首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The main limit of in vitro production of domestic mammal embryos comes from the low capacity of in vitro matured oocytes to develop after fertilization. As soon as they are separated from follicular environment, oocytes spontaneously resume meiosis without completion of their terminal differentiation. Roscovitine (ROS), an inhibitor of M-phase promoting factor (MPF) kinase activity reversibly blocks the meiotic resumption in vitro. However, in cattle maturing oocytes several cellular events such as protein synthesis and phosphorylation, chromatin condensation and nuclear envelope folding escape ROS inhibition suggesting the alternative pathways in oocyte maturation. We compared the level of synthesis and phosphorylation of several protein kinases during bovine cumulus oocyte complex (COC) maturation in vitro in the presence or not of epidermal growth factor (EGF) and ROS. We showed that during the EGF-stimulated maturation, ROS neither affected the decrease of EGF receptor (EGFR) nor did inhibit totally its phosphorylation in cumulus cells and also did not totally eliminate tyrosine phosphorylation in oocytes. However, ROS did inhibit the Phosphoinositide 3-kinase (PI3) activity when oocytes mature without EGF. Accumulation of Akt/PKB (protein kinase B), JNK1/2 (jun N-terminal kinases) and Aurora-A in oocytes during maturation was not affected by ROS. However, the phosphorylation of Akt but not JNKs was diminished in ROS-treated oocytes. Thus, PI3 kinase/Akt, JNK1/2 and Aurora-A are likely to be involved in the regulation of bovine oocyte maturation and some of these pathways seem to be independent to MPF activity and meiotic resumption. This complex regulation may explain the partial meiotic arrest of ROS-treated oocytes and the accelerated maturation observed after such treatment.  相似文献   

2.
Xenopus oocytes from unprimed frogs possess insulin-like growth factor I (IGF-I) receptors but lack insulin and IGF-I receptor substrate 1 (IRS-1), the endogenous substrate of this kinase, and fail to show downstream responses to hormonal stimulation. Microinjection of recombinant IRS-1 protein enhances insulin-stimulated phosphatidylinositol (PtdIns) 3-kinase activity and restores the germinal vesicle breakdown response. Activation of PtdIns 3-kinase results from formation of a complex between phosphorylated IRS-1 and the p85 subunit of PtdIns 3-kinase. Microinjection of a phosphonopeptide containing a pYMXM motif with high affinity for the src homology 2 (SH2) domain of PtdIns 3-kinase p85 inhibits IRS-1 association with and activation of the PtdIns 3-kinase. Formation of the IRS-1-PtdIns 3-kinase complex and insulin-stimulated PtdIns 3-kinase activation are also inhibited by microinjection of a glutathione S-transferase fusion protein containing the SH2 domain of p85. This effect occurs in a concentration-dependent fashion and results in a parallel loss of hormone-stimulated oocyte maturation. These inhibitory effects are specific and are not mimicked by glutathione S-transferase fusion proteins expressing the SH2 domains of ras-GAP or phospholipase C gamma. Moreover, injection of the SH2 domains of p85, ras-GAP, and phospholipase C gamma do not interfere with progesterone-induced oocyte maturation. These data demonstrate that phosphorylation of IRS-1 plays an essential role in IGF-I and insulin signaling in oocyte maturation and that this effect occurs through interactions of the phosphorylated YMXM/YXXM motifs of IRS-1 with SH2 domains of PtdIns 3-kinase or some related molecules.  相似文献   

3.
Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor.  相似文献   

4.
The roles of phosphatidylinositol 3-kinase (PI 3-kinase) during meiotic progression beyond the meiosis I (MI) stage in porcine oocytes were investigated. PI 3-kinase exists in cumulus cells and oocytes, and the PI 3-kinase inhibitor, LY294002, suppressed the activation of mitogen-activated protein (MAP) kinase in denuded oocytes during the beginning of the treatment. However, in denuded oocytes cultured with LY294002, the MAP kinase activity steadily increased, and at 48 h of cultivation MAP kinase activity, p34(cdc2) kinase activity, and proportion of oocytes that had reached the meiosis II (MII) stage were at a similar level to those of oocytes cultured without LY294002. In contrast, LY294002 almost completely inhibited the activation of MAP kinase, p34(cdc2) kinase activity, and meiotic progression to the MII stage in oocytes surrounded with cumulus cells throughout the treatment. Treating cumulus oocyte complexes (COCs) with LY294002 produced a significant decrease in the phosphorylation of connexin-43, a gap junctional protein, in cumulus cells compared with that in COCs cultured without LY294002. These results indicate that PI 3-kinase activity in cumulus cells contributes to the activation of MAP kinase and p34(cdc2) kinase, and to meiotic progression beyond the MI stage. Moreover, gap junctional communications between cumulus cells and oocytes may be closed by phosphorylation of connexin-43 through PI 3-kinase activation in cumulus cells, leading to the activation of MAP kinase in porcine oocytes.  相似文献   

5.
The Ras-GTPase-activating protein (RasGAP) is an important modulator of p21ras - dependent signal transduction in Xenopus oocytes and in mammalian cells. We investigated the role of the RasGAP SH3 domain in signal transduction with a monoclonal antibody against the SH3 domain of RasGaP. This antibody prevented the activation of the maturation-promoting factor complex (cyclin B-p34cdc2) by oncogenic Ras. The antibody appears to be specific because as little as 5 ng injected per oocyte reduced the level of Cdc2 activation by 50% whereas 100 ng of nonspecific immunoglobulin G did not affect Cdc2 activation. The antibody blocked the Cdc2 activation induced by oncogenic Ras but not that induced by progesterone, which acts independently of Ras. A peptide corresponding to positions 317 to 326 of a sequence in the SH3 domain of human RasGAP blocked Cdc2 activation, whereas a peptide corresponding to positions 273 to 305 of a sequence in the N-terminal moiety of the SH3 domain of RasGAP had no effect. The antibody did not block the mitogen-activated protein (MAP) kinase cascade (activation of MAPK/ERK kinase [MEK], MAP kinase, and S6 kinase p90rsk). Surprisingly, injection of the negative MAP kinase mutant protein ERK2 K52R (containing a K-to-R mutation at position 52) blocked the Cdc2 activation induced by oncogenic Ras as well as blocking the activation of MAP kinase. Thus, MAP kinase is also implicated in the regulation of Cdc2 activity. In this study, we further investigated the regulation of the synthesis of the c-mos oncogene product, which is necessary for the activation of Cdc2. We report that the synthesis of the c-mos oncogene product, which is necessary for the activation antibody to the SH3 domain of RasGAP and by injecting the negative MAP kinase mutant protein ERK2 K52R. These results suggest that oncogenic Ras activates two signaling mechanisms: the MAP kinase cascade and a signaling pathway implicating the SH3 domain of RasGAP. These mechanisms might control Mos protein expression implicated in Cdc2 activation.  相似文献   

6.
The present study was undertaken to determine the effects of a protein kinase C inhibitor, staurosporine, on gonadotropin-releasing hormone agonist (GnRHa)-induced oocyte maturation and follicular prostaglandin (PG) production, and the response to direct activators of protein kinase C using rabbit mature follicle culture. Treatment of mature follicles with GnRHa (buserelin and leuprolide acetate) neither stimulated nor inhibited cAMP accumulation in both the follicle and oocyte. Exposure to staurosporine at 10(-6) M 60 or 15 min before GnRHa (buserelin) administration reduced significantly the meiotic maturation of follicle-enclosed oocytes induced by GnRHa at 10(-7) M. However, staurosporine addition coincident with the agonist or thereafter did not inhibit meiotic maturation. Staurosporine suppressed GnRHa-induced meiotic maturation in a dose-dependent manner, whereas hCG-stimulated oocyte maturation was not inhibited. Similarly, staurosporine administered 60 min before exposure to GnRHa suppressed GnRHa-stimulated PG production by mature follicles. The active phorbol esters, 10(-6) M 12-0-tetra-decanoyl phorbol 13-acetate (TPA) and 10(-6) M 4 beta-phorbol 12,13-didecanoate (4 beta-PDD) stimulated meiotic maturation whereas the biological inactive isomer, 4 alpha-PDD, did not. The kinetics of germinal versicle breakdown of follicle-enclosed oocytes in the presence of active phorbol esters paralleled that of GnRHa-treated oocytes. Furthermore, the concomitant addition of staurosporine at 10(-6) M to the culture medium inhibited significantly (p less than 0.05) TPA-induced meiotic maturation. These data demonstrate that GnRHa stimulated both the meiotic maturation of follicle-enclosed oocytes and follicular PG formation via a mechanism other than the cAMP-mediated process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A R Nebreda  J V Gannon    T Hunt 《The EMBO journal》1995,14(22):5597-5607
The meiotic maturation of Xenopus oocytes triggered by progesterone requires new protein synthesis to activate both maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase). Injection of mRNA encoding mutant p34cdc2 (K33R) that can bind cyclins but lacks protein kinase activity strongly inhibited progesterone-induced activation of both MPF and MAP kinase in Xenopus oocytes. Similar results were obtained by injection of GST-p34cdc2 K33R protein or by injection of a monoclonal antibody (A17) against p34cdc2 that blocks its activation by cyclins. Both the dominant-negative p34cdc2 and monoclonal antibody A17 blocked the accumulation of p39mos and activation of MAP kinase in response to progesterone, as well as blocking the appearance of MPF, although they did not inhibit the translation of p39mos mRNA. These results suggest that: (i) activation of free p34cdc2 by newly made proteins, probably cyclin(s), is normally required for the activation of both MPF and MAP kinase by progesterone in Xenopus oocytes; (ii) the activation of translation of cyclin mRNA normally precedes, and does not require either MPF or MAP kinase activity; and (iii) de novo synthesis and accumulation of p39mos is probably both necessary and sufficient for the activation of MAP kinase in response to progesterone.  相似文献   

8.
Mitogen-activated protein (MAP) kinase has been reported to be activated during oocyte meiotic maturation in a variety of mammalian species. However, the mechanism(s) responsible for MAP kinase activation and the consequence of its premature activation during gonadotropin-induced oocyte meiotic resumption have not been examined. The present experiments were conducted to investigate the possible role of MAP kinase in FSH-induced and spontaneous oocyte meiotic resumption in the mouse. MAP kinase kinase (MAPKK, MEK) inhibitor, PD98059 or U0126, produced a dose-dependent inhibitory effect on both FSH-induced oocyte meiotic resumption and MAP kinase activation in the oocytes. However, the same inhibitor did not block spontaneous meiotic resumption of either denuded or cumulus cell-enclosed mouse oocytes, despite the activity of MAP kinase being totally inhibited. Immunoblotting the oocytes and the cumulus cells with the anti-active MAP kinase antibody showed that MAP kinase activity in the oocytes was detected at 8 h of FSH treatment, prior to germinal vesicle breakdown and increased as maturation progressed in the following culture period. In the cumulus cells, MAP kinase was activated even faster, its activity was detected at 1 h of FSH stimulation and increased gradually until 8 h of FSH treatment, then decreased and diminished after 12 h of FSH action. These data demonstrated that the MEK-MAP kinase pathway is implicated in FSH-induced but not spontaneous oocyte meiotic resumption.  相似文献   

9.
Phosphatidylinositol 3-kinase (PI3K) is known to play critical roles in signal transduction processes related to a variety of cellular activities. In the present study, we investigated the role of PI3K during meiotic maturation in mouse oocytes using a specific inhibitor, LY294002. In follicle-stimulating hormone (FSH)-induced reversal of hypoxanthine-mediated meiotic arrest of cumulus oocyte complexes (COCs), LY294002 suppressed germinal vesicle breakdown (GVBD), first polar body (PB1) emission, and cumulus expansion. To examine the effect of LY294002, denuded oocytes (DOs) were cultured in medium containing follicular fluid meiosis-activating sterol (FF-MAS) since absence of gonadotropin receptors in oocytes has been reported and FSH did not stimulate meiotic maturation of DOs in the presence of hypoxanthine. In FF-MAS-induced maturation of DOs, LY294002 suppressed PB1emission, but not GVBD. In spontaneous gonadotropin-independent oocyte maturation, LY294002 had no effect on COCs and DOs. Akt/protein kinase B, a serine-threonine kinase, is a key downstream effector of the PI3K pathway. Therefore, we also examined the distribution of Akt during FSH-induced meiotic maturation. The distribution of Ser(473) phosphorylated Akt was similar to the localization of microtubules, while Thr(308) phosphorylated Akt was present in the pericentriolar materials (PCM) in metaphase I (MI) and II (MII) oocytes. LY294002 decreased the amount of Thr(308) phosphorylated Akt to very low to undetectable levels in MI and MII oocytes. Ser(473) phosphorylated Akt showed aberrant distribution and very low to undetectable levels of expression in LY294002-treated MI and MII oocytes, respectively. These results suggest that PI3K and Akt participate in mouse meiotic maturation.  相似文献   

10.
Here we show that during the meiotic maturation of Xenopus oocytes, histone H3 becomes phosphorylated on serine-10 at about the time of maturation promoting factor activation and meiosis I entry. However, overexpression of cAMP-dependent protein kinase that blocks entry into M phase, also leads to massive serine-10 phosphorylation of histone H3 in intact Xenopus oocytes but does not cause chromosome condensation. We also show that the phosphorylation of histone H3 during oocyte maturation requires the activation of the mitogen-activated protein kinase/p90Rsk pathway. Our results indicate that in G2-arrested oocytes, which are about to enter M phase, histone H3 phosphorylation is not sufficient for chromosome condensation.  相似文献   

11.
cGMP-inhibited cAMP phosphodiesterase 3A (PDE3A) is expressed in mouse oocytes, and its function is indispensable for meiotic maturation as demonstrated by genetic ablation. Moreover, PDE3 activity is required for insulin/insulin-like growth factor-1 stimulation of Xenopus oocyte meiotic resumption. Here, we investigated the cAMP-dependent protein kinase B (PKB)/Akt regulation of PDE3A and its impact on oocyte maturation. Cell-free incubation of recombinant mouse PDE3A with PKB/Akt or cAMP-dependent protein kinase A catalytic subunits leads to phosphorylation of the PDE3A protein. Coexpression of PDE3A with constitutively activated PKB/Akt (Myr-Akt) increases PDE activity as well as its phosphorylation state. Injection of pde3a mRNA potentiates insulin-dependent maturation of Xenopus oocytes and rescues the phenotype of pde3(-/-) mouse oocytes. This effect is greatly decreased by mutation of any of the PDE3A serines 290-292 to alanine in both Xenopus and mouse. Microinjection of myr-Akt in mouse oocytes causes in vitro meiotic maturation and this effect requires PDE3A. Collectively, these data indicate that activation of PDE3A by PKB/Akt-mediated phosphorylation plays a role in the control of PDE3A activity in mammalian oocytes.  相似文献   

12.
Short-term exposure to okadaic acid (OA), a specific inhibitor of protein phosphatases 1 and 2A, induced resumption of meiosis, including metaphase spindle formation, in mouse oocytes treated with a phosphodiesterase inhibitor, while long incubations with OA arrested oocyte maturation at a step prior to spindle formation. To explore the basis for this difference, the overall patterns of protein synthesis and phosphorylation and the production of tissue-type plasminogen activator (tPA), the synthesis of which is induced after germinal vesicle breakdown (GVBD), were analyzed under various OA treatments. Short-term exposure to OA led to tPA production and did not greatly affect the maturation-associated changes in protein phosphorylation. By contrast, a long application of OA did not result in tPA production and induced more marked changes in protein phosphorylation. Microinjection into prophase oocytes of the product of the fission yeast gene p13suc1, known to inhibit p34cdc2 kinase activation and/or activity, prevented meiotic reinitiation. This effect was overcome by microinjection of OA, at concentrations higher than those required for induction of maturation in the absence of p13suc1. These observations suggest that inhibition of phosphatase 1 or 2A or both triggers meiotic resumption by acting at the same site or at a site proximal to the p13suc1-sensitive step of cdc2 kinase activation.  相似文献   

13.
The molecular events regulating hormone-induced oocyte activation and meiotic maturation are probably best understood in Xenopus laevis. In X. laevis, progesterone activates the G2-arrested oocyte, induces entry into M phase of meiosis I (MI) and resumption of the meiotic cell cycles, and leads to the formation of a mature, fertilizable egg. Oocytes of Xenopus tropicalis offer several practical advantages over those of X. laevis, including faster and more synchronous meiotic cell cycle progression, less seasonal variability, and the availability of transgenic approaches. Previous work found several similarities in the pathways regulating oocyte maturation in the two species. Here, we report several additional ones that are conserved in X. tropicalis. (1). Injection of Mos mRNA into G2-arrested oocytes activates the MAP kinase cascade and induces the G2/MI transition. (2). Injection of the beta subunit of the kinase CK2 (a negative regulator of Mos and oocyte activation) delays the G2/MI transition. (3). Elevating PKA activity blocks progesterone-induced maturation; repressing PKA activity induces entry into MI in the absence of progesterone. (4). LF (anthrax lethal factor), which cleaves certain MAP kinase kinases, strongly reduces both the rate and extent of entry into MI. In contrast to the one previously reported major difference between oocytes of the two species, we find that injection of egg cytoplasm ("MPF activity") into G2-arrested X. tropicalis oocytes induces entry into meiosis I even when protein synthesis is blocked, just as it does in oocytes of X. laevis. These results indicate that much of what we have learned from studies of X. laevis oocytes holds for those of X. tropicalis, and suggest that X. tropicalis oocytes offer a good experimental system for investigating certain questions that require a rapid, synchronous progression through the G2/meiosis I transition.  相似文献   

14.
In medusae of the hydrozoan Cytaeis uchidae, oocyte meiotic maturation and spawning occur as a consequence of dark-light transition. In this study, we investigated the mechanism underlying the initiation of meiotic maturation using in vitro (isolated oocytes from ovaries) and in vivo (ovarian oocytes in medusae) systems. Injection of cAMP derivatives into isolated oocytes induced meiotic maturation in a dose-dependent manner. Meiotic maturation was also achieved in isolated oocytes preloaded with caged cAMP and exposed to UV irradiation. The caged cAMP/UV irradiation-induced meiotic maturation was completely inhibited by blockers of protein kinase A (PKA), H-89, KT5720, and Rp-cAMPS. The medusae from which most parts of the umbrella were removed (umbrella-free medusae) survived for at least 2 weeks, during which time oocyte meiotic maturation and spawning occurred. When H-89 and Rp-cAMPS were injected into ovarian oocytes of umbrella-free medusae within 3 min of dark-light stimulation, meiotic maturation was inhibited or delayed. An increase in intracellular cAMP was confirmed by FlCRhR, a fluorescent cAMP indicator, in ovarian oocytes exposed to dark-light transition as well as in isolated oocytes stimulated by caged cAMP/UV irradiation. These results indicate that the cAMP/PKA signaling pathway positively contributes to light-triggered physiological oocyte meiotic maturation in Cytaeis uchidae.  相似文献   

15.
Fully grown G2-arrested Xenopus oocytes resume meiosis in vitro upon exposure to hormonal stimulation. Progesterone triggers oocyte meiosis resumption through a Ras-independent pathway that involves a p39Mos-dependent activation of the mitogen-activated protein (MAP) kinases. Insulin also triggers meiosis resumption through a tyrosine kinase receptor that activates a Ras-dependent pathway leading to the MAP kinases activation. Antisense phosphorothioate oligonucleotides were used to prevent p39Mos accumulation and Erk-like Xp42(Mpk1) activation during insulin-induced Xenopus oocytes maturation. In contrast to previous works, prevention of p39Mos-induced activation of Xp42(Mpk1) in insulin-treated oocytes did not inhibit but delayed meiotic resumption, like in progesterone-stimulated oocytes. Activations of Xp42(Mpk1), the unique Erk of the oocyte, and of its downstream target p90Rsk, were impaired and phosphorylation of the MAPKK kinase Raf was partially inhibited. Similarly, oocytes treated with the MEK inhibitor U0126, stimulated by insulin exhibited delayed germinal vesicle breakdown, absence of Xp42(Mpk1) activation, and partial phosphorylation of Raf. To summarize, whereas p39Mos-induced activation of MEK/MAPK pathway is dispensable for insulin-induced germinal vesicle breakdown, Xp42(Mpk1) activation induced by insulin is dependent upon p39Mos synthesis. Raf complete phosphorylation appears to require the MEK/MAPK pathway activation both in progesterone and insulin-stimulated oocytes.  相似文献   

16.
Xenopus oocytes carry IGF-I receptors, and undergo meiotic maturation in response to binding of IGF-I or insulin to the IGF-I receptor. Maturation is initiated upon activation of the IGF-I receptor tyrosine kinase and requires tyrosine dephosphorylation of p34cdc2, the kinase component of maturation promoting factor (MPF). To further evaluate the role of tyrosine phosphorylation in the signalling pathway triggered by insulin/IGF-I, we have injected antibodies to phosphotyrosine into oocytes and examined their effects on oocyte maturation. Antibodies at a low concentration (40 ng/oocyte, corresponding to a concentration of 40 micrograms/ml), enhanced specifically insulin-, but not progesterone-induced maturation. In contrast, at 150 ng/oocyte, the same antibodies decreased maturation induced by insulin, progesterone, or microinjected MPF. In cell-free systems, antibodies to phosphotyrosine recognized the oocyte IGF-I receptor and modulated its ligand-induced tyrosine kinase activity in a biphasic manner, with a stimulation at 40 micrograms/ml and an inhibition at higher concentrations. Moreover, antibodies at 150 ng/oocyte neutralized the kinase activity of a crude MPF extract. This neutralization was not accompanied by a rephosphorylation of p34cdc2, but by a decrease in tyrosine phosphorylation of a 60-kDa protein, which was present in M phase extracts and undetectable in G2-arrested oocytes. Taken together, these results point to at least two levels of anti-phosphotyrosine antibody action: (i) the IGF-I receptor signalling system, and (ii) a regulatory step of MPF activation, which might be distinct of the well-documented inactivating phosphorylation of p34cdc2.  相似文献   

17.
Fertilization in the female reproductive tract depends on intercellular signaling mechanisms that coordinate sperm presence with oocyte meiotic progression. To achieve this coordination in Caenorhabditis elegans, sperm release an extracellular signal, the major sperm protein (MSP), to induce oocyte meiotic maturation and ovulation. MSP binds to multiple receptors, including the VAB-1 Eph receptor protein-tyrosine kinase on oocyte and ovarian sheath cell surfaces. Canonical VAB-1 ligands called ephrins negatively regulate oocyte maturation and MPK-1 mitogen-activated protein kinase (MAPK) activation. Here, we show that MSP and VAB-1 regulate the signaling properties of two Ca2+ channels that are encoded by the NMR-1 N-methyl D-aspartate type glutamate receptor subunit and ITR-1 inositol 1,4,5-triphosphate receptor. Ephrin/VAB-1 signaling acts upstream of ITR-1 to inhibit meiotic resumption, while NMR-1 prevents signaling by the UNC-43 Ca2+/calmodulin-dependent protein kinase II (CaMKII). MSP binding to VAB-1 stimulates NMR-1-dependent UNC-43 activation, and UNC-43 acts redundantly in oocytes to promote oocyte maturation and MAPK activation. Our results support a model in which VAB-1 switches from a negative regulator into a redundant positive regulator of oocyte maturation upon binding to MSP. NMR-1 mediates this switch by controlling UNC-43 CaMKII activation at the oocyte cortex.  相似文献   

18.
It is known that amphibian oocytes undergo maturation through the formation and activation of maturation-promoting factor (MPF) in response to stimulation by the maturation-inducing hormone progesterone; however, the signal transduction pathway that links the hormonal stimulation on the oocyte surface to the activation of MPF in the oocyte cytoplasm remains a mystery. The aim of this study was to investigate whether the signal transduction mediated by phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB), and glycogen synthase kinase 3beta (GSK3beta) is involved in progesterone-induced oocyte maturation in the Japanese brown frog, Rana japonica. Inhibitors of PI3K, wortmannin and LY294002, inhibited progesterone-stimulated germinal vesicle breakdown (GVBD) only when the oocytes were treated at the initial phase of maturation, suggesting that PI3K is involved in the progesterone-induced maturation of Rana oocytes. However, we also obtained results suggesting that PKB and GSK3beta are not involved in Rana oocyte maturation. A constitutively active PKB expressed in the oocytes failed to induce GVBD in the absence of progesterone despite its high level of kinase activity. A Myc-tagged PKB expressed in the oocytes (used to monitor endogenous PKB activity) was not activated in the process of progesterone-induced oocyte maturation. Overexpression of GSK3beta, which is reported to retard the progress of Xenopus oocyte maturation, had no effect on Rana oocyte maturation. On the basis of these results, we propose that PI3K is involved in the initiation of Rana oocyte maturation, but that neither PKB nor GSK3beta is a component of the PI3K signal transduction pathway.  相似文献   

19.
A 95-kDa protein in Xenopus oocytes, Xp95, was shown to be phosphorylated from the first through the second meiotic divisions during progesterone-induced oocyte maturation. Xp95 was purified and cloned. The Xp95 protein sequence exhibited homology to mouse Rhophilin, budding yeast Bro1, and Aspergillus PalA, all of which are implicated in signal transduction. It also contained three conserved features including seven conserved tyrosines, a phosphorylation consensus sequence for the Src family of tyrosine kinases, and a proline-rich domain near the C terminus that contains multiple SH3 domain-binding motifs. We showed the following: 1) that both Xp95 isolated from Xenopus oocytes and a synthetic peptide containing the Src phosphorylation consensus sequence of Xp95 were phosphorylated in vitro by Src kinase and to a lesser extent by Fyn kinase; 2) Xp95 from Xenopus oocytes or eggs was recognized by an anti-phosphotyrosine antibody, and the relative abundance of tyrosine-phosphorylated Xp95 increased during oocyte maturation; and 3) microinjection of deregulated Src mRNA into Xenopus oocytes increased the abundance of tyrosine-phosphorylated Xp95. These results suggest that Xp95 is an element in a tyrosine kinase signaling pathway that may be involved in progesterone-induced Xenopus oocyte maturation.  相似文献   

20.
Mitogen-activated protein (MAP) kinase, protein kinase C (PKC), cAMP, and okadaic acid (OA)-sensitive protein phosphatases (PPs) have been suggested to be involved in oocyte meiotic resumption. However, whether these protein kinases and phosphatases act by independent pathways or interact with each other in regulating meiosis resumption is unknown. In the present study, we aimed to determine the regulation of meiosis resumption and MAP kinase phosphorylation by PKC, cAMP, and OA-sensitive PPs in rat oocytes using an in vitro oocyte maturation system and Western blot analysis. We found that ERK1 and ERK2 isoforms of MAP kinases existed in a dephosphorylated (inactive) form in germinal vesicle breakdown (GVBD)-incompetent and GVBD-competent germinal vesicle intact (GVI) oocytes as well as GVBD oocytes at equivalent levels. These results indicate that MAP kinases are not responsible for the initiation of normal meiotic resumption in rat oocytes. However, when GVBD-incompetent and GVBD-competent oocytes were incubated in vitro for 5 h, MAP kinases were phosphorylated (activated) in GVBD-competent oocytes, but not in meiotic-incompetent oocytes, suggesting that oocytes acquire the ability to phosphorylate MAP kinase during acquisition of meiotic competence. We also found that both meiosis resumption and MAP kinase phosphorylation were inhibited by PKC activation or cAMP elevation. Moreover, these inhibitory effects were overcome by OA, which inhibited PP1/PP2A activities. These results suggest that both cAMP elevation and PKC activation inhibit meiosis resumption and MAP kinase phosphorylation at a step prior to OA-sensitive protein phosphatases. In addition, inhibitory effects of cAMP elevation on meiotic resumption and MAP kinase phosphorylation were not reversed by calphostin C-induced PKC inactivation, indicating that cAMP inhibits both meiotic resumption and MAP kinase activation in a PKC-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号