首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
The epilithic algae distribution along a pH gradient and the relationship between the chemical gradient and biomass development were studied in Río Agrio, a naturally acidic river located in Patagonia (Argentina). The epilithic community was monitored during the summer of three consecutive years in sites located above and below the entrance of tributaries. The epilithic community showed differences between sites based on the chemical composition of the water and the precipitates that appear on the streambed of the river. The lowest biomass, diversity, and number of species were found at the most extreme part of the river in terms of pH (ca. 2) and element concentrations. Euglena mutabilis was the dominant species in this section of the river. As pH increased (ca. 3), the community changed to be dominated by filamentous green algae (Ulothrix spp., Mougeotia sp., Klebsormidium sp.) showing luxuriant growths in terms of biomass. With the inflow of a neutral tributary, the pH of Río Agrio increased above 3, and the precipitates of orange-red iron hydroxides appeared. The algal community was not affected by these precipitates or the low P concentrations, along the next 30 km of river downstream from this site. The apparent physical stress that the precipitates impose on algae is in fact a dynamic reservoir of P because diel cycle of Fe could be promoting precipitation and redissolution processes that binds and releases P from these precipitates. Where the pH increased above 6, precipitates of aluminum hydroxides appeared. At this site, the epilithic biomass and density decreased, some algae species changed, but the diversity and the number of species in general remained consistent with the upstream values. The physical stress of the Al precipitates on the algae is added to the chemical stress that represents the sequestering of P in these precipitates that are not redissolved, resulting P a limiting nutrient for algae growth.  相似文献   

2.
3.
4.
Plant ecophysiological changes in response to climatic change may be different in northern and southern European countries because different abiotic factors constrain plant physiological activity. We studied the effects of experimental warming and drought on the photosynthetic performance of two ericaceous shrubs (Erica multiflora and Calluna vulgaris) along a European gradient of temperature and precipitation (UK, Denmark, The Netherlands, and Spain). At each site, a passive warming treatment was applied during the night throughout the whole year, whereas the drought treatment excluded rain events over 6–10 weeks during the growing season. We measured leaf gas exchange, chlorophyll a fluorescence, and leaf carbon isotope ratio (13C) during the growing seasons of 1999 and 2000. Leaf net photosynthetic rates clearly followed a gradient from northern to southern countries in agreement with the geographical gradient in water availability. Accordingly, there was a strong correlation between net photosynthetic rates and the accumulated rainfall over the growing season. Droughted plants showed lower leaf gas exchange rates than control plants in the four sites. Interestingly, although leaf photosynthetic rates decreased along the precipitation gradient and in response to drought treatment, droughted plants were able to maintain higher leaf photosynthetic rates than control plants in relation to the accumulated rainfall over the months previous to the measurements. Droughted plants also showed higher values of potential photochemical efficiency (F v/F m) in relation to controls, mainly at midday. The warming treatment did not affect significantly any of the studied instantaneous ecophysiological variables..  相似文献   

5.
Agricultural biogas plants were operated in most cases below their optimal performance. An increase in the fermentation temperature and a spatial separation of hydrolysis/acetogenesis and methanogenesis are known strategies in improving and stabilizing biogas production. In this study, the dynamic variability of the bacterial and archaeal community was monitored within a two-phase leach bed biogas reactor supplied with rye silage and straw during a stepwise temperature increase from 55 to 75 °C within the leach bed reactor (LBR), using TRFLP analyses. To identify the terminal restriction fragments that were obtained, bacterial and archaeal 16S rRNA gene libraries were constructed. Above 65 °C, the bacterial community structure changed from being Clostridiales-dominated toward being dominated by members of the Bacteroidales, Clostridiales, and Thermotogales orders. Simultaneously, several changes occurred, including a decrease in the total cell count, degradation rate, and biogas yield along with alterations in the intermediate production. A bioaugmentation with compost at 70 °C led to slight improvements in the reactor performance; these did not persist at 75 °C. However, the archaeal community within the downstream anaerobic filter reactor (AF), operated constantly at 55 °C, altered by the temperature increase in the LBR. At an LBR temperature of 55 °C, members of the Methanobacteriales order were prevalent in the AF, whereas at higher LBR temperatures Methanosarcinales prevailed. Altogether, the best performance of this two-phase reactor was achieved at an LBR temperature of below 65 °C, which indicates that this temperature range has a favorable effect on the microbial community responsible for the production of biogas.  相似文献   

6.
It is essential for organisms to adapt to fluctuating growth temperatures. Escherichia coli, a model bacterium commonly used in research and industry, has been reported to grow at a temperature lower than 46.5°C. Here we report that the heterologous expression of the 17-kDa small heat shock protein from the nematode Caenorhabditis elegans, CeHSP17, enables E. coli cells to grow at 50°C, which is their highest growth temperature ever reported. Strikingly, CeHSP17 also rescues the thermal lethality of an E. coli mutant deficient in degP, which encodes a protein quality control factor localized in the periplasmic space. Mechanistically, we show that CeHSP17 is partially localized in the periplasmic space and associated with the inner membrane of E. coli, and it helps to maintain the cell envelope integrity of the E. coli cells at the lethal temperatures. Together, our data indicate that maintaining the cell envelope integrity is crucial for the E. coli cells to grow at high temperatures and also shed new light on the development of thermophilic bacteria for industrial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号