首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: Food-borne pathogen inhibition was tested in the presence of a mixture of Lactobacillus acidophilus and Lactobacillus casei during fermentation under controlled pH conditions. METHODS AND RESULTS: The growth of Escherichia coli O157:H7, Salmonella serotype Typhimurium, Staphylococcus aureus, Listeria innocua, Enterococcus faecium and Enterococcus faecalis was evaluated for 48 h at 37 degrees C. In the presence of the lactic acid bacteria (LAB), an increase of the generation time was observed for all the gram-positive bacteria evaluated. Staphylococcus aureus was the most sensitive strain showing an increase of the generation time by 210%. However, for all the gram-negative bacteria evaluated, no inhibition occurred after 8 h of fermentation. The soluble portion of Lact. acidophilus- and Lact. casei-fermented milk was recuperated and tested for its antimicrobial activity. Listeria innocua and Staph. aureus were the most sensitive to the presence of fermented milk supernatant showing an inhibition of 85.9% and 84.7%, respectively. This soluble fraction was neutralized to eliminate the antimicrobial effect of the organic acids produced; the most sensitive strains were L. innocua and E. coli O157:H7 showing an inhibition of 65.9% and 61.9%, respectively. Finally, the soluble fraction was neutralized and irradiated at 45 kGy using a (60)Co source to eliminate the possible antimicrobial effect of both organic acids and bacteriocin-like substances. Enterococcus faecalis, E. coli O157:H7 and Staph. aureus were the most affected bacteria by this fraction, showing 39.1, 32 and 31.2% inhibition, respectively. CONCLUSIONS: The results obtained in this study suggest the implication of both organic acids and bacteriocin-like inhibitory substances in the antimicrobial activity observed in the soluble fraction of the probiotic preparation. SIGNIFICANCE AND IMPACT OF THE STUDY: This study revealed the antimicrobial mechanisms of action of Lact. acidophilus- and Lact. casei-fermented milk used to prevent antibiotic-associated diarrhoea.  相似文献   

2.
The essential oil (EO) of Ocimum gratissimum inhibited Staphylococcus aureus at a concentration of 0.75 mg/ml. The minimal inhibitory concentrations (MICs) for Shigella flexineri, Salmonella enteritidis, Escherichia coli, Klebsiella sp., and Proteus mirabilis were at concentrations ranging from 3 to 12 microg/ml. The endpoint was not reached for Pseudomonas aeruginosa (>=24 mg/ml). The MICs of the reference drugs used in this study were similar to those presented in other reports. The minimum bactericidal concentration of EO was within a twofold dilution of the MIC for this organism. The compound that showed antibacterial activity in the EO of O. gratissimum was identified as eugenol and structural findings were further supported by gas chromatography/mass spectra retention time data. The structure was supported by spectroscopic methods.  相似文献   

3.
Bacteriocin production by spray-dried lactic acid bacteria   总被引:11,自引:0,他引:11  
AIMS: Cell survival and antagonistic activity against Listeria innocua, Listeria monocytogenes and Staphylococcus aureus were investigated after spray-drying three bacteriocin-producing strains of lactic acid bacteria: Carnobacterium divergens, Lactobacillus salivarius and Lactobacillus sakei. METHODS AND RESULTS: Bacterial cell concentrates were spray-dried and stored at 4 degrees C and 18 degrees C and 0.3% ERH (equilibrium relative humidity). Enumeration and antagonistic activity were evaluated before and after spray-drying and at regular intervals during storage. CONCLUSIONS: A higher survival rate was obtained when survival was performed at 4 degrees C. With the exception of Carnobacterium divergens which lost the inhibitory activity against Staph. aureus after drying, antagonistic production was not affected by the process nor by the storage. Of the three species studied, Lact. salivarius showed the highest resistance to the spray-drying and storage processes. SIGNIFICANCE AND IMPACT OF THE STUDY: Spray-drying is a potentially useful process for large scale production of dried powders containing viable organisms with antagonistic activity against pathogens.  相似文献   

4.
AIMS: The current study examined the antimicrobial susceptibility of 86 Listeria spp. isolated from processed bison carcasses. MATERIALS AND METhods: Susceptibility to 25 antimicrobial agents was determined using E-test and National Antimicrobial Resistance Monitoring System (NARMS) panels. Most Listeria isolates (88-98%) exhibited resistance to bacitracin, oxacillin, cefotaxime, and fosfomycin. Resistance to tetracycline (18.6%) was also common. Of the 16 tetracycline-resistant Listeria isolates, 15 carried tetM and 2 contained integrase of Tn1545 transposons. Rifampicin and trimethoprim-sulfamethoxazole were the most active antimicrobial agents against Listeria spp., with a MIC(90) of 0.38 microg ml(-1). Ampicillin, erythromycin, penicillin, gentamicin, and tobramycin also exhibited good activity against Listeria spp., with MIC(90) not exceeding 1 microg ml(-1). Differences in resistance among Listeria spp. was displayed, as Listeria innocua strains were more resistant than other Listeria species. CONCLUSIONS: The study showed that Listeria monocytogenes strains from bison were susceptible to the antibiotics most commonly used to treat human listeriosis. However, the presence of antimicrobial resistance in L. innocua indicates the potential for transfer of resistance and a conjugative transposon to L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of our study will provide useful information for the development of public health policy in the use of antimicrobials in food animal production.  相似文献   

5.
AIMS: To quantify the antibacterial properties of five essential oils (EO) on a non-toxigenic strain of Escherichia coli O157:H7 in the presence and absence of a stabilizer and an emulsifier and at three different temperatures. METHODS AND RESULTS: Five EOs known to exhibit antibacterial properties were screened by disc diffusion assay and the most active were selected for further study in microdilution colorimetric assays. Oregano (Origanum vulgare) and thyme (Thymus vulgaris; light and red varieties) EO had the strongest bacteriostatic and bactericidal properties, followed by bay (Pimenta racemosa) and clove bud (Eugenia caryophyllata synonym: Syzygium aromaticum) EO. Oregano oil was colicidal at 625 microl l(-1) at 10, 20 and 37 degrees C. The addition of 0.05% (w/v) agar as stabilizer reinforced the antibacterial properties, particularly at 10 degrees C, whereas 0.25% (w/v) lecithin reduced antibacterial activity. Scanning electron micrographs showed extensive morphological changes to treated cells. CONCLUSIONS: Oregano and thyme EO possess significant in vitro colicidal and colistatic properties, which are exhibited in a broad temperature range and substantially improved by the addition of agar as stabilizer. Bay and clove bud EO are less active. Lecithin diminished antibacterial properties. The bactericidal concentration of oregano EO irreversibly damaged E. coli O157:H7 cells within 1 min. SIGNIFICANCE AND IMPACT OF THE STUDY: Oregano and light thyme EO, particularly when enhanced by agar stabilizer, may be effective in reducing the number or preventing the growth of E. coli O157:H7 in foods.  相似文献   

6.
Aims:  To compare the bacteriostatic and bactericidal activity of 13 chemotyped essential oils (EO) on 65 bacteria with varying sensitivity to antibiotics.
Methods and Results:  Fifty-five bacterial strains were tested with two methods used for evaluation of antimicrobial activity (CLSI recommendations): the agar dilution method and the time-killing curve method. EO containing aldehydes ( Cinnamomum verum bark and Cymbopogon citratus ), phenols ( Origanum compactum , Trachyspermum ammi , Thymus satureioides , Eugenia caryophyllus and Cinnamomum verum leaf) showed the highest antimicrobial activity with minimum inhibitory concentration (MIC) <2% (v/v) against all strains except Pseudomonas aeruginosa . Alcohol-based EO ( Melaleuca alternifolia , Cymbopogon martinii and Lavandula angustifolia ) exhibited varying degrees of activity depending on Gram status. EO containing 1·8-cineole and hydrocarbons ( Eucalyptus globulus , Melaleuca cajeputii and Citrus sinensis ) had MIC90% ≥ 10% (v/v). Against P. aeruginosa , only C. verum bark and O. compactum presented MIC ≤2% (v/v). Cinnamomum verum bark, O. compactum , T. satureioides , C. verum leaf and M. alternifolia were bactericidal against Staphylococcus aureus and Escherichia coli at concentrations ranging from to 0·31% to 10% (v/v) after 1 h of contact. Cinnamomum verum bark and O. compactum were bactericidal against P. aeruginosa within 5 min at concentrations <2% (v/v).
Conclusions:  Cinnamomum verum bark had the highest antimicrobial activity, particularly against resistant strains.
Significance and Impact of the Study:  Bacteriostatic and bactericidal activity of EO on nosocomial antibiotic-resistant strains.  相似文献   

7.
AIMS: To examine sensitivities of various Drosophila melanogaster strains towards human pathogenic and nonpathogenic gram-positive bacteria. METHODS AND RESULTS: The D. melanogaster Oregon R strain was infected by injecting the thorax with a needle containing Escherichia coli (negative control), Listeria monocytogenes, Staphylococcus aureus (both food-borne pathogens), Listeria innocua, Bacillus subtilis, Carnobacterium maltaromaticum, Lactobacillus plantarum or Pediococcus acidilactici (all nonpathogenic bacteria). Listeria monocytogenes and S. aureus killed the host rapidly compared with the negative control. Infection with L. innocua, B. subtilis or C. maltaromaticum also resulted in a high fly mortality, whereas Lact. plantarum and P. acidilactici resulted in a slightly increased mortality. Four additional D. melanogaster lines, three of which had been selected for heat, cold and desiccation resistance respectively, were subjected to infection by L. monocytogenes, S. aureus and E. coli. Mortality rates were comparable with that of the Oregon R strain. CONCLUSIONS: Use of the injection method shows the limitation of D. melanogaster as a model host for gram-positive bacteria as opportunistic infection by nonpathogenic gram-positive bacteria results in partial or high mortality. In addition, lines of fruit flies resistant to various stress exposures did not show an increased resistance to infection by gram-positive pathogens under the conditions tested. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the inadequacy of D. melanogaster infected by the injection method in order to distinguish between virulent and nonvirulent gram-positive bacteria.  相似文献   

8.
Abstract A new sterol, 7-aminocholesterol, which inhibits growth of Saccharomyces cerevisiae , also displayed antibiotic activity against Gram-positive bacteria. The 50% growth inhibitory concentration against strains of Listeria innocua L. monocytogenes, Staphylococcus aureus, Enterococcus hirae and Bacillus cereus was 3 μM.  相似文献   

9.
The aim of this work was to compare the possibility of identifying Listeria monocytogenes strains isolated from meat and sausage on the basis of the API-Listeria test, production of phosphatidylinositol-specific phospholipase C (PI-PLC) and polymerase chain reaction (PCR) for a DNA fragment of the hlyA gene encoding listeriolysin O. Forty-six strains were isolated and examined. The lethality of some Listeria isolates for BALB/c mice was also determined. In this study, all isolates identified as L. monocytogenes in the API test gave a positive signal in the PCR. Listeriae identified as L. innocua or L. welshimeri in the API test were negative in the PCR conducted with the primers for listeriolysin O. All strains identified as L. monocytogenes on the basis of the API test and the PCR produced PI-PLC. However, this activity was not limited to the bacteria of this species. Four out of 17 L. innocua and three out of 10 L. welshimeri isolates were PI-PLC-positive. None of the L. innocua or L. welshimeri isolates (neither PI-PLC+ or PI-PLC-) showed lethality for BALB/c mice. In contrast, two L. monocytogenes isolates as well as a reference L. monocytogenes strain killed all mice used for the experiment.  相似文献   

10.
目的检测通过基因工程获得的片球菌素Pediocin PA-1抑菌活性。方法采用琼脂扩散法检测片球菌素Pediocin PA-1对单核细胞增生李斯特杆菌、金黄色葡萄球菌、铜绿假单胞菌、沙门菌和大肠埃希菌O157的抑菌活性。结果片球菌素Pediocin PA-1对单核细胞增生李斯特杆菌、金黄色葡萄球菌、沙门菌、铜绿假单胞菌和大肠埃希菌O157等均有抑制作用。其中对单核细胞增生李斯特杆菌、沙门菌、大肠埃希菌和金黄色葡萄球菌的抑制作用效果明显,对铜绿假单胞菌有微弱的抑制作用。结论通过基因工程获得的片球菌素Pediocin PA-1具有抑菌活性。  相似文献   

11.
The frequency of occurrance of Listeria strains in different food products was determined. Biochemical characteristic of the isolated strains was achieved in accordance with procedure included in PNEN ISO 11290 standard, genus was determined byApiListeria (bioMéieux) test. Sensitivity to selected antibacterial medicines was investigated using disck method and Mueller-Hinton 2 Agar medium. From the 577 examinated food samples 126 strains of Listeria were isolated and among them: 34.1% L. monocytogenes, 36,5% L. welshimeri, 19.0% L. innocua, 3.17% L. grayi, 0.79% L. seeligeri, 0.79% L. seeligeri/welshinmeri and 5.56% L. ivelshimeri/innocua. L. monocytogenes strains most often were found in minced pork, culinary products and in frozen vegetables. On the base of ApiListeria (bioMéieux) test the isolated L. monocytogenes strains were qualified into 2 biochemical types. It was found that all L. monocytogenes were sensitive to sulphametaksazol/trimetoprim and ampicyllin, 25% of strains were moderatety sensitive to penicillin and only 2 L. monocytogenes strains were resistant to gentamicin. Presence of Listeria spp. microorganisms in food products may be an production hygiene indicator for critical control point and show the possibility of contamination with L. monocytogenes strains.  相似文献   

12.
One hundred and fifty-two strains of Lactobacillus spp and Micrococcus spp, isolated from dry sausages, were screened for inhibitory activity. Two of the strains assayed of the genus Lactobacillus showed bactericidal activity. They were able to inhibit Listeria monocytogenes, Listeria seeligeri, Listeria innocua, Lactobacillus alimentarius and Lactobacillus bavaricus. The strains of Escherichia coli, Salmonella bradford and Salmonella newlands, Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Serratia marcescens were resistant. Their antimicrobial activity was due to peptides detectable in the culture broths and inactivated by treatment with proteolytic enzymes. Using bacteriocin-producing Lactobacillus sake as starter cultures in dry sausages could be promising in the food industry.  相似文献   

13.
R.R. BEUMER, M.C. TE GIFFEL, M.T.C. KOK AND F.M. ROMBOUTS. 1996. All confirmation and identification methods used in this study can be used for the screening of suspected colonies on isolation media for Listeria spp. In traditional enrichment procedures the Microscreen Listeria latex test gives fast results. The DNA probes (Accuprobe and Gene-Trak) are very specific in detecting Listeria monocytogenes . For identification of Listeria spp. both tests (API and Micro-ID) performed equally well. Preference may be given to the API test, since differentiation of L. monocytogenes from L. innocua is based on the absence of arylamidase, through which tests for haemolytic activity and/or CAMP reactions can be omitted. However, the use of Enhanced Haemolysis Agar as isolation medium makes further testing essentially superfluous, since L. monocytogenes strains can be differentiated from L. innocua .  相似文献   

14.
30 Aeromonas hydrophila water isolates were tested for bacteriocin-like substance (BLS) production using a target panel of closely related microorganisms and other Gram-positive and Gram-negative bacteria, including food-borne pathogens. A. hydrophila showed antibacterial activity against one or more indicator microorganisms, but the activity emerged only with non-phylogenetically related genera or species. In particular all A. hydrophila showed antibacterial activity against one or more of the tested Staphylococcus strains, five against Listeria spp. (Listeria seeligeri, Listeria welshimeri and Listeria ivanovii), and eight presented a weak antagonistic activity towards Streptococcus agalactiae and Lactobacillus spp. Inhibitory activity was not observed against the other Gram-positive (Listeria monocytogenes, Listeria innocua and Enterococcus spp.) and Gram-negative tested strains, including Aeromonas sobria, Aeromonas caviae and the same A. hydrophila, when used as indicator. Anti-staphylococcal activity was observed with a gradual increase of the inhibition zone during incubation and seemed to be influenced by A. hydrophila hemolytic expression. Extrachromosomal analysis showed the presence, in 70% of the strains, of one to five plasmids with molecular masses ranging from 2.1 to 41.5 MDa, but it was not possible to relate this result with BLS production.  相似文献   

15.
AIMS: To investigate the mode of action of vanillin, the principle flavour component of vanilla, with regard to its antimicrobial activity against Escherichia coli, Lactobacillus plantarum and Listeria innocua. METHODS AND RESULTS: In laboratory media, MICs of 15, 75 and 35 mmol l(-1) vanillin were established for E. coli, Lact. plantarum and L. innocua, respectively. The observed inhibition was found to be bacteriostatic. Exposure to 10-40 mmol l(-1) vanillin inhibited respiration of E. coli and L. innocua. Addition of 50-70 mmol l(-1) vanillin to bacterial cell suspensions of the three organisms led to an increase in the uptake of the nucleic acid stain propidium iodide; however a significant proportion of cells still remained unstained indicating their cytoplasmic membranes were largely intact. Exposure to 50 mmol l(-1) vanillin completely dissipated potassium ion gradients in cultures of Lact. plantarum within 40 min, while partial potassium gradients remained in cultures of E. coli and L. innocua. Furthermore, the addition of 100 mmol l(-1) vanillin to cultures of Lact. plantarum resulted in the loss of pH homeostasis. However, intracellular ATP pools were largely unaffected in E. coli and L. innocua cultures upon exposure to 50 mmol l(-1) vanillin, while ATP production was stimulated in Lact. plantarum cultures. In contrast to the more potent activity of carvacrol, a well studied phenolic flavour compound, the extent of membrane damage caused by vanillin is less severe. CONCLUSIONS: Vanillin is primarily a membrane-active compound, resulting in the dissipation of ion gradients and the inhibition of respiration, the extent to which is species-specific. These effects initially do not halt the production of ATP. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding the mode of action of natural antimicrobials may facilitate their application as natural food preservatives, particularly for their potential use in preservation systems employing multiple hurdles.  相似文献   

16.
Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed.  相似文献   

17.
Despite the wide range of available antibiotics, food borne bacteria demonstrate a huge spectrum of resistance. The current study aims to use natural components such as essential oils (EOs), chitosan, and nano-chitosan that have very influential antibacterial properties with novel technologies like chitosan solution/film loaded with EOs against multi-drug resistant bacteria. Two strains of Escherichia coli O157:H7 and three strains of Listeria monocytogenes were used to estimate antibiotics resistance. Ten EOs and their mixture, chitosan, nano-chitosan, chitosan plus EO solutions, and biodegradable chitosan film enriched with EOs were tested as antibacterial agents against pathogenic bacterial strains. Results showed that E. coli O157:H7 51,659 and L. monocytogenes 19,116 relatively exhibited considerable resistance to more than one single antibiotic. Turmeric, cumin, pepper black, and marjoram did not show any inhibition zone against L. monocytogenes; Whereas, clove, thyme, cinnamon, and garlic EOs exhibited high antibacterial activity against L. monocytogenes with minimum inhibitory concentration (MIC) of 250–400 μl 100?1 ml and against E. coli O157:H7 with an MIC of 350–500 μl 100?1 ml, respectively. Among combinations, clove, and thyme EOs showed the highest antibacterial activity against E. coli O157:H7 with MIC of 170 μl 100?1 ml, and the combination of cinnamon and clove EOs showed the strongest antibacterial activity against L. monocytogenes with an MIC of 120 μl 100?1 ml. Both chitosan and nano-chitosan showed a promising potential as an antibacterial agent against pathogenic bacteria as their MICs were relatively lower against L. monocytogenes than for E. coli O157:H7. Chitosan combined with each of cinnamon, clove, and thyme oil have a more effective antibacterial activity against L. monocytogenes and E. coli O157:H7 than the mixture of oils alone. Furthermore, the use of either chitosan solution or biodegradable chitosan film loaded with a combination of clove and thyme EOs had the strongest antibacterial activity against L. monocytogenes and E. coli O157:H7. However, chitosan film without EOs did not exhibit an inhibition zone against the tested bacterial strains.  相似文献   

18.
AIMS: This study aimed to determine the survival and growth of Listeria innocua on hot and cold beef carcass surfaces. METHODS AND RESULTS: Four sites, the neck, outside round, brisket and foreshank/brisket, were inoculated with L. innocua (i) immediately after dressing while hot and (ii) when cold after chilling. After inoculation, all carcasses were stored at 4 degrees C for 72 h. Survival of L. innocua on cold surfaces declined during storage and was less than on hot carcasses at all times. Data on the survival of L. innocua in broth (maximum recovery diluent) indicated that counts could not be compared with those on carcasses, in particular on cold carcasses. CONCLUSIONS: The results indicate that L. innocua survives on hot carcass surfaces during chilling, but declines over time on cold surfaces. The decrease in L. innocua counts on cold surfaces may be related to a synergy between the combined stresses of low available water (a(w)) and low temperature. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to determine the effect of chilling on the survival and growth of Listeria on beef carcass surfaces. The information can potentially be used to determine the survival and growth of the pathogen, L. monocytogenes on beef surfaces.  相似文献   

19.
Linenscin OC2 is an antibacterial substance produced by the orange cheese coryneform bacterium Brevibacterium linens OC2. It inhibits the growth of Gram-positive bacteria but it is inactive against Gram-negative bacteria. The intact outer membrane of Gram-negative bacteria was shown to be an effective permeability barrier against linenscin OC2. At high dosage the effect of linenscin OC2 was bacteriolytic on Listeria innocua. Bacteriostasis was observed at low dosage and peptidoglycan biosynthesis was affected at an early step upstream of the UDP-N-acetylglucosamine. Hemolytic activity of this substance on sheep erythrocytes suggested a common mode of action on prokaryotic and eukaryotic cells. It also suggested that the cytoplasmic membrane might be the primary target of linenscin OC2.  相似文献   

20.
Aims:  Evaluation of the cellular effects of Origanum compactum essential oil on Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213.
Methods and Results:  The damage induced by O. compactum essential oil on these two strains has been studied using different techniques: plate count, potassium leakage, flow cytometry (FC) and transmission electron microscopy (TEM). The results showed that oil treatment led to reduction of cells viability and dissipated potassium ion gradients. Flow cytometric analysis showed that oil treatment promoted the accumulation of bis-oxonol and the membrane-impermeable nucleic acid stain propidium iodide (PI), indicating the loss of membrane potential and permeability. The ability to reduce 5-cyano-2,3-ditolyl tetrazolium chloride was inhibited. Unlike in Ps. aeruginosa , membrane potential and membrane permeability in Staph. aureus cells were affected by oil concentration and contact time. Finally, TEM showed various structural effects. Mesosome-like structures were seen in oil-treated Staph. aureus cells whereas in Ps. aeruginosa, coagulated cytoplasmic material and liberation of membrane vesicles were observed, and intracellular material was seen in the surrounding environment. Both FC and TEM revealed that the effects in Ps. aeruginosa were greater than in Staph. aureus .
Conclusions:  Oregano essential oil induces membrane damage showed by the leakage of potassium and uptake of PI and bis-oxonol. Ultrastructural alterations and the loss of cell viability were observed.
Significance and Impact of the Study:  Understanding the mode of antibacterial effect of the oil studied is of a great interest in it further application as natural preservative in food or pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号