首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Two axial structures, a neural tube and a notochord, are key structures in the chordate body plan and in understanding the origin of chordates. To expand our knowledge on mechanisms of development of the neural tube in lower chordates, we have undertaken isolation and characterization of HrzicN, a new member of the Zic family gene of the ascidian, Halocynthia roretzi. HrzicN expression was detected by whole-mount in situ hybridization in all neural tube precursors, all notochord precursors, anterior mesenchyme precursors and a part of the primary muscle precursors. Expression of HrzicN in a- and b-line neural tube precursors was detected from early gastrula stage to the neural plate stage, while expression in other lineages was observed between the 32-cell and the 110-cell stages. HrzicN function was investigated by disturbing translation using a morpholino antisense oligonucleotide. Embryos injected with HrzicN morpholino ('HrzicN knockdown embryos') exhibited failure of neurulation and tail elongation, and developed into larvae without a neural tube and notochord. Analysis of neural marker gene expression in HrzicN knockdown embryos revealed that HrzicN plays critical roles in distinct steps of neural tube formation in the a-line- and A-line precursors. In particular HrzicN is required for early specification of the neural tube fate in A-line precursors. Involvement of HrzicN in the neural tube development was also suggested by an overexpression experiment. However, analysis of mesodermal marker gene expression in HrzicN knockdown embryos revealed unexpected roles of this gene in the development of mesodermal tissues. HrzicN knockdown led to loss of HrBra (Halocynthia roretzi Brachyury) expression in all of the notochord precursors, which may be the cause for notochord deficiency. Hrsna (Halocynthia roretzi snail) expression was also lost from all the notochord and anterior mesenchyme precurosrs. By contrast, expression of Hrsna and the actin gene was unchanged in the primary muscle precursors. These results suggest that HrzicN is responsible for specification of the notochord and anterior mesenchyme. Finally, regulation of HrzicN expression by FGF-like signaling was investigated, which has been shown to be involved in induction of the a- and b-line neural tube, the notochord and the mesenchyme cells in Halocynthia embryos. Using an inhibitor of FGF-like signaling, we showed that HrzicN expression in the a- and b-line neural tube, but not in the A-line lineage and mesodermal lineage, depends on FGF-like signaling. Based on these data, we discussed roles of HrzicN as a key gene in the development of the neural tube and the notochord.  相似文献   

4.
Fibroblast growth factor (FGF) induces the notochord and mesenchyme in ascidian embryos, via extracellular signal-regulated kinase (ERK) that belongs to the mitogen-activated protein kinase (MAPK) family. A cDNA microarray analysis was carried out to identify genes affected by an inhibitor of MAPK/ERK kinase (MEK), U0126, in embryos of the ascidian Ciona intestinalis. Data obtained from the microarray and in situ hybridization suggest that the majority of genes are downregulated by U0126 treatment. Genes that were downregulated in U0126-treated embryos included Ci-Bra and Ci-Twist-like1 that are master regulatory genes of notochord and mesenchyme differentiation, respectively. The plasminogen mRNA was downregulated by U0126 in presumptive endoderm cells. This suggests that a MEK-mediated extracellular signal is necessary for gene expression in tissues whose specification does not depend on cell-to-cell interaction. Among 85 cDNA clusters that were not affected by U0126, 30 showed mitochondria-like mRNA localization in the nerve cord/muscle lineage blastomeres in the equatorial region. The expression level and asymmetric distribution of these mRNA were independent of MEK signaling.  相似文献   

5.
6.
Brachyury plays a pivotal role in the notochord formation in ascidian embryos. Ciona intestinalis Noto4 (Ci-Noto4) was isolated as a gene downstream of Ci-Bra. This gene encodes a 307 amino-acid protein with a C-terminal phosphotyrosine interaction domain (PTB/PID). Expression of Ci-Noto4 commences at the neural plate stage and is specific to notochord cells. Suppression of Ci-Noto4 levels with specific antisense morpholino oligonucleotides resulted in the formation of two rows of notochord cells owing to a lack of midline intercalation between the bilateral populations of progenitor cells. In contrast, overexpression of Ci-Noto4 by injection of a Ci-Bra(promoter):Ci-Noto4-EGFP construct into fertilized eggs disrupted the localization of notochord cells. Ci-Noto4 overexpression did not affect cellular differentiation in the notochord, muscle, mesenchyme, or nervous system. Analysis of Ci-Noto4 regions that are responsible for its function suggested significant roles for the PTB/PID and a central region, an area with no obvious sequence similarity to other known proteins. These results suggested that PTB/PID-containing Ci-Noto4 is essential for midline intercalation of notochord cells in chordate embryos.  相似文献   

7.
8.
9.
10.
Mesodermal tissues arise from diverse cell lineages and molecular strategies in the Ciona embryo. For example, the notochord and mesenchyme are induced by FGF/MAPK signaling, whereas the tail muscles are specified autonomously by the localized determinant, Macho-1. A unique mesoderm lineage, the trunk lateral cells, develop from a single pair of endomesoderm cells, the A6.3 blastomeres, which form part of the anterior endoderm, hematopoietic mesoderm and muscle derivatives. MAPK signaling is active in the endoderm descendants of A6.3, but is absent from the mesoderm lineage. Inhibition of MAPK signaling results in expanded expression of mesoderm marker genes and loss of endoderm markers, whereas ectopic MAPK activation produces the opposite phenotype: the transformation of mesoderm into endoderm. Evidence is presented that a specific Ephrin signaling molecule, Ci-ephrin-Ad, is required to establish asymmetric MAPK signaling in the endomesoderm. Reducing Ci-ephrin-Ad activity via morpholino injection results in ectopic MAPK signaling and conversion of the mesoderm lineage into endoderm. Conversely, misexpression of Ci-ephrin-Ad in the endoderm induces ectopic activation of mesodermal marker genes. These results extend recent observations regarding the role of Ephrin signaling in the establishment of asymmetric cell fates in the Ciona notochord and neural tube.  相似文献   

11.
12.
13.
The major mesodermal tissues of ascidian larvae are muscle, notochord and mesenchyme. They are derived from the marginal zone surrounding the endoderm area in the vegetal hemisphere. Muscle fate is specified by localized ooplasmic determinants, whereas specification of notochord and mesenchyme requires inducing signals from endoderm at the 32-cell stage. In the present study, we demonstrated that all endoderm precursors were able to induce formation of notochord and mesenchyme cells in presumptive notochord and mesenchyme blastomeres, respectively, indicating that the type of tissue induced depends on differences in the responsiveness of the signal-receiving blastomeres. Basic fibroblast growth factor (bFGF), but not activin A, induced formation of mesenchyme cells as well as notochord cells. Treatment of mesenchyme-muscle precursors isolated from early 32-cell embryos with bFGF promoted mesenchyme fate and suppressed muscle fate, which is a default fate assigned by the posterior-vegetal cytoplasm (PVC) of the eggs. The sensitivity of the mesenchyme precursors to bFGF reached a maximum at the 32-cell stage, and the time required for effective induction of mesenchyme cells was only 10 minutes, features similar to those of notochord induction. These results support the idea that the distinct tissue types, notochord and mesenchyme, are induced by the same signaling molecule originating from endoderm precursors. We also demonstrated that the PVC causes the difference in the responsiveness of notochord and mesenchyme precursor blastomeres. Removal of the PVC resulted in loss of mesenchyme and in ectopic notochord formation. In contrast, transplantation of the PVC led to ectopic formation of mesenchyme cells and loss of notochord. Thus, in normal development, notochord is induced by an FGF-like signal in the anterior margin of the vegetal hemisphere, where PVC is absent, and mesenchyme is induced by an FGF-like signal in the posterior margin, where PVC is present. The whole picture of mesodermal patterning in ascidian embryos is now known. We also discuss the importance of FGF induced asymmetric divisions, of notochord and mesenchyme precursor blastomeres at the 64-cell stage.  相似文献   

14.
The notochord is essential for normal vertebrate development, serving as both a structural support for the embryo and a signaling source for the patterning of adjacent tissues. Previous studies on the notochord have mostly focused on its formation and function in early organogenesis but gene regulation in the differentiation of notochord cells itself remains poorly defined. In the course of screening for genes expressed in developing notochord, we have isolated Xenopus homolog of Btg2 (XBtg2). The mammalian Btg2 genes, Btg2/PC3/TIS21, have been reported to have multiple functions in the regulation of cell proliferation and differentiation but their roles in early development are still unclear. Here we characterized XBtg2 in early Xenopus laevis embryogenesis with focus on notochord development. Translational inhibition of XBtg2 resulted in a shortened and bent axis phenotype and the abnormal structures in the notochord tissue, which did not undergo vacuolation. The XBtg2-depleted notochord cells expressed early notochord markers such as chordin and Xnot at the early tailbud stage, but failed to express differentiation markers of notochord such as Tor70 and 5-D-4 antigens in the later stages. These results suggest that XBtg2 is required for the differentiation of notochord cells such as the process of vacuolar formation after determination of notochord cell fate.  相似文献   

15.
The notochord has two major roles during chordate embryogenesis, as a source of inductive signals for the patterning of neural tube and paraxial mesoderm and as a supportive organ of the larval tail. Despite the recent identification of mutations that affect the notochord development in vertebrate embryos, little is known about genes that are expressed in the differentiating notochord itself. In the urochordate ascidian Ciona intestinalis, Brachyury (Ci-Bra) plays a key role in notochord differentiation. In a previous study, we isolated cDNA clones for nearly 40 potential Ci-Bra target genes that are expressed in notochord cells (H. Takahashi et al., 1999, Genes Dev. 13, 1519-1523). Here we characterized 20 of them by determining the complete nucleotide sequences of the cDNAs. These genes encode a broad spectrum of divergent proteins associated with notochord formation and function. Two genes encode ascidian homologs of the Drosophila Prickle LIM domain proteins and another encodes the ERM protein, all 3 of which appear to be involved in the control of cytoskeletal architecture. In addition, genes for netrin, leprecan, cdc45, ATP:citrate lyase, ATP sulfurylase/APS kinase, protein tyrosine phosphatase, beta4-galactosyltransferase, fibrinogen-like protein, divergent tropomyosin-like proteins, and Drosophila Pellino-like protein were identified. The observation of the netrin gene expression in the notochord may provide the first molecular evidence that the ascidian notochord is a source of signals as in vertebrates. In addition, the present information should be used to identify nonchordate deuterostome tissues homologous to the notochord as well as genes which are expressed in the notochord cells of vertebrate embryos.  相似文献   

16.
Fibroblast growth factor (FGF) signalling has been implicated in the generation of mesoderm and neural fates in chordate embryos including ascidians and vertebrates. In Ciona, FGF9/16/20 has been implicated in both of these processes. However, in FGF9/16/20 knockdown embryos, notochord fate recovers during later development. It is thus not clear if FGF signalling is an essential requirement for notochord specification in Ciona embryos. We show that FGF-MEK-ERK signals act during two distinct phases to establish notochord fate. During the first phase, FGF signalling is required during an asymmetric cell division to promote notochord at the expense of neural identity. Consistently, ERK1/2 is specifically activated in the notochord precursors following this cell division. Sustained activation of ERK1/2 is then required to maintain notochord fate. We demonstrate that FGF9/16/20 acts solely during the initial induction step and that, subsequently, FGF8/17/18 together with FGF9/16/20 is involved in the following maintenance step. These results together with others' show that the formation of a large part of the mesoderm cell types in ascidian larvae is dependent on signalling events involving FGF ligands.  相似文献   

17.
We present evidence that notochord and muscle differentiation are crucial for morphogenesis of the ascidian tail. We developed a novel approach for embryological manipulation of the developing larval tissues using a simple method to introduce DNA into Ciona intestinalis and the several available tissue-specific promoters. With such promoters, we misexpressed the Xenopus homeobox gene bix in notochord or muscle of Ciona embryos as a means of interfering with development of these tissues. Ciona embryos expressing bix in the notochord from the 64-cell stage develop into larvae with very short tails, in which the notochord precursors fail to intercalate and differentiate. Larvae with mosaic expression of bix have intermediate phenotypes, in which a partial notochord is formed by the precursor cells that did not receive the transgene while the precursors that express the transgene cluster together and fail to undergo any of the cell-shape changes associated with notochord differentiation. Muscle cells adjacent to differentiated notochord cells are properly patterned, while those next to the notochord precursor cells transformed by bix exhibit various patterning defects. In these embryos, the neural tube extends in the tail to form a nerve cord, while the endodermal strand fails to enter the tail region. Similarly, expression of bix in muscle progenitors impairs differentiation of muscle cells, and as a result, notochord cells fail to undergo normal extension movements. Hence, these larvae have a shorter tail, due to a block in the elongation of the notochord. Taken together, these observations suggest that tail formation in ascidian larvae requires not only signaling from notochord to muscle cells, but also a "retrograde" signal from muscle cells to notochord.  相似文献   

18.
The Ras family small GTPases play a variety of essential roles in eukaryotes. Among them, classical Ras (H-Ras, K-Ras, and N-Ras) and its orthologues are conserved from yeast to human. In ascidians, which phylogenetically exist between invertebrates and vertebrates, the fibroblast growth factor (FGF)-Ras-MAP kinase signaling is required for the induction of neural system, notochord, and mesenchyme. Analyses of DNA databases revealed that no gene encoding classical Ras is present in the ascidians, Ciona intestinalis and Halocynthia roretzi, despite the presence of classical Ras-orthologous genes in nematode, fly, amphioxus, and fish. By contrast, both the ascidians contain single genes orthologous to Mras, Rras, Ral, Rap1, and Rap2. A single Mras orthologue exists from nematode to mammalian. Thus, Mras evolved in metazoans independently of other Ras family genes such as Rras. Whole-mount in situ hybridization showed that C. intestinalis Mras orthologue (Ci-Mras) was expressed in the neural complex of the ascidian juveniles after metamorphosis. Knockdown of Ci-Mras with morpholino antisense oligonucleotides in the embryos and larvae resulted in undeveloped tails and neuronal pigment cells, abrogation of the notochord marker brachyury expression, and perturbation of the neural marker Otx expression, as has been shown in the experiments of the FGF-Ras-MAP kinase signaling inhibition. Mammalian Ras and M-Ras mediate nerve growth factor-induced neuronal differentiation in rat PC12 cells by activating the ERK/MAP kinase pathway transiently and sustainedly, respectively. Activated Ci-M-Ras bound to target proteins of mammalian M-Ras and Ras. Exogenous expression of an activated Ci-M-Ras in PC12 cells caused ERK activation and induced neuritogenesis via the ERK pathway as do mammalian M-Ras and Ras. These results suggest that the ascidian M-Ras orthologue compensates for lacked classical Ras and plays essential roles in neurogenesis in the ascidian.  相似文献   

19.
In the present study, we conducted an extensive analysis to identify novel genes with developmental function among Ciona intestinalis genes discovered by cDNA projects. Translation of a total of 200 genes expressed during embryogenesis was suppressed by using specific morpholino antisense oligonucleotides. Suppression of the translation of any of 40 genes (one-fifth of the genes tested) was thereby shown to cause specific embryonic defects. Most of these genes have counterpart(s) in mouse and human, suggesting that the present approach will be useful for identifying candidate genes essential for the development of vertebrates. Suppression of translation of 14 of these 40 genes resulted in the 'disorganized body plan' phenotype characterized by gross morphological abnormalities caused by early defects in embryogenesis. These genes encode zinc-finger, transmembrane or Pbx homeodomain proteins. The morphological features of larvae of this phenotypic class varied according to the gene suppressed, suggesting that a distinct developmental event such as tissue specification or cell cycle progression was affected in each type of larva. Suppression of the remaining 26 genes resulted in the 'abnormal tail' phenotype. Some of these genes encode proteins with known functional structures such as Zn-finger and HLH motifs. Twelve genes among them are especially interesting, because their suppression produced defects in the nervous system, as demonstrated by the loss of the sensory pigment cells or palps of the adhesive organ in the knockdown larvae. These results suggest that screening for developmental genes by the reverse genetic approach in Ciona intestinalis embryos is effective for identifying novel genes with developmental functions required for the development of chordates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号