelial sprouts by interacting with pericytes.  相似文献   

17.
18.
Vascular endothelial growth factor (VEGF) is a secreted mitogen which specifically stimulates proliferation of vascular endothelial cells in vitro and in vivo. Its expression pattern is consistent with it being an important regulator of vasculogenesis and angiogenesis, and targeted disruption of VEGF-A has demonstrated that it is essential for vascular development. To determine if VEGF-A was sufficient to alter vascularization in the eye we generated transgenic mice which express human VEGF-A(165) specifically in the lens. Expression of transgenic VEGF-A led to excessive proliferation and accumulation of disorganized angioblasts and endothelial cells around the lens. The results support the hypothesis that VEGF-A can initiate the process of vascularization by stimulating chemoattraction and proliferation of angioblasts and endothelial cells and that VEGF-A expression can stimulate angiogenic remodeling. However, VEGF-A alone was not sufficient to direct blood vessel organization or maturation.  相似文献   

19.
Angiopoietin-2 (Ang2) promotes tumor growth and metastasis by specifically priming endothelial cells for angiogenesis. Multiple angiogenic factors up-regulate expression of Ang2, suggesting that Ang2 may be the common pathway in growth factor initiated-angiogenesis. Using phage display technology, we generated single chain Fv molecule against human Ang2 (scFv-Ang2) with high affinity (K(d)=0.01 microM) from a mouse phage antibody library. Compared with control scFv, the mouse scFv-Ang2 completely inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) treated with vascular endothelial growth factor (VEGF, 10 ng/ml), but not that of the cells treated with either basic fibroblast growth factor, or angiotensin II, or Ang2. Chemotaxis assay showed that scFv-Ang2 could block completely Ang2-induced (100%) and partially VEGF-induced (49%) migration of HUVECs. The results indicate that Ang2 takes part in the VEGF-induced angiogenesis and scFv-Ang2 might be a promising compound in blocking both VEGF and Ang2 induced angiogenesis.  相似文献   

20.
Developmentally regulated endothelial cell locus 1 (Del1) is a new angiogenic molecules expressed specifically in early embryonic endothelial cells. We investigated the relationship between Del1 and tumor cell-derived vascular endothelial growth factor (VEGF). Dunn osteosarcoma cells and high- and low-metastatic murine sarcoma cells did not express Del1. However, the expression of Del1 was observed in these primary tumor tissues and the pulmonary metastatic tissues after subcutaneous inoculation in vivo. Every tumor cell-conditioned medium containing VEGF induced the expression of Del1 in murine lung microvascular endothelial (MLE) cells, although control MLE cells did not express Del1. The anti-mouse VEGF monoclonal antibody inhibited the induction of the Del1 expression. In addition, mouse recombinant interleukin-1alpha and tumor necrosis factor-alpha also induced Del1 in MLE cells. Del1 may play an important role in tumor angiogenesis through the effects of tumor-derived factors including VEGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号