首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryopreservation protocols for umbilical cord blood have been based on methods established for bone marrow (BM) and peripheral blood stem cells (PBSC). The a priori assumption that these methods are optimal for progenitor cells from UCB has not been investigated systematically. Optimal cryopreservation protocols utilising penetrating cryoprotectants require that a number of major factors are controlled: osmotic damage during the addition and removal of the cryoprotectant; chemical toxicity of the cryoprotectant to the target cell and the interrelationship between cryoprotectant concentration and cooling rate. We have established addition and elution protocols that prevent osmotic damage and have used these to investigate the effect of multimolar concentrations of Me(2)SO on membrane integrity and functional recovery. We have investigated the effect of freezing and thawing over a range of cooling rates and cryoprotectant concentrations. CD34(+) cells tolerate up to 60 min exposure to 25% w/w (3.2M) Me(2)SO at +2 degrees C with no significant loss in clonogenic capacity. Exposure at +20 degrees C for a similar period of time induced significant damage. CD34(+) cells showed an optimal cooling range between 1 degrees C and 2.5 degrees C/min. At or above 1 degrees C/min, increasing the Me(2)SO concentration above 10% w/w provided little extra protection. At the lowest cooling rate tested (0.1 degrees C/min), increasing the Me(2)SO concentration had a statistically significant beneficial effect on functional recovery of progenitor cells. Our findings support the conclusion that optimal recovery of CD34(+) cells requires serial addition of Me(2)SO, slow cooling at rates between 1 degrees C and 2.5 degrees C/min and serial elution of the cryoprotectant after thawing. A concentration of 10% w/w Me(2)SO is optimal. At this concentration, equilibration temperature is unlikely to be of practical importance with regard to chemical toxicity.  相似文献   

2.
Using the current blood bank storage conditions at 22 degrees C, the viability and function of human platelets can be maintained for only 5 days. This does not allow for the necessary and extensive banking of platelets needed to treat patients afflicted with thrombocytopenia, a side effect of many invasive surgeries such as cardiopulmonary bypass or bone marrow transplantation. The development of optimal techniques for long-term cryopreservation and banking of human platelets would provide the ability to greatly extend the viable life of the platelet and would fulfill an increasing and urgent need in many clinical applications. To determine the optimal techniques for platelet preservation, the expression of an activation marker, phosphatidylserine, on the platelet membrane during storage at 22 and 8 degrees C as well as during the different freezing preservation processes was examined using flow cytometry and annexin V binding assay. Human platelets were identified by both CD41 and light scatter in flow cytometry. In cryopreservation experiments, effects of the following factors on platelet activation were evaluated: (a) cryoprotective agents (CPAs) type: dimethyl sulfoxide (Me2SO), ethylene glycol (EG), and propylene glycol (PG), (b) CPA concentration ranging from 0 to 3 M, and (c) ending temperatures of a slow cooling process at -1 degrees C/min. Our results demonstrated that (a) approximately 50% of platelets were activated on days 7 and 16 at 22 and 8 degrees C, respectively; (b) platelets were not significantly activated after 30-min exposure to 1 M Me2SO, EG, and PG at 22 degrees C, respectively, and (c) there was a significant difference in cryoprotective efficacy among these three CPAs in preventing platelets from cryoinjury. After being cooled to -10 degrees C, 74% of the cryopreserved platelets survived (nonactivated) in 1 M Me2SO solution, while in 1 M EG and 1 M PG solutions, 62 and 42% of the platelets survived, respectively. Using the information that Me2SO consistently yields higher percentages of nonactivated platelets and does not seem to be cytotoxic to platelets for 30-min exposure time, this was found to be the optimal cryoprotective agent for platelets. In addition, significant Me2SO toxicity to platelets was not noted until Me2SO concentrations exceeded 2 M. Finally, a concentration of 1 M Me2SO proved to be the most effective at all cryopreservation ending temperatures tested (-10, -30, -60, and -196 degrees C). In conclusion, under the present experimental conditions, a storage temperature of 8 degrees C appeared to be much better than 22 degrees C. Although the potential chemical toxicity of 1 M Me2SO, EG, or PG is negligible, 1 M Me2SO was found to be optimum for cryopreservation of human platelets. PG has the least cryoprotective function for low-temperature platelet survival.  相似文献   

3.
P Clark  G M Fahy  A M Karow 《Cryobiology》1984,21(3):274-284
The [K+]/[Na+] ratio of rabbit renal cortical slices was used to examine, at 25 degrees C, the effects on viability of three cryoprotectant agents (CPA) (dimethyl sulfoxide (Me2SO), ethylene glycol, and glycerol) in combination with three vehicle solutions (Krebs-Henseleit (K-H), solution A, and RPS-2). Viability assessment by [K+]/[Na+] for all test solutions was made after incubating the slices in modified Cross-Taggart solution (C-T). With K-H and solution A, all concentrations of ethylene glycol and glycerol resulted in lowered ratios, whereas with Me2SO, concentrations greater than 1.4 M are required to reduce [K+]/[Na+]. With RPS-2 no decrease in the ratios was found until concentrations greater than 2.8 M were reached for all three CPAs. Binding of Me2SO to albumin, studied using [14C]Me2SO, was inhibited by RPS-2 when compared to K-H. Introduction and removal of Me2SO at 10 degrees C allowed an improvement in viability, at higher Me2SO concentrations, as compared to 25 degrees C.  相似文献   

4.
Yang H  Zhao H  Acker JP  Liu JZ  Akabutu J  McGann LE 《Cryobiology》2005,51(2):165-175
BACKGROUND: The effect of dimethyl sulfoxide (Me2SO) on enumeration of post-thaw CD45+ and CD34+ cells of umbilical cord blood (HPC-C) and mobilized peripheral blood (HPC-A) has not been systematically studied. METHODS: Cells from leukapheresis products from multiple myeloma patients and umbilical cord blood cells were suspended in 1, 2, 5, or 10% Me2SO for 20 min at 22 degrees C. Cells suspended in Me2SO were then immediately assessed or assessed following removal of Me2SO. In other samples, cells were suspended in 10% Me2SO, cooled slowly to -60 degrees C, stored at -150 degrees C for 48 h, then thawed. The thawed cells in 10% Me2SO were diluted to 1, 2, 5, or 10% Me2SO, held for 20 min at 22 degrees C and then immediately assessed or assessed after the removal of Me2SO. CD34+ cell viability was determined using a single platform flow cytometric absolute CD34+ cell count technique incorporating 7-AAD. RESULTS: The results indicate that after cryopreservation neither recovery of CD34+ cells nor viability of CD45+ and CD34+ cells from both post-thaw HPC-A and HPC-C were a function of the concentration of Me2SO. Without cryopreservation, when Me2SO is present recovery and viability of HPC-C CD34+ cells exposed to 10% Me2SO but not CD45+ cells were significantly decreased. Removing Me2SO by centrifugation significantly decreased the viability and recovery of CD34+ cells in both HPC-A and HPC-C before and after cryopreservation. DISCUSSION: To reflect the actual number of CD45+ cells and CD34+ cells infused into a patient, these results indicate that removal of Me2SO for assessment of CD34+ cell viability should only be performed if the HPC are infused after washing to remove Me2SO.  相似文献   

5.
S M Mutetwa  E R James 《Cryobiology》1984,21(5):552-558
Various cooling and warming rates were investigated to determine the optimum conditions for cryopreserving the intraerythrocytic stages of Plasmodium chabaudi. Infected blood, equilibrated in 10% v/v glycerol at 37 degrees C or in 15% v/v Me2SO at 0 degree C for 10 min, was cryopreserved using cooling rates between 1 and 5100 degrees C min-1. After overnight storage in liquid nitrogen the samples were warmed at 12,000 degrees C min-1. Warming rates between 1 and 12,000 degrees C min-1 were investigated using samples previously cooled at 3600 degrees C min-1. After thawing, the glycerol and Me2SO were removed by dilution in 15% v/v glucose-supplemented phosphate-buffered saline. Survival was assayed by inoculation of groups of five mice each with 10(6) infected cells and the time taken to reach a level of 2% parasitemia estimated. The optimum cooling rate was 3600 degrees C min-1 for parasites frozen using either 10% glycerol or 15% Me2SO; the pre-2% patent periods were 0.90 and 1.01 days above control values (representing survival levels of 21 and 17.5%, respectively). The optimum warming rate was 12,000 degrees C min-1; the pre-2% patent periods were 1.01 and 1.32 days above control values, respectively (18 and 10% survival), for glycerol and Me2SO. With ethanediol (5% v/v) and sucrose (15% w/v) as cryoprotectants the optimum warming rates were also 12,000 degrees C min-1 while the optimum cooling rates were 330 and 3600 degrees C min-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Plasma membrane permeability coefficients and their activation energies (Ea) for water (Lp) and dimethyl sulfoxide (PMe2SO) as well as the reflection coefficient (sigma) were determined for germinal vesicle (GV) and metaphase II (MII) bovine oocytes. A micropipette perfusion technique was used with a temperature controlled circulation chamber, which was adapted to a micromanipulator. Experiments were performed at five different temperatures (30, 20, 10, 4 and -3 degrees C). The Kedem and Katchalsky model was assumed and L(p), P(Me2SO) and sigma were estimated. Estimated permeability values from the experimental temperatures were then applied to Arrhenius plots In(Lp) or In(PMe2SO) vs 1/Temperature (K) to estimate the activation energies (Ea) for L(p)Me2SO and P(Me2SO). The estimated E(a) for L(p)Me2SO for GV and MII oocytes were 23.84 Kcal/mol and 8.46 Kcal/mol, respectively. The E(a) for P(Me2SO) were 21.0 Kcal/mol and 23.20 Kcal/mol, respectively. The correlation (r2) for these linear regression plots for GV oocytes were 0.83 and 0.95 for L(p)Me2SO and P(Me2SO), respectively. For MII oocytes, r2 values were 0.95 and 0.99 for L(p)Me2SO and P(Me2SO), respectively. There was a possible discontinuity detected in the Arrhenius plot for L(p)Me2SO for GV oocytes. A significant decrease of the reflection coefficient was observed at 10 degrees C compared to other experimental temperatures. These data provide a fundamental basis that should be taken into account for low temperature preservation of bovine oocytes in the presence of Me2SO.  相似文献   

7.
P Clark  G M Fahy  A M Karow 《Cryobiology》1984,21(3):260-273
A renal cortical slice model was used to assess the effects on viability of three vehicle solutions-Krebs-Henseleit (K-H), solution A, and RPS-2--at 25 degrees C. After 120 min incubation no differences in [K+]/[Na+] ratios were found. Tracer techniques were used to study the osmotic effects and permeation kinetics at 25 degrees C of three cryoprotectants (dimethyl sulfoxide (Me2SO), ethylene glycol, and glycerol) and the effect of the vehicle solution (K-H or RPS-2) on Me2SO kinetics. It was found that Me2SO was most permeable and ethylene glycol least, and that ethylene glycol had unusual effects which suggest that it may not act as a simple solute. Differences were found when Me2SO was introduced in K-H and RPS-2 that are believed to be related to the binding properties of Me2SO to cell constituents.  相似文献   

8.
Cryopreservation of seabream (Sparus aurata) spermatozoa   总被引:3,自引:0,他引:3  
The aim of this research was to optimize protocols for freezing spermatozoa of seabream (Sparus aurata). All the phases of the cryopreservation procedure (sampling, choosing the cryoprotective extender, cooling, freezing, and thawing) were studied in relation to the species of spermatozoa under examination, so as to be able to restore on thawing the morphological and physiological characteristics of fresh semen. Seabream spermatozoa were collected by stripping and transported to the laboratory chilled (0-2 degrees C). Five cryoprotectants, dimethyl sulfoxide (Me(2)SO), ethylene glycol (EG), 1,2-propylene glycol (PG), glycerol, and methanol, were tested at concentrations between 5 and 15% by volume to evaluate their effect on the motility of semen exposed for up to 30 min at 26 degrees C. The less toxic cryoprotectants, 10% EG, 10% PG, and 5% Me(2)SO, respectively, were added to 1% NaCl to formulate the extenders for freezing. The semen was diluted 1:6 with the extender, inserted into 0.25-ml plastic straws by Pasteur pipette, and frozen using a cooling rate of either 10 or 15 degrees C/min to -150 degrees C followed by transfer and storage in liquid nitrogen (-196 degrees C). The straws were thawed at 15 degrees C/s. On thawing, the best motility was obtained with 5% Me(2)SO, although both 10% PG and EG showed good results; no differences were found between the two freezing gradients, although semen frozen with the 10 degrees C/min gradient showed a slightly higher and more prolonged motility.  相似文献   

9.
Larvae of the sea urchin, Evechinus chloroticus, at varying stages of development, were assessed for their potential to survive cryopreservation. Ethylene glycol (EG) and dimethyl sulphoxide (Me2SO), at concentrations of 1-2 M, were evaluated as cryoprotectants (CPAs) in freezing regimes initially based on methods established for freezing larvae of other sea urchin species. Subsequent work varied cooling rate, holding temperature, holding time, and plunge temperature. Ethylene glycol was less toxic to larvae than Me2SO. However, no larvae survived freezing and thawing in EG. Larvae frozen in Me2SO at the gastrula stage and 4-armed pluteus stage regained motility post-thawing. The most successful freezing regime cooled straws containing larvae in 1.5 M Me2SO from 0 to -35 degrees C at 2.5 degrees C min(-1), held at -35 degrees C for 5 min, then plunged straws into liquid nitrogen. Motility was high 2-4 h post-thawing using this regime but decreased markedly within 24 h. Some 4-armed pluteus larvae that survived beyond this time developed through to metamorphosis and settled. Different Me2SO concentrations and supplementary trehalose did not improve long-term survival. Large variation in post-thaw survival was observed among batches of larvae produced from different females.  相似文献   

10.
Drug metabolism and viability studies in cryopreserved rat hepatocytes   总被引:1,自引:0,他引:1  
Rat hepatocytes were cryopreserved optimally by freezing them at 1 degrees C/min to -80 degrees C in cryoprotectant medium containing either 20% (v/v) dimethylsulfoxide (Me2SO) and 25% (v/v) fetal calf serum in Leibowitz L15 medium (Me2SO cryoprotectant) or 25% (v/v) vitrification solution (containing Me2SO, acetamide, propylene glycol and polyethylene glycol) in Leibowitz L15 medium (VS25). The VS25 solution was superior for maintaining viability during short-term storage (24-48 hr) but was slightly toxic during longer storage periods (7 days). Although thawed cells were 40-50% viable on ice after cryopreservation, their viability fell rapidly during incubation in suspension at 37 degrees C. This decline in viability occurred more rapidly after freezing in Me2SO cryoprotectant than in VS25 and was associated with extensive intracellular damage and cell swelling. The loss in viability at 37 degrees C does not appear to be due to ice-crystal damage as it occurred in cells stored at -10 degrees C (above the freezing point of the cryoprotectants) and it may be due to temperature/osmotic shock. Both cryoprotectant media were equally efficient at preserving enzyme activities in the hepatocytes over 7 days at -80 degrees C. Cytochrome P450 and reduced glutathione content and the activities of the microsomal enzymes responsible for aminopyrine N-demethylation and epoxide hydrolysis were well maintained over 7 days storage. In contrast, the cytosolic enzymes glutathione-S-transferase and glutathione reductase were markedly labile during cryopreservation. Cytosolic enzymes may be more susceptible to ice-crystal damage, whereas the microsomal membrane may protect the enzymes which are embedded in it.  相似文献   

11.
Treatment of amino acids, peptides, and proteins with aqueous solution of dimethyl sulfoxide (Me2SO) and hydrochloric acid (HCl) resulted in the oxidation of methionine to methionine sulfoxide. In addition to methionine, SH groups are also oxidized, but this reaction proceeds after a lag period of 2 h. Other amino acids are not modified by aqueous Me2SO/HCl. The reaction is strongly pH-dependent. Optimal conditions are 1.0 M HCl, 0.1 M Me2SO, at 22 degrees C. The reaction exhibits pseudo-first order kinetics with Kobs = 0.23 +/- 0.015 M-1 min-1 at 22 degrees C. Incubation of methionine sulfoxide with dimethyl sulfide and HCl resulted in the conversion of methionine sulfoxide to methionine. This reaction is fast (t1/2 = 4 min at room temperature) and quantitative at relatively anhydrous condition (i.e. at H2O:concentrated HCl:dimethyl sulfide ratio of 2:20:1). Quantitative conversions of methionine sulfoxide back to methionine are obtained in peptides and proteins as well, with no observable other side reactions in amino acids and proteins. The wide applications of this selective oxidation and reduction of methionine residues are demonstrated and discussed.  相似文献   

12.
T Kojima  T Soma  N Oguri 《Cryobiology》1985,22(5):409-416
The aim of the present study was to examine effects of altering thawing conditions and procedure of addition and dilution of Me2SO on the viability of frozen-thawed rabbit morulae. Five hundred and sixty two rabbit morulae were cooled from room temperature to -80 degrees C at 1 degree C/min in the presence of 1.5 M dimethyl sulfoxide (Me2SO) using a programmable liquid nitrogen vapor freezing machine with an automatic seeding device, cooled rapidly, and stored in liquid nitrogen. When Me2SO was added in a single step, the frozen embryos were thawed in ambient air at 40 degrees C/min and Me2SO was diluted in a single step, 99 of 107 (93%) embryos cultured for 48 hr and 12 of 32 (38%) embryos transferred to 6 recipients developed to expanding blastocysts and viable fetuses, respectively. When Me2SO was added in a single step and the frozen embryos were thawed at the same rate and transferred directly without removal of Me2SO to culture media or oviducts of 8 recipients, 67 of 75 (89%) embryos cultured and 12 of 40 (30%) embryos transferred developed to expanding blastocysts and viable fetuses, respectively. There were no significant differences between these survival rates and survival rates obtained by conventional method, i.e., frozen embryos were thawed at 4 degrees C/min by interrupted slow method and Me2SO was added and diluted in a stepwise manner.  相似文献   

13.
The hydraulic conductivity in the presence of dimethyl sulfoxide Me(2)SO (L(p)(Me(2)SO)), Me(2)SO (P(Me(2)SO)) permeability and reflection coefficient (sigma) of immature (germinal vesicle; GV) and mature (metaphase II; MII) rat oocytes were determined at various temperatures. A temperature controlled micropipette perfusion technique was used to conduct experiments at five different temperatures (30, 20, 10, 4, and -3 degrees C). Kedem and Katchalsky membrane transport theory was used to describe the cell volume kinetics. The cell volumetric changes of oocytes were calculated from the measurement of two oocyte diameters, assuming a spherical shape. The activation energies (E(a)) of L(p)(Me(2)SO) and P(Me(2)SO) were calculated using the Arrhenius equation. Activation energies of L(p)(Me(2)SO) for GV and MII oocytes were 34.30 Kcal/mol and 16.29 Kcal/mol, respectively; while the corresponding E(a)s of P(Me(2)SO) were 19.87 Kcal/mol and 21.85 Kcal/mol, respectively. These permeability parameters were then used to calculate cell water loss in rat oocytes during cooling at subzero temperatures. Based on these values, the predicted optimal cooling rate required to maintain extra- and intracellular water in near equilibrium for rat GV stage oocytes was found to be between 0.05 degrees C/min and 0. 025; while for rat MII oocytes, the corresponding cooling rate was 1 degrees C/min. These data suggest that standard cooling rates used for mouse oocytes (e.g., 0.5-1 degrees C/min) can also be employed to cryopreserve rat MII oocytes. However, the corresponding cooling rate required to avoid damage must be significantly slower for the GV stage rat oocyte. J. Exp. Zool. 286:523-533, 2000.  相似文献   

14.
13CH2-multiplet nuclear magnetic resonance relaxation studies on proline (P)-containing glycine (G)-based peptides, GP, PG, GPG, PGG, and GPGG, provided numerous dipolar auto- and cross-correlation times for various motional model analyses of backbone and proline-ring bond rotations. Molecular dynamics simulations and bond rotation energy profiles were calculated to assess which motions could contribute most to observed relaxation phenomena. Results indicate that proline restricts backbone psi 1, psi 2, and phi 2 motions by 50% relative to those found for a polyglycine control peptide. psi 1 rotations are more restricted in the trans-proline isomer state than in the cis form. A two-state jump model best approximates proline ring puckering which in water could occur either by the C gamma endo-exo or by the C2 interconversion mechanism. The temperature dependence (5 degrees to 75 degrees C) of C beta, and C gamma, and C delta angular changes is rather flat, suggesting a near zero enthalpic contribution to the ring puckering process. In lower dielectric solvents, dimethylsulfoxide and methanol, which may mimic the hydrophobic environment within a protein, the endo-exo mechanism is preferred.  相似文献   

15.
T Kojima  T Soma  N Oguri 《Cryobiology》1987,24(3):247-255
The aim of the present study was to examine the effects of various conditions of addition and dilution of dimethyl sulfoxide (Me2SO) and 37 degrees C equilibration, and also the effects of freezing in the solution which was prepared in advance and stored in plastic straws at -20 degrees C on the viability of rabbit morulae thawed rapidly. The embryos were cooled from room temperature to -30 degrees C at 1 degree C/min in the presence of 1.5 M Me2SO using a programmable liquid nitrogen vapor freezing machine with an automatic seeding device, then cooled rapidly, and stored in liquid nitrogen. The frozen straws were thawed rapidly (greater than 1000 degrees C/min). When Me2SO was added in a single step, equilibrated with embryos at 37 degrees C for 15 min and diluted out in a single step, a very high survival was obtained: transferable/recovered, 90%: developed/recovered, 96%. When embryos were pipetted into 1.5 M Me2SO that was prepared in advance, stocked in straws at -20 degrees C, and cooled, the proportions of transferable and developed embryos were equivalent to those of embryos frozen in the solution that was prepared immediately before use.  相似文献   

16.
The 13C CPMAS n.m.r. spectrum of 4-O-beta-D-galactopyranosyl-D-fructose (lactulose) trihydrate, C12H22O11.3 H2O, identifies the isomer in the crystals as the beta-furanose. This is confirmed by a crystal structure analysis, using CuK alpha X-ray data at room temperature. The space group is P212121, with Z = 4 and cell dimensions a = 9.6251(3), b = 12.8096(3), c = 17.7563(4) A. The structure was refined to R = 0.031 and Rw 0.025 for 1929 observed structure amplitudes. All the hydrogen atoms were unambigously located on difference syntheses. The conformation of the pyranose ring is the normal 4C1 chair and that of the furanose ring is 4T3. The 1----4 linkage torsion angles are O-5'-C-1'-O-1'-C-4 = 79.9(2) degrees and C-1'-O-1'-C-4-C-5 = -170.3(2) degrees. All hydroxyls, ring and glycosidic oxygens, and water molecules are involved in the hydrogen bonding, which consists of infinite chains linked together by water molecules to form a three-dimensional network. There is a three-centered intramolecular, interresidue hydrogen bond from O-3-H to O-5' and O-6'. The n.m.r. spectrum of the amorphous, dehydrated trihydrate suggests the occurrence of a solid-state reaction forming the same isomeric mixture as was observed in crystalline anhydrous lactulose, although the mutarotation of the trihydrate when dissolved in Me2SO is very slow.  相似文献   

17.
In order to preserve genetic resources of chum salmon, Oncorhynchus keta, optimum conditions for cryopreservation of isolated blastomeres were investigated. Survival rates under various conditions were compared: the nature and the concentration of cryoprotectants before and after freezing, the seeding temperature, and the developmental stages of donor embryos. Isolated blastomeres immersed for 30 min in Eagle's MEM containing both a cryoprotectant and 10% fetal bovine serum (FBS) at 10 degrees C were transferred into a straw and frozen at 1 degrees C/min to -30 degrees C by a programmable freezer before being plunged into liquid nitrogen. Ice seeding was carried out at -5 to -15 degrees C. Frozen blastomeres were thawed in water at 15 degrees C. Blastomeres cryopreserved with MEM containing 10% dimethyl sulfoxide (Me(2)SO) and 10% FBS (10% Me(2)SO/MEM10) showed higher survival rates than those cryopreserved with MEM containing 10% FBS and 10% glycerol, ethyleneglycol, 1, 2-propanediol, or sucrose. Blastomeres treated with 10% Me(2)SO/MEM10 showed higher survival rates than those treated with MEM containing only 10% Me(2)SO. Blastomeres seeded above -10 degrees C showed higher survival rates than non-seeded ones. Frozen blastomeres at advanced stages demonstrated high survival rates. Blastomeres cryopreserved under optimum conditions showed survival rates of 59.3+/-2.8%. These results indicate that 10% Me(2)SO/MEM10 is a suitable cryoprotectant medium to cryopreserve chum salmon blastomeres, that seeding should be carried out above -10 degrees C on pre-freezing, and that blastomeres at the blastula stage should be used as material.  相似文献   

18.
The distributions of side-chain conformations in 258 crystal structures of oligopeptides have been analyzed. The sample contains 321 residues having side chains that extend beyond the C beta atom. Statistically observed preferences of side-chain dihedral angles are summarized and correlated with stereochemical and energetic constraints. The distributions are compared with observed distributions in proteins of known X-ray structures and with computed minimum-energy conformations of amino acid derivatives. The distributions are similar in all three sets of data, and they appear to be governed primarily by intraresidue interactions. In side chains with no beta-branching, the most important interactions that determine chi 1 are those between the C gamma H2 group and atoms of the neighboring peptide groups. As a result, the g- conformation (chi 1 congruent to -60 degrees) occurs most frequently for rotation around the C alpha-C beta bond in oligopeptides, followed by the t conformation (chi 1 congruent to 180 degrees), while the g+ conformation (chi 1 congruent to 60 degrees) is least favored. In residues with beta-branching, steric repulsions between the C gamma H2 or C gamma H3 groups and backbone atoms govern the distribution of chi 1. The extended (t) conformation is highly favored for rotation around the C beta-C gamma and C gamma-C delta bonds in unbranched side chains, because the t conformer has a lower energy than the g+ and g- conformers in hydrocarbon chains. This study of the observed side-chain conformations has led to a refinement of one of the energy parameters used in empirical conformational energy computations.  相似文献   

19.
The cryoprotectants dimethyl sulfoxide (Me2SO) and glycerol have been used for the cryopreservation of fetal rat pancreases but only Me2SO has been reported for the cryopreservation of adult rat islets. Since glycerol may be preferred to Me2SO for clinical use, this study was undertaken to compare the effectiveness of these cryoprotectants during the slow cooling of isolated adult rat islets. Islets of Langerhans prepared from the pancreases of WAG rats by collagenase digestion were stored at -196 degrees C after slow cooling (0.3 degrees C/min) to -70 degrees C in the presence of multimolar concentrations of either Me2SO or glycerol. Samples were rewarmed slowly (approximately 10 degrees C/min) and dilution of the cryoprotectant was achieved using medium containing sucrose. Function was assessed by determination of the time course of the glucose-induced insulin release during in vitro perifusion at 37 degrees C and also by isograft transplantation. Transplants were carried out by intraportal injection of a minimum of 1700 frozen and thawed islets into streptozotocin-induced diabetic recipients and tissue function was assessed by monitoring blood glucose levels and body weight changes. Without exception the islets frozen and thawed in the presence of glycerol failed to reduce high serum glucose levels of recipient rats and in vitro dynamic release curves showed to demonstrate a glucose-sensitive insulin release pattern. Reversal of the diabetic conditions was achieved in two of five animals receiving islets which had been frozen and thawed with 2 M Me2SO; and in one of three animals receiving islets cryopreserved with 3 M Me2SO. Nevertheless, perifusion studies showed that the pattern of insulin secretion from groups of cryopreserved islets which did show an ability to secrete insulin was atypical compared with that of untreated controls, suggesting that the tissue was altered or damaged in some way.  相似文献   

20.
Kinetics of intracellular ice formation (IIF) for isolated rat hepatocytes was studied using a cryomicroscopy system. The effect of the cooling rate on IIF was investigated between 20 and 400 degrees C/min in isotonic solution. At 50 degrees C/min and below, none of the hepatocytes underwent IIF; whereas at 150 degrees C/min and above, IIF was observed throughout the entire hepatocyte population. The temperature at which 50% of hepatocytes showed IIF (50TIIF) was almost constant with an average value of -7.7 degrees C. Different behavior was seen in isothermal subzero holding temperatures in the presence of extracellular ice. 50TIIF from isothermal temperature experiments was approximately -5 degrees C as opposed to -7.7 degrees C for constant cooling rate experiments. These experiments clearly demonstrated both the time and temperature dependence of IIF. On the other hand, in cooling experiments in the absence of extracellular ice, IIF was not observed until approximately -20 degrees C (at which temperature the whole suspension was frozen spontaneously) suggesting the involvement of the external ice in the initiation of IIF. The effect of dimethyl sulfoxide (Me2SO) on IIF was also quantified. 50TIIF decreased from -7.7 degrees C in the absence of Me2SO to -16.8 degrees C in 2.0 M Me2SO for a cooling rate of 400 degrees C/min. However, the cooling rate (between 75 and 400 degrees C/min) did not significantly affect 50TIIF (-8.7 degrees C) in 0.5 M Me2SO. These results suggest that multistep protocols will be required for the cryopreservation of hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号