首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have isolated a second gene (MLS1), which in addition to DAL7, encodes malate synthase from S. cerevisiae. Expression of the two genes is specific for their physiological roles in carbon and nitrogen metabolism. Expression of MLS1, which participates in the utilization of non-fermentable carbon sources, is sensitive to carbon catabolite repression, but nearly insensitive to nitrogen catabolite repression. DAL7, which participates in catabolism of the nitrogenous compound allantoin, is insensitive to carbon catabolite repression, but highly sensitive to nitrogen catabolite repression. Results obtained with null mutations in these genes suggest that S. cerevisiae contains at least one and perhaps two additional malate synthase genes.  相似文献   

2.
Accumulation of intracellular allantoin and allantoate is mediated by two distinct active transport systems in Saccharomyces cerevisiae. Allantoin transport (DAL4 gene) is inducible, while allantoate uptake is constitutive (it occurs at full levels in the absence of any allantoate-related compounds from the culture medium). Both systems appear to be sensitive to nitrogen catabolite repression, feedback inhibition, and trans-inhibition. Mutants (dal5) that lack allantoate transport have been isolated. These strains also exhibit a 60% loss of allantoin transport capability. Conversely, dal4 mutants previously described are unable to transport allantoin and exhibit a 50% loss of allantoate transport. We interpret the pleiotropic behavior of the dal4 and dal5 mutations as deriving from a functional interaction between elements of the two transport systems.  相似文献   

3.
We demonstrate that the DAL5 gene, encoding a necessary component of the allantoate transport system, is constitutively expressed in Saccharomyces cerevisiae. Its relatively high basal level of expression did not increase further upon addition of allantoin pathway intermediates. However, steady-state DAL5 mRNA levels dropped precipitously when a repressive nitrogen source was provided. These control characteristics of DAL5 expression make this gene a good model with which to unravel the mechanism of nitrogen catabolite repression. Its particular advantage relative to other potentially useful genes derives from its lack of control by induction and hence the complicating effects of inducer exclusion.  相似文献   

4.
The formation of the allantoin-degrading enzymes allantoinase, allantoicase and ureidoglycolase in Pseudomonas aeruginosa was found to be regulated by induction, catabolite repression and nitrogen control. Induction was observed when urate, allantoin or allantoate were included in the growth medium, but not with ureidoglycolate. Tricarboxylic acid cycle intermediates exerted catabolite repression of the synthesis of the three enzymes, while pyruvate and glucose caused less repression. The operation of a nitrogen control mechanism in the regulation of the allantoin-degrading enzymes could be demonstrated with glutamine synthetase-negative mutants, which showed elevated synthesis and escape from catabolite repression when growth was limited for glutamine.  相似文献   

5.
Oxalurate, the gratuitous inducer of the allantoin degradative enzymes, was taken into the cell by an energy-dependent active transport system with an apparent Km of 1.2 mM. Efflux of previously accumulated oxalurate was rapid, with a half-life of about 2 min. The oxalurate uptake system appears to be both constitutively produced and insensitive to nitrogen catabolite repression. The latter observations suggest that failure of oxalurate to bring about induction of allophanate hydrolase in cultures growing under repressive conditions does not result from inducer exclusion, but rather from repression of dur1,2 gene expression.  相似文献   

6.
The DUR3 gene, which encodes a component required for active transport of urea in Saccharomyces cerevisiae, has been isolated, and its sequence has been determined. The deduced DUR3 protein profile possesses alternating hydrophobic and hydrophilic regions characteristics of integral membrane proteins. Strong negative complementation observed during genetic analysis of the DUR3 locus suggests that the DUR3 product may polymerize to carry out its physiological function. Expression of DUR3 is regulated in a manner similar to that of other genes in the allantoin pathway. High-level expression is inducer dependent, requiring functional DAL81 and DAL82 genes. Maintenance of DUR3 mRNA at uninduced, nonrepressed basal levels requires the negatively acting DAL80 gene product. DUR3 expression is highly sensitive to nitrogen catabolite repression and also has a partial requirement for the GLN3 product.  相似文献   

7.
8.
We have previously shown that allophanate acts as an inducer for five structural genes whose products participate in the degradation of allantoin by Saccharomyces cerevisiae. This observation led us to hypothesize that these genes might be controlled in common and to test the hypothesis by searching for mutants unable to induce production of the allantoin-degrading enzymes. Such mutants have been found. These strains grew poorly when provided with any of the allantoin pathway intermediates, but used other nitrogen sources normally. The mutations carried in these strains were recessive to wild-type alleles and complemented mutations in all known loci associated with the allantoin pathway. The locus containing the most thoroughly studied mutation (dal81-1) was not fund to be tightly linked to any of the allantoin pathway structural genes. The low basal levels of allantoin pathway enzymes observed in Dal81- strains remained the same whether or not the inducer was present in the growth medium. However, the levels of enzyme increased moderately when mutants were grown on poor nitrogen sources. From these observations, we conclude that dal81 mutant strains possess a defect in the induction of enzyme synthesis; enzyme production due to relief of nitrogen catabolite repression, however, appears normal. The observed epistatic relationships of mutations in the DAL80 and DAL81 loci suggest that their products may possess a reasonable degree of functional independence.  相似文献   

9.
10.
This report describes the isolation of the genes encoding allantoicase (DAL2) and ureidoglycolate hydrolase (DAL3), which are components of the large DAL gene cluster on the right arm of chromosome IX of Saccharomyces cerevisiae. During this work a new gene (DAL7) was identified and found to be regulated in the manner expected for an allantoin pathway gene. Its expression was (i) induced by allophanate, (ii) sensitive to nitrogen catabolite repression, and (iii) responsive to mutation of the DAL80 and DAL81 loci, which have previously been shown to regulate the allantoin degradation system. Hybridization probes generated from these cloned genes were used to analyze expression of the allantoin pathway genes in wild-type and mutant cells grown under a variety of physiological conditions. When comparison was possible, the patterns of mRNA and enzyme levels observed in various strains and physiological conditions were very similar, suggesting that the system is predominantly regulated at the level of gene expression. Although all of the genes seem to be controlled by a common mechanism, their detailed patterns of expression were, at the same time, highly individual and diverse.  相似文献   

11.
Degradation of allantoin, allantoate, or urea by Saccharomyces cerevisiae requires the participation of four enzymes and four transport systems. Production of the four enzymes and one of the active transport systems is inducible; allophanate, the last intermediate of the pathway, functions as the inducer. The involvement of allophanate in the expression of five distinct genes suggested that they might be regulated by a common element. This suggestion is now supported by the isolation of a new class of mutants (dal80). Strains possessing lesions in the DAL80 locus produce the five inducible activities at high, constitutive levels. Comparable constitutive levels of activity were also observed in doubly mutant strains (durl dal80) which are unable to synthesize allophanate. This, with the observation that arginase activity remained at its uninduced, basal level in strains mutated at the DAL80 locus, eliminates internal induction as the basis for constitutive enzyme synthesis. Mutations in dal80 are recessive to wild-type alleles. The DAL80 locus has been located and is not linked to any of the structural genes of the allantoin pathway. Synthesis of the five enzymes produced constitutively in dal80-1-containing mutants remains normally sensitive to nitrogen repression even though the dal80-1 mutation is present. From these observations we conclude that production of the allantoin-degrading enzymes is regulated by the DAL80 gene product and that induction and repression of enzyme synthesis can be cleanly separated mutationally.  相似文献   

12.
The symbiotic, nitrogen-fixing bacterium Sinorhizobium meliloti favors succinate and related dicarboxylic acids as carbon sources. As a preferred carbon source, succinate can exert catabolite repression upon genes needed for the utilization of many secondary carbon sources, including the alpha-galactosides raffinose and stachyose. We isolated lacR mutants in a genetic screen designed to find S. meliloti mutants that had abnormal succinate-mediated catabolite repression of the melA-agp genes, which are required for the utilization of raffinose and other alpha-galactosides. The loss of catabolite repression in lacR mutants was seen in cells grown in minimal medium containing succinate and raffinose and grown in succinate and lactose. For succinate and lactose, the loss of catabolite repression could be attributed to the constitutive expression of beta-galactoside utilization genes in lacR mutants. However, the inactivation of lacR did not cause the constitutive expression of alpha-galactoside utilization genes but caused the aberrant expression of these genes only when succinate was present. To explain the loss of diauxie in succinate and raffinose, we propose a model in which lacR mutants overproduce beta-galactoside transporters, thereby overwhelming the inducer exclusion mechanisms of succinate-mediated catabolite repression. Thus, some raffinose could be transported by the overproduced beta-galactoside transporters and cause the induction of alpha-galactoside utilization genes in the presence of both succinate and raffinose. This model is supported by the restoration of diauxie in a lacF lacR double mutant (lacF encodes a beta-galactoside transport protein) grown in medium containing succinate and raffinose. Biochemical support for the idea that succinate-mediated repression operates by preventing inducer accumulation also comes from uptake assays, which showed that cells grown in raffinose and exposed to succinate have a decreased rate of raffinose transport compared to control cells not exposed to succinate.  相似文献   

13.
14.
Mig1和Snf1是酿酒酵母葡萄糖阻遏效应的两个关键调控因子。为了提高酿酒酵母工程菌同时利用葡萄糖和木糖的能力,分别对MIG1和SNF1基因进行了单敲除和双敲除,并通过摇瓶发酵实验和RNA-Seq转录组分析,初步揭示了Mig1和Snf1可能影响葡萄糖和木糖共利用表达差异基因的层级调控机制。研究结果表明,MIG1单敲除对混合糖的共利用影响不大;SNF1单敲除会加快混合糖中木糖的利用而且葡萄糖和木糖可以被同时利用,这可能归因于SNF1单敲除会解除对一些氮分解代谢阻遏基因表达的抑制,从而促进了细胞对氮源营养的利用;进一步敲除MIG1,会解除更多氮分解代谢阻遏基因表达的抑制,以及一些碳中心代谢途径基因表达上调。虽然MIG1和SNF1双敲除菌株利用葡萄糖加快而利用木糖变慢,但是葡萄糖和木糖可以被同时利用,进而加快乙醇的积累。综上所述,MIG1和SNF1的敲除导致氮分解阻遏基因表达上调,有助于促进葡萄糖和木糖的共利用;解析Mig1和Snf1对氮分解阻遏基因的层级调控作用,为进一步提高葡萄糖和木糖的共利用提供新的靶点。  相似文献   

15.
The biosynthesis of asparaginase II in Saccharomyces cerevisiae is subject to nitrogen catabolite repression. In the present study we examined the physiological effects of glutamate auxotrophy on cellular metabolism and on the nitrogen catabolite repression of asparaginase II. Glutamate auxotrophic cells, incubated without a glutamate supplement, had a diminished internal pool of alpha-ketoglutarate and a concomitant inability to equilibrate ammonium ion with alpha-amino nitrogen. In the glutamate auxotroph, asparaginase II biosynthesis exhibited a decreased sensitivity to nitrogen catabolite repression by ammonium ion but normal sensitivity to nitrogen catabolite repression by all amino acids tested.  相似文献   

16.
In Pseudomonas aeruginosa, the synthesis of histidase, urocanase and amidase is severly repressed when succinate is added to a culture growing in pyruvate + ammonium salts medium. When growth is nitrogen-limited, catabolite repression by succinate of histidase and urocanase synthesis does not occur but succinate repression of amidase synthesis persists. Amidase synthesis is not regulated in the same way as histidase synthesis by the availability of other nitrogen compounds for growth. Growth of P. aeruginosa strain PACI in succinate + histidine media is nitrogen-limited since this strain is defective in a histidine transport system. When methyl-ammonium chloride is added to succinate + histidine media, growth inhibition occurs. Mutants isolated from succinate + histidine + methylammonium chloride plates were found to be resistant to catabolite repression by succinate even in ammonium salts media. It is suggested that the hut genes of P. aeruginosa may be regulated in the same way as in Klebsiella aerogenes, by induction by urocanate and activation by either the cyclic AMP-dependent activator protein or by glutamine synthetase.  相似文献   

17.
18.
19.
The role of systems for glucose transport in the manifestation of carbon catabolite repression of glucoamylase synthesis was studied in the yeast Endomycopsis fibuligera. Experimentas were conducted with its mutant AB-192 defective in the system of transport universal for glucose and 2-deoxy-D-glucose (2-DG). The nature of the mutation was established from the following data: (1) transport of labeled glucose into the mutant cells was twice as low in comparison with the parent culture 20-9; (2) transport of labeled 2-DG was suppressed almost entirely; (3) no competition was found between glucose and 2-DG for penetration into the mutant cells. Glucoamylase synthesis in the mutant AB-192 was not sensitive to catabolite repression by glucose. This was confirmed by the resistance of the AB-192 cells to the inhibition by glucose and their complete resistance to the repression by 2-DG. Moreover, an addition of cAMP did not stimulate glucoamylase synthesis by the mutant culture in the presence of glucose and 2-DG. It can be concluded therefore that the resistance of the yeast to catabolite repression by the glucose is caused by the mutation in the system for carbohydrate transport. The results suggest that the system of glucose transport plays an important role in the manifestation of carbon catabolite repression in the yeast Endomycopsis fibuligera.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号