首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin 6 (IL-6) is a glycosylated cytokine which is important in exerting cell-specific growth-inducing, growth-inhibiting and differentiation-inducing effects. IL-6 produced in mammalian cell lines is heterogeneous, reflecting specific cell-type-dependent post-translational modifications. Native IL-6 was purified from human blood mononuclear cells and the oligosaccharides released, radiolabelled and sequenced by a combination of sequential exoglycosidase digestion using Bio-Gel P-4 high-resolution gel chromatography and acetolysis. N- and O-linked glycans were found. The N-linked glycans were sialylated di- and tri-antennary complex-type and oligomannose-type structures. However, the most predominant N-linked oligosaccharide was a small tetrasaccharide with the sequence Man alpha 6Man beta 4GlcNAc beta 4GlcNAc. This is the first report of this structure on a circulating glycoprotein. This structure has only previously been reported to be present on the syncytiotrophoblast of human placenta. The presence of the oligomannose structures and the mannose-terminating tetrasaccharide on IL-6 may be important in maintaining a high local concentration of the cytokine while limiting its systemic serum level via interaction with soluble mannose-binding serum lectins.  相似文献   

2.
Ning J  Heng L  Kong F 《Carbohydrate research》2002,337(13):1159-1164
A highly concise and effective synthesis of the mannose octasaccharide repeating unit of the cell-wall mannan of Trichophyton mentagrophytes and T. rubrum was achieved via 6-O-glycosylation of a tetrasaccharide acceptor with a tetrasaccharide donor, followed by deprotection. The key tetrasaccharide (11) was constructed by selective 6-O-glycosylation of allyl 3,4-di-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside with 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate, then with 2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate. The tetrasaccharide acceptor (13) was obtained by selective 6-O-deacetylation of 11, while the tetrasaccharide donor 12 was obtained by deallylation of 11, followed by trichloroacetimidation.  相似文献   

3.
The O-polysaccharide from Vibrio cholerae O6 was isolated from the LPS by mild-acid hydrolysis and has been investigated by sugar and methylation analysis and NMR spectroscopy. The polysaccharide was also depolymerized with aqueous hydrofluoric acid to give the repeating unit and multiples thereof. The O-polysaccharide had the following tetrasaccharide repeating unit. Two O-acetyl groups are present, one of them making the GlcNAc residue fully substituted and the steric crowding considerable at the branching residue.  相似文献   

4.
Yamaguchi T  Ohtake S  Kimata K  Habuchi O 《Glycobiology》2007,17(12):1365-1376
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate to position 6 of GalNAc(4SO(4)) residues in chondroitin sulfate (CS). We previously purified squid GalNAc4S-6ST and cloned a cDNA encoding the partial sequence of squid GalNAc4S-6ST. In this paper, we cloned squid GalNAc4S-6ST cDNA containing a full open reading frame and characterized the recombinant squid GalNAc4S-6ST. The cDNA predicts a Type II transmembrane protein composed of 425 amino acid residues. The recombinant squid GalNAc4S-6ST transferred sulfate preferentially to the internal GalNAc(4SO(4)) residues of chondroitin sulfate A (CS-A); nevertheless, the nonreducing terminal GalNAc(4SO(4)) could be sulfated efficiently when the GalNAc(4SO(4)) residue was included in the unique nonreducing terminal structure, GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), which was previously found in CS-A. Shark cartilage chondroitin sulfate C (CS-C) and chondroitin sulfate D (CS-D), poor acceptors for human GalNAc4S-6ST, served as the good acceptors for the recombinant squid GalNAc4S-6ST. Analysis of the sulfated products formed from CS-C and CS-D revealed that GalNAc(4SO(4)) residues included in a tetrasaccharide sequence, GlcA-GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), were sulfated efficiently by squid GalNAc4S-6ST, and the E-D hybrid tetrasaccharide sequence, GlcA-GalNAc(4,6-SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)) was generated in the resulting sulfated glycosaminoglycans. These observations indicate that the recombinant squid GalNAc4S-6ST is a useful enzyme for preparing a unique chondroitin sulfate containing the E-D hybrid tetrasaccharide structure.  相似文献   

5.
Zhang G  Fu M  Ning J 《Carbohydrate research》2005,340(1):155-159
A beta-(1-->6)-linked D-galactofuranosyl hexasaccharide was synthesized efficiently in a block construction manner by the well-known Schmidt glycosylation method using 6-O-acetyl-2,3,5-tri-O-benzoyl-beta-D-galactofuranosyl trichloroacetimidate (1) and allyl 2,3,5-tri-O-benzoyl-beta-D-galactofuranoside (3) as the key synthons. Coupling of 3 with 1 gave beta-(1-->6)-linked disaccharide 4. Subsequent selective deacetylation of 4 afforded the disaccharide acceptor 5, while deallylation of 4 followed by trichloroacetimidate formation produced the disaccharide donor 6. Condensation of 5 with 6 gave the tetrasaccharide 7, and subsequent deacetylation afforded the tetrasaccharide acceptor 8. Finally, coupling of 8 with 6 followed by deacylation yielded the target beta-(1-->6)-linked galactofuranose hexasaccharide 10. All of the reactions in the synthesis were carried out smoothly and in high yield.  相似文献   

6.
Reaction of 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl trichloroimidate with allyl alpha-D-mannopyranoside in the presence of TMSOTf selectively gave allyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-alpha-D-mannopyranoside through an orthoester intermediate. Benzoylation of 3, followed by deallylation, and then trichloroimidation afforded the disaccharide donor 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroimidate, while benzoylation of 3 followed by selective removal of acetyl groups yielded the disaccharide acceptor allyl alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside. Coupling of 5 with 6 gave the tetrasaccharide allyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside, which were converted into the tetrasaccharide donor 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroimdate and the tetrasaccharide acceptor allyl alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside, respectively, by the same strategies as used for conversion of 3 into 5 and 6. Condensation of 5 with 13 gave the hexasaccharide 14, while condensation of 12 with 13 gave the octasaccharide 17. Dodecasaccharide 21 was obtained by the coupling of 12 with the octasaccharide acceptor 20. Similar strategies were used for the syntheses of beta-(1-->6)-linked glucose di-, tri-, tetra-, hexa-, and octamers. Deprotection of the oligosaccharides in ammonia-saturated methanol yielded the free alpha-(1-->6)-linked mannosyl and beta-(1-->6)-linked glucosyl oligomers.  相似文献   

7.
A bacterial strain M6, isolated from soil and identified as Arthrobacter globiformis, produced a novel nonreducing oligosaccharide. The nonreducing oligosaccharide was produced from starch using a culture supernatant of the strain as enzyme preparation. The oligosaccharide was purified as a crystal preparation after alkaline treatment and deionization of the reaction mixture. The structure of the oligosaccharide was determined by methylation analysis, mass spectrometry, and (1)H and (13)C NMR spectroscopy, and it was demonstrated that the oligosaccharide had a cyclic structure consisting of four glucose residues joined by alternate alpha-(1-->4)- and alpha-(1-->6)-linkages. The cyclic tetrasaccharide, cyclo-{-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->}, was found to be a novel oligosaccharide, and was tentatively called cyclic maltosyl-maltose (CMM). CMM was not hydrolyzed by various amylases, such as alpha-amylase, beta-amylase, glucoamylase, isoamylase, pullulanase, maltogenic alpha-amylase, and alpha-glucosidase, but hydrolyzed by isomalto-dextranase to give rise to isomaltose. This is the first report of the cyclic tetrasaccharide, which has alternate alpha-(1-->4)- and alpha-(1-->6)-glucosidic linkages.  相似文献   

8.
《Carbohydrate research》1985,138(2):267-276
Partially acetylated acidic glucomannans have been isolated from three strains of Serratia marcescens serogroup O14 and one strain of the cross-reacting serogroup O6. Degradative and spectroscopic studies established that the polysaccharides have branched tetrasaccharide repeating-units of the structure shown. Individual polymers may vary in the extent or location of O-acetylation, and in the extent of undefined heterogeneity apparently associated with the glucosyluronic acid residues. Although the polymers were obtained from lipopolysaccharide extracts, there are indications of a (micro)capsular origin. The acidic glucomannans may constitute a common antigen which defines the O14-O6 complex of S. marcescens.  相似文献   

9.
The cyclic tetrasaccharide, cyclo-(-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->), was oxidized in high yield to a dicarboxylic acid, cyclo-(-->6)-alpha-D-Glcp-(1-->3)-alpha-D-GlcpA-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-GlcpA-(1-->). The parent and oxidized compound were then screened for the ability to form stable complexes with 20 metal cations. Ion-exchange thin-layer chromatography was utilized to survey binding in aqueous and 50% methanolic solutions. The screening identified Pb2+, Fe2+ and Fe3+ as forming strong metal chelates with the oxidized cyclic tetrasaccharide. The stoichiometry of the oxidized cyclic tetrasaccharide and Pb2+ complex was determined to be 1:1 using aqueous gel-permeation chromatography. Perturbations between the free and complexed structure were examined using NMR spectroscopy. Molecular simulations were used to identify a probable structure of oxidized cyclic tetrasaccharide complexed with Pb2+.  相似文献   

10.
[3H]Mannose- and [3H]glucosamine-labeled lactosamine-type glycopeptides of Semliki Forest virus membrane proteins were stripped of their fucose, sialic acid, galactose and distal N-acetylglucosamine residues and subsequently digested with endo-beta-D-N-acetylglucosaminidase D from Diplococcus pneumoniae. Two products were obtained, a neutral tetrasaccharide and a residual glycopeptide fraction. The tetrasaccharide appeared to consist of two alpha-mannose residues, one beta-mannose residue and one N-acetylglucosamine residue located at the reducing terminus of the molecule. Results of Smith degradation, beta-elimination and acetolysis were compatible with four structures; (1) Man alpha-1-3[Man alpha 1-6]Man beta 1-4GlcNAc; (2) Man alpha 1-3Man beta 1-4[Man alpha 1-6] GlcNAc; (3) Man alpha 1-3Man alpha 1-4[Man beta 1-6]GlcNAc, or (4) Man alpha 1-6Man alpha 1-3Man beta-1-4GlcNAc. The reactivity of the viral glycopeptides with endo-beta-D-N-acetylglucosaminidase D and the chromatographic properties of the liberated core tetrasaccharide suggest that its most likely structure was Man alpha 1-3[Man alpha-1-6]Man beta 1-4GlcNAc. The core tetrasaccharide of glycans of membrane protein E3, one of the viral membrane proteins obtained from infected cell, was similar to that of the virion glycans.  相似文献   

11.
For the characterization of the supposed epitope of an arabinogalactan, isolated from the extract of the cell-cultured Echinacea purpurea, the title hexasaccharide was synthesized. The whole synthetic route was based on the 6-O-(methoxydimethyl)methyl ether (MIP) protecting group strategy. 2-O-Benzyl-3,4-O-isopropylidene-6-O-(methoxydimethyl)methyl-beta-D-galactopyranosyl-(1-->6)-1,2:3,4-di-O-isopropylidene-alpha-D-galactopyranose was used to prepare the desired glycosyl donor and glycosyl acceptor both carrying a persistent O-benzyl group at position 2'. Reaction of the digalactose donor and the digalactose acceptor resulted in a beta-(1-->6)-linked galactose-containing tetrasaccharide in which OH-2' and OH-2"' were substituted with benzyl groups. Hydrogenolytic removal of the benzyl groups of the tetragalactose compound gave the diol aglycon which was diarabinosylated in one step to furnish the protected target compound, whose deprotection led to the title hexasaccharide. All of the synthesized compounds were characterized by 1H and 13C NMR spectra, as well as by MALDI-TOF mass-spectrometry measurements.  相似文献   

12.
Stansin 6 a tetrasaccharide resin glycoside isolated from the root of Ipomoea stans was evaluated as anticonvulsant and neuroprotective in kainic acid-induced seizures of rats. Intraperitoneal injection of kainic acid (10 mg/kg) induced typical behavioral seizures such as wet dog shakes and limbic seizures, and histopathological changes in the hippocampus (degeneration and loss of pyramidal cells in CA1 to CA4 areas). Stansin 6 (10–80 mg/kg) had no effect on the behavior of rats and did not induce hippocampal damage. Pretreatment with stansin 6 inhibited convulsions in rats from kainic acid-induced seizures, reduced the degeneration pattern in the CA3 region, decreased astrocytic reactivity, and reduced the expression of IL-1β and TNF-α induced by kainic acid. These results suggest that stansin 6 possesses neuroprotective and anticonvulsant activities.  相似文献   

13.
The O-polysaccharide of Aeromonas hydrophila O:34 was obtained by mild-acid degradation of the lipopolysaccharide and studied by chemical methods and NMR spectroscopy before and after O-deacetylation. The polysaccharide was found to contain D-Man, D-GalNAc and 6-deoxy-L-talose (L-6dTal), and the following structure of the tetrasaccharide repeating unit was established [carbohydrate structure see text] where 6dTal(I) is O-acetylated stoichiometrically at position-2 and 6dTal(II) carries no, one or two O-acetyl groups at any positions.  相似文献   

14.
Synthesis of the regular branched polysaccharide [-6(Gal beta 1-4)GlcNAc beta 1-3Gal beta 1-4Glc beta 1-]n structurally corresponding to capsular polysaccharide of Streptococcus pneumoniae type 14 involves blockwise synthesis of a tritylated 1,2-O-(1-cyano)ethylidene tetrasaccharide derivative from lactosamine and lactose precursors followed by stereospecific polycondensation of the tetrasaccharide monomer.  相似文献   

15.
A beta-(1-->6)-branched beta-(1-->3)-glucohexaose, present in many biologically active polysaccharides from traditionally herbal medicines such as Ganoderma lucidum, Schizophyllum commune and Lentinus edodes, was synthesized as its lauryl glycoside 32, and its analogues 18, 20 and 33 containing an alpha-(1-->3) linked bond were synthesized. It is interesting to find that coupling of a 3,6-branched acylated trisaccharide trichloroacetimidate donor 9 with 3,6-branched acceptors 13 and 16 with 3'-OH gave the alpha-(1--> 3)-linked hexasaccharides 17 and 19, respectively, in spite of the presence of C-2 ester capable of neighboring group participation. However, coupling of 9 with 4-methoxyphenyl 4,6-O-benzylidene-beta-D-glucopyranoside (27) selectively gave beta-(1-->3)-linked tetrasaccharide 28. Simple chemical transformation of the tetrasaccharide 28 gave acylated tetrasaccharide trichloroacetimidate 29. Coupling of 29 with lauryl (1-->6)-linked disaccharide 26 with 3-OH gave beta-(1-->3)-linked hexasaccharide 30 as the major product. Bioassay showed that in combination with the chemotherapeutic agent cyclophospamide (CPA), the hexaose 18 at a dose of 0.5-1mg/kg substantially increased the inhibition of S(180) for CPA, but decreased the toxicity caused by CPA. Some of these oligosaccharides also inhibited U(14) noumenal tumor in mice effectively.  相似文献   

16.
Yan S  Liang X  Diao P  Yang Y  Zhang J  Wang D  Kong F 《Carbohydrate research》2008,343(18):3107-3111
An efficient synthesis of 4-methoxyphenyl α-l-Rhap-(1→3)-α-l-Rhap-(1→3)-α-l-Rhap-(1→2)-6-deoxy-α-l-Talp, the tetrasaccharide related to the GPLs of Mycobacterium intracellare serotype 7, was achieved with 4-methoxyphenyl 3,4-di-O-benzoyl-6-deoxy-α-l-talopyranoside (6c) as the key intermediate which was obtained through selective 3-O-benzoylation of 4-O-benzoyl-6-deoxy-α-l-taloside. Coupling of 6c with 3-O-allyloxycarbonyl-2,4-di-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate followed by removal of the allyloxycarbonyl protecting group afforded the disaccharide acceptor 11. Condensation of 11 with 2,3,4-tri-O-benzoyl-α-l-rhamnopyranosyl-(1→3)-2,4-di-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate and subsequent deprotection gave the target tetrasaccharide.  相似文献   

17.
The cyclic tetrasaccharide cyclo-[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->] is the major compound obtained by the action of endo-alternases on the alternan polysaccharide. Crystals of this cyclo-tetra-glucose belong to the orthorhombic space group P2(1)2(1)2(1) with a = 7.620(5), b = 12.450(5) and c = 34.800(5) A. The asymmetric unit contains one tetrasaccharide together with five water molecules. The tetrasaccharide adopts a plate-like overall shape with a very shallow depression on one side. The shape is not fully symmetrical and this is clearly apparent on comparing the (phi, psi) torsion angles of the two alpha-(1-->6) linkages. There is almost 10 degrees differences in phi and more than 20 degrees differences in psi. The hydrogen bond network is asymmetric, with a single intramolecular hydrogen bond: O-2 of glucose ring 1 being the donor to O-2 of glucose ring 3. These two hydroxyl groups are located below the ring and their orientation, dictated by this hydrogen bond, makes the floor of the plate. Among the five water molecules, one located above the center of the plate occupies perfectly the shallow depression in the plate shape formed by the tetrasaccharide. Molecular dynamics simulation of the tetrasaccharide in explicit water allows rationalization of the discrepancies observed between the X-ray structures and data obtained previously by NMR.  相似文献   

18.
A convergent synthesis of the tetrasaccharide repeating unit of the O-antigen of the verotoxin producing E. coli O176 has been achieved in excellent yield adopting a [2+2] block glycosylation strategy. The β-D-mannosidic moiety of the tetrasaccharide was prepared from β-D-glucoside and α-D-galactosamine moiety was derived from D-galactal. The tetrasaccharide was synthesized as its 2-trimethylsilylethyl glycoside in excellent yield. All intermediate steps are high yielding.  相似文献   

19.
A 6-sulfatase specific for sugasr of the galactose configuration was purified 81-fold from the crude extract of Actinobacillus sp. IFO-13310. This preparation contained activity towards both N-acetylgalactosamine 6-sulfate and galactose 6-sulfate (relative activity, 2.4 : 1). The enzyme also release inorganic sulfate from the non-reducing galactose 6-sulfate end group of a trisaccharide disulfate prepared from keratan sulfate by sequential degradation with endo-beta-galactosidase, N-acetylglucosamine-6-sulfatase and exo-beta-N-acetylglucosaminidase. In addition, a tetrasaccharide trisulfate bearing the non-reducing N-acetylglucosamine 6-sulfate end group, also enzymatically prepared from keratan sulfate, was degraded to give rise to inorganic sulfate, N-acetylglucosamine and galactose by the sequential action of this enzyme, N-acetylglucosamine-6-sulfatase, exo-beta-N-acetylglucosaminidase and exo-beta-galactosidase (Charonia lampas).  相似文献   

20.
Alternanase is an enzyme which endo-hydrolytically cleaves the alpha-(1-->3), alpha-(1-->6)-linked D-glucan, alternan. The main products are isomaltose, alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-D-Glc and the cyclic tetrasaccharide cyclo[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->]. It is also capable of acting on oligosaccharide substrates. The cyclic tetrasaccharide is slowly hydrolyzed to isomaltose. Panose and the trisaccharide alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-D-Glc both undergo transglycosylation reactions to give rise to the cyclic tetrasaccharide plus D-glucose, with panose being converted at a much faster rate. The tetrasaccharide alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-D-Glc is hydrolyzed to D-glucose plus the trisaccharide alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-D-Glc. Alternanase does not act on isomaltotriose, theanderose (6(Glc)-O-alpha-D-Glcp sucrose), or alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glc. The enzyme releases 4-nitrophenol from 4-nitrophenyl alpha-isomaltoside, but not from 4-nitrophenyl alpha-D-glucopyranoside, 4-nitrophenyl alpha-isomaltotrioside, or 4-nitrophenyl alpha-isomaltotetraoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号