首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-temperature production (HTP) regulon of Escherichia coli consists of a set of operons that are induced coordinately by a shift to a high temperature under the control of a single chromosomal gene called htpR or hin. To identify more components of this regulon, the rates of synthesis of many polypeptides resolved on two-dimensional polyacrylamide gels were measured in various strains by pulse-labeling after a temperature shift-up. A total of 13 polypeptides were found to be heat inducible only in cells bearing a normal htpR gene on the chromosome or on a plasmid; on this basis these polypeptides were designated products of the HTP regulon. Several hybrid plasmids that contain segments of the E. coli chromosome in the 75-min region were found to carry the htpR gene. A restriction map of this region was constructed, and selected fragments were subcloned and tested for the ability to complement an htpR mutant. The polypeptides encoded by these fragments were detected by permitting expression in maxicells, minicells, and chloramphenicol-treated cells. Complementation was accompanied by production of a polypeptide having a molecular weight of approximately 33,000. This polypeptide, designated F33.4, was markedly reduced in amount in an htpR mutant expected to contain very little htpR gene product. Polypeptide F33.4 is postulated to be the product of htpR and to be an effector that controls heat induction of the HTP regulon.  相似文献   

2.
A new type of Escherichia coli mutant which shows increased sensitivity to methyl methane sulfonate but not to UV light or to gamma rays was isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. The mutant is unable to reactivate phage lambdavir or double-stranded phiX174 DNA (replicative form) that had been treated with methyl methane sulfonate. The mutant is sensitive to other alkylating agents, such as ethyl methane sulfonate, mitomycin C, and N-methyl-N'-nitro-N-nitrosoguanidine, as well. It grows normally and exhibits almost normal recombination proficiency. The mutant possesses normal levels of DNA polymerase I, exonuclease I, exonuclease V, endonuclease specific for methyl methane sulfonate-treated DNA, and 3-methyladenine-DNA glycosidase activities. The genetic locus responsible has been named alk and is located near his on the chromosome.  相似文献   

3.
Transcriptional control of the uvrD gene of Escherichia coli   总被引:5,自引:0,他引:5  
H M Arthur  P B Eastlake 《Gene》1983,25(2-3):309-316
  相似文献   

4.
Molecular cloning of the ecotin gene in Escherichia coli   总被引:2,自引:0,他引:2  
The nucleotide sequence of a 876 bp region in E. coli chromosome that encodes Ecotin was determined. The proposed coding sequence for Ecotin is 486 nucleotides long, which would encode a protein consisting of 162 amino acids with a calculated molecular weight of 18,192 Da. The deduced primary sequence of Ecotin includes a 20-residue signal sequence, cleavage of which would give rise to a mature protein with a molecular weight of 16,099 Da. Ecotin does not contain any consensus reactive site sequences of known serine protease inhibitor families, suggesting that Ecotin is a novel inhibitor.  相似文献   

5.
Regulation of the Escherichia coli uvrD gene in vivo.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

6.
Molecular cloning and characterization of the alkB gene of Escherichia coli   总被引:1,自引:0,他引:1  
Summary Using methods of in vitro recombination we constructed hybrid plasmids that can suppress the increased methylmethane sulfonate sensitivity caused by alkB mutation. Since the cloned DNA fragment was mapped at 47 min on the Escherichia coli K12 genetic map, an area where the alkB gene is located, we concluded that the cloned DNA fragment contains the alkB gene itself but not other genes that suppress alkB mutation. Specific labeling of plasmid-encoded proteins by the maxicell method revealed that the alkB codes for a polypeptide with a molecular weight of about 27,000. Introduction of a small deletion into the alkB region of the bacterial chromosome resulted in inactivation of both the alkB and ada genes, thereby suggesting that the two genes are adjacent on the E. coli chromosome.Abbreviations Ap ampicillin - Cm chloramphenicol - HPLC high performance liquid chromatography - kb kilobases - kd kilodaltons - MMS methylmethane sulfonate - MNU methylnitrosourea - MNNG N-methyl-N-nitro-N-nitrosoguanidine - Tc tetracycline - SDS sodium dodecyl sulfate  相似文献   

7.
A temperature-sensitive uvrD mutant, HD323 uvrD4, was isolated from the uvrD mutant HD4 uvrD3. The temperature sensitivity of the uvrD4 gene product was reversible. The suppressor mutation uvrD44 which rendered the uvrD3 mutant temperature-sensitive could be separated from the uvrD3 mutation by replacing the PstI fragment, which encodes the C-terminal half of the UvrD protein. The uvrD44 mutation was found to make host bacteria lethal at non-permissive temperatures only when cloned on a low copy vector pMF3. The nucleotide sequence of the uvrD3 and uvrD4 mutant genes was determined. The nucleotide change found in the uvrD3 at +1235, GAA to AAA, only alters the amino acid sequence from Glu at 387 to Lys. The uvrD44 has another nucleotide change at +1859, GAA to AAA (Glu at 595 to Lys), which is considered to be the suppressor mutation uvrD44.  相似文献   

8.
Abstract The fdhF gene of Escherichia coli , coding for at least one component of benzyl viologen-linked formate dehydrogenase (FDH-BV) activity, was isolated on a ColE1- fdhF hybrid plasmid from the Clarke and Carbon colony bank.
Endonuclease restriction maps of this plasmid and its pBR322-subcloned derivative, pLW06, were constructed. Various hybrid plasmids were further obtained by deletion of endonuclease-cleaved fragments from pLW06 DNA. Their complementation pattern was analyzed after introduction into different fdhF mutant strains. The fdhF gene was shown to be located on a 5.5 kb Bam HI- Pvu II-DNA fragment, which restored FDH-BV activity to the wild-type level.  相似文献   

9.
10.
To metabolize the uncommon pentose D-arabinose, enteric bacteria often recruit the enzymes of the L-fucose pathway by a regulatory mutation. However, Escherichia coli B can grow on D-arabinose without the requirement of a mutation, using some of the L-fucose enzymes and a D-ribulokinase that is distinct from the L-fuculokinase of the L-fucose pathway. To study this naturally occurring D-arabinose pathway, we cloned and partially characterized the E. coli B L-fucose-D-arabinose gene cluster and compared it with the L-fucose gene cluster of E. coli K-12. The order of the fucA, -P, -I, and -K genes was the same in the two E. coli strains. However, the E. coli B gene cluster contained a 5.2-kb segment located between the fucA and fucP genes that was not present in E. coli K-12. This segment carried the darK gene, which encodes the D-ribulokinase needed for growth on D-arabinose by E. coli B. The darK gene was not homologous with any of the L-fucose genes or with chromosomal DNA from other D-arabinose-utilizing bacteria. D-Ribulokinase and L-fuculokinase were purified to apparent homogeneity and partially characterized. The molecular weights, substrate specificities, and kinetic parameters of these two enzymes were very dissimilar, which together with DNA hybridization analysis, suggested that these enzymes are not related. D-Arabinose metabolism by E. coli B appears to be the result of acquisitive evolution, but the source of the darK gene has not been determined.  相似文献   

11.
A recombinant plasmid carrying a 4.6 kg restriction endonuclease NcoI-ClaI fragment of genomic DNA from Escherichia coli K12 was constructed. This plasmid complements the glmS mutation. Subcloning into pUC18 gave plasmid pGM10 encoding the structural gene of glucosamine synthetase, as judged by overexpression of enzyme activity and the isolation in high yield of the pure protein.  相似文献   

12.
The glgP gene, which codes for glycogen phosphorylase, was cloned from a genomic library of Escherichia coli. The nucleotide sequence of the glgP gene contained a single open reading frame encoding a protein consisting of 790 amino acid residues. The glgP gene product, a polypeptide of Mr 87,000, was confirmed by SDS-polyacrylamide gel electrophoresis. The deduced amino acid sequence showed that homology between glgP of E. coli and rabbit glgP, human glgP, potato glgP, and E. coli malP was 48.6, 48.6, 42.3, and 46.1%, respectively. Within this homologous region, the active site, glycogen storage site, and pyridoxal-5'-phosphate binding site are well conserved. The enzyme activity of glycogen phosphorylase increased after introduction on a multicopy of the glgP gene.  相似文献   

13.
14.
15.
16.
Seven mutants of Escherichia coli were isolated that are sensitive to methyl methane sulfonate but not to UV light. They exhibited decreased host cell reactivation capacity for methyl methane sulfonate-treated phage lambda. Five of the mutations were mapped in the same region as alkA (previously called alk) and may indeed be identical to known mutations. Another mutation was found near nalA, and the gene responsible was named alkB. Its phenotype was different from that of ada, since the alkB mutant exhibited a normal adaptive response to N-methyl-N'-nitro-N-nitrosoguanidine. A third type of mutation was mapped near polA, but this mutant contained an almost normal level of DNA polymerase I activity.  相似文献   

17.
Summary The Escherichia coli HU-1 was cloned by use of mixed synthetic oligonucleotides (17-mer) predicted from a portion of its amino acid sequence. The amino acid sequence of the HU-1 protein deduced from the nucleotide sequence is in good agreement with the published sequence. The nucleotide sequence has a possible promoter and a typical ribosomal binding site upstream from the translational initiation codon (GUG) of the HU-1 gene.  相似文献   

18.
The glyoxalase I gene of Pseudomonas putida was cloned onto a vector plasmid pBR 322 as a 7.5 kilobase Sau 3AI fragment of chromosomal DNA and the hybrid plasmid was designated pGI 318. The gene responsible for the glyoxalase I activity in pGI 318 was recloned in pBR 322 as a 2.2 kilobase Hin dIII fragment and was designated pGI 423. The P. putida glyoxalase I gene on pGI 318 and pGI 423 was highly expressed in E. coli cells and the glyoxalase I activity level was increased more than 150 fold in the pGI 423 bearing strain compared with that of E. coli cells without pGI 423. The E. coli transformants harboring pGI 318 or pGI 423 could grow normally in the presence of methylglyoxal, although the E. coli cells without plasmid were inhibited to grow and showed the extremely elongated cell shape.  相似文献   

19.
Previous work from this laboratory had demonstrated that CDP-diglyceride hydrolase of Escherichia coli is encoded by the cdh gene that maps near minute 88 (Bulawa, C. E., and Raetz, C. R. H. (1984) J. Biol. Chem. 259, 11257-11264). We now report the construction of hybrid plasmids and the sequencing of a 1,243-base pair insert carrying cdh. The further construction of BAL31 deletions of this insert, in conjunction with maxicell experiments and in vitro enzyme assay, has led to the identification of a 756-base pair coding sequence for the cdh polypeptide. The molecular weight of the primary translation product deduced from the DNA sequence of the cdh gene is 28,450, in agreement with maxicell experiments. Parallel purification of the enzyme from extracts of wild-type and overproducing strains confirms the presence of a 27-kDa polypeptide in the overproducer, as judged by polyacrylamide gel electrophoresis of the most purified fractions. Inspection of the DNA sequence reveals a very hydrophobic N-terminal domain that may be either a signal peptide or a special region, anchoring the hydrolase to the membrane. In contrast to the CDP-diglyceride synthetase, the overall amino acid composition of the CDP-diglyceride hydrolase is not extraordinarily hydrophobic. Although both CDP-diglyceride synthetase and CDP-diglyceride hydrolase can transfer the CMP moiety of CDP-diglyceride to a suitable acceptor, the primary structures and mechanisms of action of these two enzymes are very different.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号