首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Octopod (Octo) is a mutation of the moth Manduca sexta, which transforms the first abdominal segment (A1) in the anterior direction. Mutant animals are characterized by the appearance of homeotic thoracic-like legs on A1. We exploited this mutation to determine what rules might be used in specifying the fates of sensory neurons located on the body surface of larval Manduca. Mechanical stimulation of homeotic leg sensilla did not cause reflexive movements of the homeotic legs, but elicited responses similar to those observed following stimulation of ventral A1 body wall hairs. Intracellular recordings demonstrated that several of the motoneurons in the A1 ganglion received inputs from the homeotic sensory hairs. The responses of these motoneurons to stimulation of homeotic sensilla resembled their responses to stimulation of ventral body wall sensilla. Cobalt fills revealed that the mutation transformed the segmental projection pattern of only the sensory neurons located on the ventral surface of A1, resulting in a greater number with intersegmental projection patterns typical of sensory neurons found on the thoracic body wall. Many of the sensory neurons on the homeotic legs had intersegmental projection patterns typical of abdominal sensory neurons: an anteriorly directed projection terminating in the third thoracic ganglion (T3). Once this projection reached T3, however, it mimicked the projections of the thoracic leg sensory neurons. These results demonstrate that the same rules are not used in the establishment of the intersegmental and leg-specific projection patterns. Segmental identity influences the intersegmental projection pattern of the sensory neurons of Manduca, whereas the leg-specific projections are consistent with a role for positional information in determining their pattern. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Stimulation of sensory neurons innervating hairs in the gin traps on the abdomen of Manduca sexta pupae evokes a rapid bending of the abdomen that is restricted to one or more of the three articulating posterior segments. However, electrical stimulation of the gin trap sensory nerve in an isolated abdominal nerve cord evokes characteristic motor neuron activity in every abdominal segment. To determine if the segmentally distributed motor activity also occurred in intact animals and how it contributed to the segmentally restricted reflex movement, mechanical stimulation of the sensory hairs in intact animals was used to evoke reflex responses that were recorded as electromyograms synchronized with video recordings of the behavior. Motor activity was monitored during movements to determine if there was activity in many segments when the movement was restricted to one segment. Coordinated muscle activity was evoked throughout the abdomen in response to stimulation of any of the three gin traps, even when movement was restricted to one segment. Differences in the timing of ipsilateral and contralateral motor activity among segments allowed the closing of gin traps to be segmentally restricted. These findings suggest that the neural circuit underlying the gin trap reflex is distributed throughout the abdominal nerve cord. This network generates a complex, yet coordinated, motor pattern with muscular activity in many abdominal segments that produces a localized bending reflex. Accepted: 10 January 1997  相似文献   

3.
In the tobacco hornworm caterpillar, tactile stimulation of sensory hairs located on the tip of a proleg (the planta) evokes ipsilateral or bilateral retraction of the prolegs in that segment. We have used electrophysiological and anatomical methods to investigate the excitatory neural pathways linking the planta hair afferents and the proleg retractor motoneurons (MNs). An important technical innovation was the development of an isolated proleg and desheathed ganglion preparation that permits rapid and reversible ionic manipulations and drug applications. Action potentials (spikes) in individual planta hair afferents produce time-locked excitatory postsynaptic potentials (EPSPs) in ipsilateral proleg MNs which appear to be chemically-mediated and monosynaptic: the EPSPs have a short and constant latency, they follow afferent spikes without failure, they are reversibly abolished in elevated Mg++ saline, and they persist in saline with elevated Mg++ and Ca++ levels. Planta hair afferents also excite ipsilateral MNs by polysynaptic pathways, and their excitation of contralateral proleg MNs is exclusively polysynaptic. Cobalt-staining of the proleg MNs and planta hair afferents shows that the afferents terminate in ventral neuropil, and the proleg MNs have an unusual ventral projection into this region. The ventral projection is on the ipsilateral side, which is consistent with the electrophysiological finding that time-locked EPSPs are found only from ipsilateral hairs. Two factors that contribute to the strong monosynaptic excitation of proleg MNs by ipsilateral planta hairs are the convergence of many hair afferents onto each MN, and the facilitation shown at each afferent-MN synapse. At least 6 afferents converge on each MN, and at short interspike intervals the afferent-evoked EPSPs are enhanced by as much as 400% by homosynaptic facilitation. The EPSP is abolished reversibly by the cholinergic antagonists curare and atropine, suggesting that the neurotransmitter at the synapse is acetylcholine (ACh). This is of particular interest because the ACh receptors of tobacco-feeding Manduca larvae are reported to be less nicotine-sensitive than those of other insects.  相似文献   

4.
It has been suggested that incongruence between signals for motor intention and sensory input can cause pain and other sensory abnormalities. This claim is supported by reports that moving in an environment of induced sensorimotor conflict leads to elevated pain and sensory symptoms in those with certain painful conditions. Similar procedures can lead to reports of anomalous sensations in healthy volunteers too. In the present study, we used mirror visual feedback to investigate the effects of sensorimotor incongruence on responses to stimuli that arise from sources external to the body, in particular, touch. Incongruence between the sensory and motor signals for the right arm was manipulated by having the participants make symmetrical or asymmetrical movements while watching a reflection of their left arm in a parasagittal mirror, or the left hand surface of a similarly positioned opaque board. In contrast to our prediction, sensitivity to the presence of gaps in tactile stimulation of the right forearm was not reduced when participants made asymmetrical movements during mirror visual feedback, as compared to when they made symmetrical or asymmetrical movements with no visual feedback. Instead, sensitivity was reduced when participants made symmetrical movements during mirror visual feedback relative to the other three conditions. We suggest that small discrepancies between sensory and motor information, as they occur during mirror visual feedback with symmetrical movements, can impair tactile processing. In contrast, asymmetrical movements with mirror visual feedback may not impact tactile processing because the larger discrepancies between sensory and motor information may prevent the integration of these sources of information. These results contrast with previous reports of anomalous sensations during exposure to both low and high sensorimotor conflict, but are nevertheless in agreement with a forward model interpretation of perceptual modulations during goal directed movement.  相似文献   

5.
Summary Cockroaches (Periplaneta americana) have been shown to adapt behaviorally, in about 1 month, to ablation of one cercus. Additionally, those giant interneurons (GIs) that normally receive their major input from the lesioned cercus become more responsive to stimulation of the intact side (Vardi and Camhi 1982 a, b). To investigate the role of afferent activity in the behavioral and neuronal plasticity, we silenced wind-evoked activity in the intact cercus by immobilizing the sensory hairs. This was carried out during the last nymphal stage which lasts for about one month. The animals were tested behaviorally and physiologically after they had molted to adults and a fresh set of mobile hairs had appeared. These animals showed no behavioral correction (Fig. 3). The responses of the GIs on the ablated side were somewhat enhanced, but they were also significantly smaller than those in animals with long-term cercal ablations and no sensory deprivation (Fig. 5). A variety of controls (Figs. 8, 9, and 10) were used to show that sensory deprivation by itself did not decrease the responsiveness of the afferents or the GIs. Thus elimination of wind-evoked activity specifically decreasesenhancement of the responses in the GIs.Abbreviation GI giant interneuron  相似文献   

6.
Summary A system of chordotonal organs in the locust mesothorax consists of four subunits one of which connects to the coxa. Proprioceptive afferents from the scoloparia record the rotatory movements of the coxa. Mechanical stimulation of the sensory system by sinusoidal stretch or movements mimicking stretch as in natural walking of the locust elicits reflex activation of coxal motoneurones. Both assistance and resistance reflexes to imposed movements occur, but their intensity can vary from periods of suppression below firing threshold in a motoneurone to recruitment of additional motoneurones to the same muscle. It is concluded that some of these reflexes recorded in isolated preparations can also occur in freely walking animals where they should contribute to the muscular coordination of transitions between antagonistic movements.Abbreviations aCO, cCO, pCO, vCO anterior, coxal, posterior, ventral chordotonal organ - COS chordotonal organ system - pm-al postero-median to anterior-lateral  相似文献   

7.
 A system that controls the leg movement of an animal or a robot walking over irregular ground has to ensure stable support for the body and at the same time propel it forward. To do so, it has to react adaptively to unpredictable features of the environment. As part of our study of the underlying mechanisms, we present here a model for the control of the leg movement of a 6-legged walking system. The model is based on biological data obtained from the stick insect. It represents a combined treatment of realistic kinematics and biologically motivated, adaptive gait generation. The model extends a previous algorithmic model by substituting simple networks of artificial neurons for the algorithms previously used to control leg state and interleg coordination. Each system controlling an individual leg consists of three subnets. A hierarchically superior net contains two sensory and two ‘premotor’ units; it rhythmically suppresses the output of one or the other of the two subordinate nets. These are continuously active. They might be called the ‘swing module’ and the ‘stance module’ because they are responsible for controlling the swing (return stroke) and the stance (power stroke) movements, respectively. The swing module consists of three motor units and seven sensory units. It can produce appropriate return stroke movements for a broad range of initial and final positions, can cope with mechanical disturbances of the leg movement, and is able to react to an obstacle which hinders the normal performance of the swing movement. The complete model is able to walk at different speeds over irregular surfaces. The control system rapidly reestablishes a stable gait when the movement of the legs is disturbed. Received: 13 July 1994/Accepted in revised form: 15 November 1994  相似文献   

8.
Obstacle perception by insect antennae during terrestrial locomotion   总被引:2,自引:0,他引:2  
Abstract. Insect antennae bear several types of sensilla including chemo-receptors, hygroreceptors, thermoreceptors and mechanoreceptors. A large proportion of sensilla is chemoreceptors, providing olfactory function. Pro-prioreceptors located on the antennae provide information on the position of these organs and are used in flight control. This type of sensillum is present in most insects and might serve other functions. We tested the hypothesis that antennae are used to perceive obstacles in the path of walking beetles. When adult Colorado potato beetles, Leptinotarsa decemlineata (Say), touch an obstacle with their antennae during terrestrial locomotion, they modify the angle of their body to allow the tarsi of one prothoracic leg to reach the top of the obstacle. Our results demonstrate that antennae, by their movements and their position ahead of the beetle, provide information on the presence of the obstacle necessary to initiate step-up behaviour. Furthermore, the change in the body angle needed to increase the reach of the prothoracic leg and step on the obstacle, is proportional to the height of the obstacle. Since the eyes are not involved in the process, normal behaviour can be performed in the dark.  相似文献   

9.
Rolling locomotion using an external force such as gravity has evolved many times. However, some caterpillars can curl into a wheel and generate their own rolling momentum as part of an escape repertoire. This change in body conformation occurs well within 100 ms and generates a linear velocity over 0.2 m s(-1), making it one of the fastest self-propelled wheeling behaviors in nature. Inspired by this behavior, we construct a soft-bodied robot to explore the dynamics and control issues of ballistic rolling. This robot, called GoQBot, closely mimics caterpillar rolling. Analyzing the whole body kinematics and 2D ground reaction forces at the robot ground anchor reveals about 1G of acceleration and more than 200 rpm of angular velocity. As a novel rolling robot, GoQBot demonstrates how morphing can produce new modes of locomotion. Furthermore, mechanical coupling of the actuators improves body coordination without sensory feedback. Such coupling is intrinsic to soft-bodied animals because there are no joints to isolate muscle-generated movements. Finally, GoQBot provides an estimate of the mechanical power for caterpillar rolling that is comparable to that of a locust jump. How caterpillar musculature produces such power in such a short time is yet to be discovered.  相似文献   

10.
Summary Tactile stimulation of a leg of the locustSchistocerca gregaria can lead to specific reflex movements of that leg. At the same time nonspiking interneurones that are presynaptic to the participating motor neurones are excited or inhibited, suggesting that they are directly involved in these reflexes. The afferent pathways mediating these effects have been examined by recording from individual afferents and nonspiking interneurones.Afferent spikes fromtrichoid orcampaniform sensilla on specific regions of a leg evoke chemically-mediated EPSPs with a constant central latency of about 1.5 ms in certain nonspiking interneurones. The branches of an interneurone and the afferents from which it receives inputs overlap in the neuropil of the ganglion.No afferents have been found to evoke IPSPs directly in the nonspiking interneurones. Instead the inhibition is caused by a population of spiking local interneurones that are themselves excited directly by the afferents, and whose spikes evoke IPSPs in certain nonspiking interneurones.The tactile reflexes can involve movements about one or more joints of the leg, and these coordinated responses are explained by the participation of specific nonspiking interneurones that distribute the sensory inputs to the appropriate sets of motor neurones. For example, when hairs on the dorsal surface of a tarsus are touched, the tarsus is levated. This reflex involves nonspiking local interneurones which are excited directly by these hair afferents and which make direct excitatory connections with the single levator tarsi motor neurone.  相似文献   

11.
Most bio-inspired robots have been based on animals with jointed, stiff skeletons. There is now an increasing interest in mimicking the robust performance of animals in natural environments by incorporating compliant materials into the locomotory system. However, the mechanics of moving, highly conformable structures are particularly difficult to predict. This paper proposes a planar, extensible-link model for the soft-bodied tobacco hornworm caterpillar, Manduca sexta, to provide insight for biologists and engineers studying locomotion by highly deformable animals and caterpillar-like robots. Using inverse dynamics to process experimentally acquired point-tracking data, ground reaction forces and internal forces were determined for a crawling caterpillar. Computed ground reaction forces were compared to experimental data to validate the model. The results show that a system of linked extendable joints can faithfully describe the general form and magnitude of the contact forces produced by a crawling caterpillar. Furthermore, the model can be used to compute internal forces that cannot be measured experimentally. It is predicted that between different body segments in stance phase the body is mostly kept in tension and that compression only occurs during the swing phase when the prolegs release their grip. This finding supports a recently proposed mechanism for locomotion by soft animals in which the substrate transfers compressive forces from one part of the body to another (the environmental skeleton) thereby minimizing the need for hydrostatic stiffening. The model also provides a new means to characterize and test control strategies used in caterpillar crawling and soft robot locomotion.  相似文献   

12.
Animals use a suite of sensory modalities to precisely locate and capture prey. While numerous studies have examined the effects of sensory deprivation on the behaviors leading to prey capture and while it is generally believed that information in the pre-strike period determines the way fish capture prey, this study is the first to examine the contribution of sensory information to jaw kinematics during capture. Largemouth bass were filmed using high-speed videography while capturing live mosquitofish. Bass were examined intact, with visual deprivation under infrared light, and with lateral line deprivation following treatment with cobalt chloride. Deprived of visual cues, this visual ram-feeding predator switches towards suction-based feeding to successfully capture prey. They approach prey slowly but open their mouths more rapidly, which has been shown to result in greater buccal pressure, causing their prey to move a greater distance at a more rapid velocity as they are being drawn into the predators' mouths. Deprived of lateral line cues, bass have higher forward velocities during capture and capture prey earlier in the gape cycle. This study demonstrates that sensory pre-strike information directly affects the capture modality employed by fishes and that fish can modulate between ram and suction not only by adjusting the amount of ram by increasing or decreasing their movements, but also by actively increasing the amount of suction used. These results suggest that the ability to modulate feeding behavior may allow animals to not only exploit a broader breadth of prey items, but also to be capable of doing so in a wider variety of environments.  相似文献   

13.
The interaction of sensory activity from internal gut stretch receptors and from external labellar chemosensory hairs has been studied both behaviourally and electrophysiologically in the control of proboscis extension of the blowfly, Phormia regina. Labellar thresholds for proboscis extension, tested behaviourally, do not change significantly up to an hour after feeding in contrast to tarsal thresholds which rise quickly after feeding. Motor activity of the extensor muscle of the haustellum was recorded simultaneously with sensory activity from labellar sensilla. The mean number of muscle spikes per response and the sensory input necessary to trigger a response do not vary with starvation, feeding, or sectioning of the recurrent nerve. Activity of internal stretch receptors seem to interact with tarsal sensory input but apparently do not modulate motor responses triggered by labellar sensory input.  相似文献   

14.
Theoretical studies on human locomotion have shown that a stable and flexible gait emerges from the dynamic interaction between the rhythmic activity of a neural system composed of a neural rhythm generator (RG) and the rhythmic movement of the musculo-skeletal system. This study further explores the mechanism of the anticipatory control of locomotion based on the emergent properties of a neural system that generates the basic pattern of gait. A model of the neuro-musculo-skeletal system to execute the task of stepping over a visible obstacle with both limbs during walking is described. The RG in the neural system was combined with a system referred to as a discrete movement generator (DM), which receives both the output of the RG and visual information regarding the obstacle and generates discrete signals for modification of the basic gait pattern. A series of computer simulations demonstrated that an obstacle placed at an arbitrary position can be cleared by sequential modifications of gait: (1) modulating the step length when approaching the obstacle and (2) modifying the trajectory of the swing limbs while stepping over it. This result suggests that anticipatory adjustments are produced not by the unidirectional flow of the information from visual signals to motor commands but by the bi-directional circulation of information between the DM and the RG. The validity of this model is discussed in relation to motor cortical activity during anticipatory modifications in cats and the ecological psychology of visuo-motor control in humans. Received: 19 September 1996 / Accepted in revised form: 21 March 1997  相似文献   

15.
Diadromus pulchellus is a solitary ichneumonid parasitoid. Its only known host is the pupa of Acrolepiopsis assectella, a specialist herbivore of Allium species. D. pulchellus females parasitize A. assectella pupae within 48 h after the caterpillars spin their cocoon and begin to pupate. Having observed that the cocoon produced by the leek moth caterpillar stimulates parasitoid egg-laying and that caterpillar leaves a silk thread, we studied the hypothesis that silk thread might be involved in host-finding by the parasitoid. Behavioral tests showed that when D. pulchellus females encounter a host silk thread, they change directions, follow the thread, and quickly locate the host. These findings show that pupal parasitoids can use signals produced by their hosts at the developmental instar preceding the one that they parasitize.  相似文献   

16.
Crickets are able to extract directional information about a wind stimulus through the filiform hairs located on their cerci. This paper describes the design and testing of a neuromorphic sensor that aims to achieve a close correlation with both the physical and functional properties of these hairs. An integrate and fire neural network is used to process the sensory information in real time. The resulting system is shown to be capable of extracting directional information from a wind stimulus and producing an appropriate motor control pattern.  相似文献   

17.
The girdle epidermis of adult Mopalia muscosa secretes several types of structures, including calcareous spicules and innervated hairs. Newly metamorphosed chitons superficially resemble adult animals, but they lack the adult girdle ornaments, shell sculpture, and coloration. The morphogenesis of the adult girdle structures has not been described previously for any species. Juvenile Mopalia muscosa secrete hairs at metamorphosis, but it was not known if these hairs were sensory or if they were retained as the animals grew. I discovered that the hairs of juveniles become the tips of adult hairs. When juvenile hairs are detectable by light microscopy the sensory components already exist, suggesting that they are functional receptor organs. The other girdle ornaments of young juveniles, the primary calcareous spicules, are lost as the animal grows. I also demonstrated that the hairs are not uniquely innervated; the same sensory structures are produced in conjunction with other girdle ornaments on the marginal and ventral faces.  相似文献   

18.
Most organisms feed on a variety of prey that may differ dramatically in their physical and behavioural characteristics (e.g. mobility, mass, texture, etc.). Thus the ability to modulate prey capture behaviour in accordance with the characteristics of the food appears crucial. In animals that use rapid tongue movements to capture prey (frogs and chameleons), the coordination of jaws and tongue is based on visual cues gathered prior to the prey capture event. However, most iguanian lizards have much slower tongue-based prey capture systems suggesting that sensory feedback from the tongue may play an important role in coordinating jaw and tongue movements. We investigated the modulation of prey capture kinematics in the agamid lizard Pogona vitticeps when feeding on a range of food items differing in their physical characteristics. As the lizard is a dietary generalist, we expected it to be able to modulate its prey capture kinematics as a function of the (mechanical) demands imposed by the prey. Additionally, we investigated the role of lingual sensory feedback by transecting the trigeminal sensory afferents. Our findings demonstrated that P. vitticeps modulates its prey capture kinematics according to specific prey properties (e.g. size). In addition, transection of the trigeminal sensory nerves had a strong effect on prey capture kinematics. However, significant prey type effects and prey type by transection effects suggest that other sources of sensory information are also used to modulate the prey capture kinematics in P. vitticeps.  相似文献   

19.
Colonies of the social caterpillar Hylesia lineata (Lepidoptera: Satumiidae) form long, single-file, head-to-tail processions as they move between their shelters and distant feeding sites. Although investigations of other processionary species have implicated a silk trail in the processionary process, silk plays little or no role in initiating or maintaining processions in H. lineata. Studies we report here implicate both tactile stimuli and a trail pheromone in the establishment and maintenance of processions. Processionaries elicit locomotion in the individual preceding them in line by brushing their heads against prominent sulci that project from the tips of their abdomens. Caterpillars mark their pathways with a pheromone deposited by brushing the ventral surfaces of their last abdominal segments against the substrate. The persistent pheromone is soluble in hexanes and appears to be secreted from glandular setae found on the proximal regions of the anal prolegs and the venter. In Y-choice tests, caterpillars selected newer trails over older trails and stronger trails over weaker trails. They did not distinguish between trials deposited by newly fed caterpillars and those deposited by starved caterpillars. Despite the unidirectional nature of processions, there is no indication that caterpillars can determine from the trail alone the direction in which the procession advanced. The significance of these findings to the foraging ecology of the caterpillars is discussed.  相似文献   

20.
Alternating antiphasic rhythmic activity was observed in opener and closer mandibular motor neurons in the isolated suboesophageal ganglion of the larva of Manduca sexta (Lepidoptera: Sphingidae). This was interpreted provisionally as fictive chewing; the pattern is similar to that seen in semiintact animals but of lower frequency. Additionally, a variety of associated rhythmic activities were observed in suboesophageal interneurons. These could be classified into several different physiological types by their activity patterns in relation to the chewing cycle. Some of these neurons can modulate the rhythm when injected with current. It seems likely that they are part of or associated with a central pattern generator circuit for chewing.Abbreviations A anterior - CEC circumoesophageal connective - Cl-MN closer motor neuron - IN interneuron - MdN mandibular nerve - MN motor neuron - O-MN opener motor neuron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号