首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 270 毫秒
1.
Embryonic hearts contain a homogeneous population of mesenchymal cells which migrate through an extensive extracellular matrix (ECM) to become the earliest progenitors of the cardiac valves. Since these cells normally migrate through an ECM containing several adhesion substrates, this study was undertaken to examine and compare three ECM binding mechanisms for mesenchymal cell migration in an in vitro model. Receptor mechanisms for the ECM glycoproteins fibronectin (FN) and laminin (LM) and the cell surface receptor galactosyltransferase (GalTase), which binds an uncharacterized ECM substrate, were compared. Primary cardiac explants from stage 17 chick embryos were cultured on three-dimensional collagen gels. Mesenchymal cell outgrowth was recorded every 24 hr and is reported as a percentage of control. Migration was perturbed using specific inhibitors for each of the three receptor mechanisms. These included the hexapeptide GRGDSP (300-1000 micrograms/ml), which mimics a cell binding domain of FN, the pentapeptide YIGSR (300-1000 micrograms/ml), which mimics a binding domain of LM, and alpha-lactalbumin (1-10 mg/ml), a protein modifier of GalTase activity. The functional role of these adhesion mechanisms was further tested using antibodies to avian integrin (JG22) and avian GalTase. While the FN-related peptide had no significant effect on cell migration it did produce a rounded cellular morphology. The LN-related peptide inhibited mesenchymal migration 70% and alpha-lactalbumin inhibited cell migration 50%. Antibodies against integrin and GalTase inhibited mesenchymal cell migration by 80 and 50%, respectively. The substrate for GalTase was demonstrated to be a single high molecular weight substrate which was not LM or FN. Control peptides, proteins and antibodies demonstrated the specificity of these effects. These data demonstrate that multiple adhesion mechanisms, including cell surface GalTase, are potentially functional during cardiac mesenchymal cell migration. The sensitivity of cell migration to the various inhibitors suggests that occupancy of specific ECM receptors can modulate the activity of other, unrelated, ECM adhesion mechanisms utilized by these cells.  相似文献   

2.
Embryonic hearts contain a homogeneous population of mesenchymal cells which migrate through an extensive extracellular matrix (ECM) to become the earliest progenitors of the cardiac valves. Since these cells normally migrate through an ECM containing several adhesion substrates, this study was undertaken to examine and compare three ECM binding mechanisms for mesenchymal cell migration in an in vitro model. Receptor mechanisms for the ECM glycoproteins fibronectin (FN) and laminin (LM) and the cell surface receptor galactosyltransferase (GalTase), which binds an uncharacterized ECM substrate, were compared. Primary cardiac explants from stage 17 chick embryos were cultured on three-dimensional collagen gels. Mesenchymal cell outgrowth was recorded every 24 hr and is reported as a percentage of control. Migration was perturbed using specific inhibitors for each of the three receptor mechanisms. These included the hexapeptide GRGDSP (300–1000 μg/ml), which mimics a cell binding domain of FN, the pentapeptide YIGSR (300–1000 μg/ml), which mimics a binding domain of LM, and α-lactalbumin (1–10 mg/ml), a protein modifier of GalTase activity. The functional role of these adhesion mechanisms was further tested using antibodies to avian integrin (JG22) and avian GalTase. While the FN-related peptide had no significant effect on cell migration it did produce a rounded cellular morphology. The LN-related peptide inhibited mesenchymal migration 70% and α-lactalbumin inhibited cell migration 50%. Antibodies agasinst integrin and GalTase inhibited mesenchymal cell migration by 80 and 50%, respectively. The substrate for GalTase was demonstrated to be a single high molecular weight substrate which was not LM or FN. Control peptides, proteins and antibodies demonstrated the specificity of these effects. These data demonstrate that multiple adhesion mechanisms, including cell surface GalTase, are potentially functional during cardiac mesenchymal cell migration. The sensitivity of cell migration to the various inhibitors suggests that occupancy of specific ECM receptors can modulate the activity of other, unrelated, ECM adhesion mechanisms utilized by these cells.  相似文献   

3.
Laminin is a basement membrane-specific glycoprotein that promotes cell adhesion, proliferation, differentiation, and tumor cell migration. Synthetic peptides from the amino acid sequence deduced from a cDNA clone of the B1 chain of laminin were tested for their ability to promote the migration of B16F10 melanoma cells. A peptide, CDPGYIGSR, that is able to mediate epithelial cell attachment to laminin was found to promote migration, and the constituent pentapeptide YIGSR was also active but to a lesser degree. This nine-amino acid peptide blocked migration of melanoma cells to laminin but had no effect on migration to fibronectin. These data suggest that the cell-binding site and migration site on laminin share a common sequence that is unique to laminin.  相似文献   

4.
The trunk neural crest originates by transformation of dorsal neuroepithelial cells into mesenchymal cells that migrate into embryonic interstices. Fibronectin (FN) is thought to be essential for the process, although other extracellular matrix (ECM) molecules are potentially important. We have examined the ability of three dimensional (3D) ECM to promote crest formation in vitro. Neural tubes from stage 12 chick embryos were suspended within gelling solutions of either basement membrane (BM) components or rat tail collagen, and the extent of crest outgrowth was measured after 22 hr. Fetal calf serum inhibits outgrowth in both gels and was not used unless specified. Neither BM gel nor collagen gel contains fibronectin. Extensive crest migration occurs into the BM gel, whereas outgrowth is less in rat tail collagen. Addition of fibronectin or embryo extract (EE), which is rich in fibronectin, does not increase the extent of neural crest outgrowth in BM, which is already maximal, but does stimulate migration into collagen gel. Removal of FN from EE with gelatin-Sepharose does not remove the ability of EE to stimulate migration. Endogenous FN is localized by immunofluorescence to the basal surface of cultured neural tubes, but is not seen in the proximity of migrating neural crest cells. Addition of the FN cell-binding hexapeptide GRGDSP does not affect migration into either the BM gel or the collagen gel with EE, although it does block spreading on FN-coated plastic. Thus, although crest cells appear to use exogenous fibronectin to migrate on planar substrata in vitro, they can interact with 3D collagenous matrices in the absence of exogenous or endogenous fibronectin. In BM gels, the laminin cell-binding peptide, YIGSR, completely inhibits migration of crest away from the neural tube, suggesting that laminin is the migratory substratum. Indeed, laminin as well as collagen and fibronectin is present in the embryonic ECM. Thus, it is possible that ECM molecules in addition to or instead of fibronectin may serve as migratory substrata for neural crest in vivo.  相似文献   

5.
Previously we reported that a pentapeptide (Tyr-Ile-Gly-Ser-Arg or YIGSR) from domain III of the B1 chain of laminin is a cell attachment site with the ability to stimulate cell adhesion and migration and to block experimental metastases. Here we report studies on the activities of synthetic peptides that cover domain III and report a second biologically active peptide PDSGR from this domain with activities similar to YIGSR. We also show that cyclic YIGSR is more potent in these assays than the linear peptide as expected since this sequence on laminin is bracketed by cysteines. Due to their proximity and similar spectrum of activities, it is possible that these sequences act in concert in the native laminin molecule.  相似文献   

6.
Wu ZZ  Li P  Huang QP  Qin J  Xiao GH  Cai SX 《Biorheology》2003,40(4):489-502
A micropipette technique was used to investigate the effects of four synthetic peptides, YIGSR, CDPGYIGSR, RGDS and GRGDTP, on the adhesion of hepatocellular carcinoma (HCC) cells onto type IV collagen/laminin/fibronectin coated surfaces. Adhesion of HCC cells to laminin was found to be YIGSR- or CDPGYIGSR-dependent while that to fibronectin and type IV collagen was RGDS- or GRGDTP-dependent. The reduction in adhesion strengths of HCC cells was slight to moderate (up to 55%), and was dependent on the peptide concentration. The decrease in adhesion strengths was reversed by an increase in ligand coating concentration and was compromised by prolonged interaction of the cells with the surfaces. These results suggested that the inhibition was due to competitive retardation rather than to a blockade of adhesion strengthening. A simple asymptotic function was adopted to fit the correlation between the mean of cell adhesion strengths and peptide concentration within defined concentration ranges. Regression analysis showed that cell adhesion strengths appeared to approach a plateau with increasing concentration of the inhibitory peptides, which was not always uniform over the entire concentration range tested. Further reduction in adhesion strengths was observed at higher peptide concentrations. It is suggested that the constants obtained by fitting over a low peptide concentration range might be kinetically representative of the inhibition during early events of adhesion or attachment.  相似文献   

7.
In the mammalian heart, the extracellular matrix plays an important role in regulating cell behavior and adaptation to mechanical stress. In cell culture, a significant number of cells detach in response to mechanical stimulation, limiting the scope of such studies. We describe a method to adhere the synthetic peptides RGD (fibronectin) and YIGSR (laminin) onto silicone for culturing primary cardiac cells and studying responses to mechanical stimulation. We first examined cardiac cells on stationary surfaces and observed the same degree of cellular adhesion to the synthetic peptides as their respective native proteins. However, the number of striated myocytes on the peptide surfaces was significantly reduced. Focal adhesion kinase (FAK) protein was reduced by 50% in cardiac cells cultured on YIGSR peptide compared with laminin, even though 1-integrin was unchanged. Connexin43 phosphorylation increased in cells adhered to RGD and YIGSR peptides. We then subjected the cardiac cells to cyclic strain at 20% maximum strain (1 Hz) for 48 h. After this period, cell attachment on laminin was reduced to 50% compared with the unstretched condition. However, in cells cultured on the synthetic peptides, there was no significant difference in cell adherence after stretch. On YIGSR peptide, myosin protein was decreased by 50% after mechanical stimulation. However, total myosin was unchanged in cells stretched on laminin. These results suggest that RGD and YIGSR peptides promote the same degree of cellular adhesion as their native proteins; however, they are unable to promote the signaling required for normal FAK expression and complete sarcomere formation in cardiac myocytes. cell adhesion; connexin43; focal adhesion kinase; surface chemistry  相似文献   

8.
肝癌细胞-胞外基质粘附性与粘附识别序列的相关性   总被引:1,自引:0,他引:1  
以微管吸吮技术研究了人肝癌细胞在IV型胶原/层粘连蛋白(LN)/纤维连结蛋白(FN)裱衬表面的粘附性。进一步,用四种人工合成肽精-甘-天冬-丝(RGDS)、甘-精-甘-天冬-苏-脯GRGDTP)、酪-异亮-甘-丝-精(YIGSR0和半胱-天冬-脯-甘-酪-异亮-甘-丝-精(CDPGYIGSR)研究了肝癌细胞粘附性对两种粘附识别序列RGD和YIGSR的依赖性。为了归纳和整理实验结果,根据竞争性抑制的  相似文献   

9.
Polymorphonuclear leukocyte (PMN) migration through tissue extracellular space is an essential step in the inflammatory response, but little is known about the factors influencing PMN migration through gels of extracellular matrix (ECM). In this study, PMN migration within reconstituted gels containing collagen type I or collagen type I supplemented with laminin, fibronectin, or heparin was measured by quantitative direct visualization, resulting in a random motility coefficient (mum a quantitative index for rate of cell dispersion) for the migrating cell population. The random motility coefficient in unsupplemented collagen (0.4 mg/ml) gels was approximately 9 x 10(-9) cm2/s. Supplementing gels with heparin or fibronectin produced a significant decrease in mu, even at the lowest concentrations studied (1 microgram/ml fibronectin or 0.4 microgram/ml heparin). At least 100 micrograms/ml of laminin, or 20% of the total gel protein, was required to produce a similar decrease in mu. Scanning electron microscopy revealed two different gel morphologies: laminin or fibronectin appeared to coat the 150-nm collagen fibers whereas heparin appeared to induce fiber bundle formation and, therefore, larger interstitial spaces. The decrease in mu observed in heparin-supplemented gels correlated with the increased mesh size of the fiber network, but the difference observed in mu for fibronectin- and laminin-supplemented gels did not correlate with either mesh size or the mechanical properties of the gel, as determined by rheological measurements. However, PMNs adhered to fibronectin-coated surfaces in greater numbers than to collagen- or laminin-coated surfaces, suggesting that changes in cell adhesion to protein fibers can also produce significant changes in cell motility within an ECM gel.  相似文献   

10.
Laminin and type IV collagen were compared for the ability to promote aortic endothelial cell adhesion and directed migration in vitro. Substratum-adsorbed IV promoted aortic endothelial cell adhesion in a concentration dependent fashion attaining a maximum level 141-fold greater than controls within 30 min. Aortic endothelial cell adhesion to type IV collagen was not inhibited by high levels (10(-3) M) of arginyl-glycyl-aspartyl-serine. In contrast, adhesion of aortic endothelial cells on laminin was slower, attaining only 53% of the adhesion observed on type IV collagen by 90 min. Type IV collagen when added to the lower well of a Boyden chamber stimulated the directional migration of aortic endothelial cells in a concentration dependent manner with a maximal response 6.9-fold over control levels, whereas aortic endothelial cells did not migrate in response to laminin at any concentration (.01-2.0 X 10(-7) M). Triple helix-rich fragments of type IV collagen were nearly as active as intact type IV collagen in stimulating both adhesion and migration whereas the carboxy terminal globular domain was less active at promoting adhesion (36% of the adhesion promoted by intact type IV collagen) or migration. Importantly, aortic endothelial cells also migrate to substratum adsorbed gradients of type IV collagen suggesting that the mechanism of migration is haptotactic in nature. These results demonstrate that the aortic endothelial cell adhesion and migration is preferentially promoted by type IV collagen compared with laminin, and has a complex molecular basis which may be important in angiogenesis and large vessel repair.  相似文献   

11.
Peptide 11, CDPGYIGSR-NH2, is a segment of laminin which blocks tumor cell invasion. A high affinity laminin receptor in tumor cells is thought to be blocked by the carboxyl-terminal YIGSR, and conformational energy calculations suggest that the glycine in YIGSR allows an important conformational bend. We replaced the YIGSR glycine residue in peptide 11 with either D-alanine or L-alanine to allow or disfavor the proposed glycine bend. We found the Gly7-->D-Ala7 analog to be equal to peptide 11 in inhibiting tumor cell invasion of basement membrane matrix. The Gly7-->L-Ala7 analog was much less capable of invasion inhibition. Two-dimensional 1H-1H NMR was used to study the solution conformations of the peptide 11 analogs. NOESY experiments revealed close NH-NH contacts in peptide 11 and the D-Ala7 analog, but not in the L-Ala7 analog. Molecular dynamics generated low energy structures with excellent NOE agreement for peptide 11 and its analogs. Both peptide 11 and the D-Ala7 analog, but not the less active L-Ala7 analog, were predicted to have similar bends around Gly7 or D-Ala7. These results suggest that a bend in the YIGSR region of peptide 11 may be important for the binding of laminin to its metastasis-associated receptor.  相似文献   

12.
The adhesion of HT29 human colon adenocarcinoma cells to different extracellular matrix components was studied. While treatment of the cells with sialidase had no detectable effect on binding to laminin and fibronectin, attachment to collagen IV was decreased. However, additional removal of beta-(1-4)-bound galactose led to significantly reduced binding to all of the substrates, including fibronectin and laminin. Tunicamycin treatment, monitored by lectin-induced aggregation, drastically diminished cell adhesion to laminin and fibronectin, whereas cell binding to collagen IV was not affected. Arg-Gly-Asp (RGD)-related peptides were used to study the adhesion to collagen IV. The results show that a serine-containing RGD-related peptide GRGDSP has virtually no effect on colon carcinoma cell adhesion to type IV collagen. In contrast, when serine was substituted for threonine (GRGDTP) adhesion to collagen IV was strongly inhibited. After incubation of sialidase-treated cells with the threonine-containing peptide adhesion was almost totally blocked. These results demonstrate the existence of both RGD-dependent and carbohydrate-based mechanisms for metastatic human HT29 cell binding to collagen IV.  相似文献   

13.
Basement membranes are thin extracellular matrices which contact epithelial cells and promote their adhesion, migration, differentiation, and morphogenesis. These matrices are composed of collagen IV, heparan sulfate proteoglycan, laminin, and entactin as well as other minor components. Sertoli cells, like most epithelial cells, are in contact at their basal surface with a basement membrane. When cultured within three-dimensional basement membrane gels (Matrigel), Sertoli cells reorganize into cords that resemble testicular seminiferous cords found in the in vivo differentiating testis. Anti-laminin and anti-entactin antisera inhibit this cord morphogenesis by Sertoli cells whereas antisera against type IV and type I collagen, heparan sulfate proteoglycan, fibronectin, and preimmune sera had no effect. The RGD (RGDS-NH2) sequence, found in the cell binding domain of the integrin family of cell adhesion molecules as well as in the A chain of laminin and in entactin, effectively inhibited Sertoli cell cord formation at a concentration of 1.0 mg/ml but was unable to prevent Sertoli cell attachment at concentrations as high as 2.0 mg/ml. A synthetic pentapeptide from a cell-binding domain of the B1 chain of laminin. YIGSR-NH2, inhibited cord formation at a concentration of 0.25 mg/ml, but Sertoli cells were still adherent to the basement membrane matrix. At concentrations greater than 0.50 mg/ml, Sertoli cells detached. Antiserum against the YIGSR-NH2-containing sequence was also effective in inhibiting cord formation by Sertoli cells. Ligand (YIGSR-NH2 peptide) blot analysis of Sertoli cell lysates revealed an interaction with a major band at 60 kDa and with minor bands at 39 and 127 kDa. Furthermore, in Western blot analysis the anti-67-kDa laminin-binding protein antibody recognized a 59- to 60-kDa protein in Sertoli cells. The data indicate that laminin is involved in both Sertoli cell attachment and migration during formation of histotypic cord structures by these cells in culture. Two separate laminin cell-binding domains appear to be involved in Sertoli cell cord morphogenesis in vitro and are likely to participate in the formation of seminiferous cords in vivo.  相似文献   

14.
N Kojima  S Hakomori 《Glycobiology》1991,1(6):623-630
GM3-expressing cells adhere, spread and migrate on plastic plates coated with Gg3, LacCer and Gb4, but not with other glycosphingolipids (GSLs). Thus, cell adhesion, spreading and migration through GSL-GSL interaction occur in an analogous fashion to the interaction of cells with adhesive matrix proteins [AP, e.g. fibronectin (FN), laminin (LN)] through their integrin receptors. In this study, the adhesion of two GM3-expressing cell lines (B16 melanoma and HEL299 fibroblast) on plastic plates co-coated with GSL plus AP is compared with adhesion on plates coated with GSL (Gg3 or LacCer) alone, or coated with AP alone. Results show that: (i) cell adhesion on GSL-coated plates takes place earlier in the incubation period than that on AP-coated plates; (ii) cell adhesion, as well as spreading, was greatly enhanced (in terms of strength and rapidity) on plates co-coated with GSL plus AP; (iii) repulsion (negative adhesion) of cells was observed on plates co-coated with AP plus N-acetyl-GM3 (NAcGM3) and was presumably based on repulsive NAcGM3-NAcGM3 interaction; (iv) GM3-dependent cell adhesion on GSL-coated plates, as well as synergistic promotion of cell adhesion (based on the GSL-GSL and AP-integrin systems), was suppressed by incubation of cells with anti-GM3 monoclonal antibody DH2 or sialidase. Synergistic adhesion of cells on GSL/AP co-coated plates was less inhibited by incubation with peptide sequences RGDS or YIGSR than was adhesion on plates coated with AP alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Mechanical forces regulate lung maturation in the fetus by promoting type II epithelial differentiation. However, the cell surface receptors that transduce these mechanical cues into cellular responses remain largely unknown. When distal lung type II epithelial cells isolated from embryonic day 19 rat fetuses were cultured on flexible plates coated with laminin, fibronectin, vitronectin, collagen, or elastin and exposed to a level of mechanical strain (5%) similar to that observed in utero, transmembrane signaling responses were induced under all conditions, as measured by ERK activation. However, mechanical stress maximally increased expression of the type II cell differentiation marker surfactant protein C when cells were cultured on laminin substrates. Strain-induced alveolar epithelial differentiation was inhibited by interfering with cell binding to laminin using soluble laminin peptides (IKVIV or YIGSR) or blocking antibodies against integrin beta1, alpha3, or alpha6. Additional studies were carried out with substrates coated directly with different nonactivating anti-integrin antibodies. Blocking integrin beta1 and alpha6 binding sites inhibited both cell adhesion and differentiation, whereas inhibition of alpha3 prevented differentiation without altering cell attachment. These data demonstrate that various integrins contribute to mechanical control of type II lung epithelial cell differentiation on laminin substrates. However, they may act via distinct mechanisms, including some that are independent of their cell anchoring role.  相似文献   

16.
The relationship between the adhesion of five human colorectal carcinoma cell lines to extracellular matrix (ECM) proteins, namely type I collagen, type IV collagen, fibronectin, laminin and basement membrane extract (Matrigel), and the ability of these cells to express morphological differentiation when grown in a basement membrane extract (Matrigel) or on normal rat mesenchymal cells has been examined. Two cell lines, SW1222 and HRA-19, organised into glandular structures, with well-defined polarity when cultured on both substrata as well as in three-dimensional (3D) collagen gel culture as previously shown. The remaining three cell lines (SW620, SW480 and HT29) grew as loose aggregates or as they would normally grow on tissue culture plastic. Addition to the culture medium of a hexapeptide, containing the cell-matrix recognition sequence arginine-glycine-aspartic acid (RGD), inhibited attachment and glandular formation of SW1222 and HRA-19 when these cells were grown on living mesenchymal cells, but not in Matrigel. The morphological differentiation of HRA-19 cells in 3D-collagen was also inhibited by the same RGD-containing peptide, as previously shown for SW1222 cells. Attachment of the remaining three cell lines was inhibited on mesenchyme but not in Matrigel, further supporting the specificity of the peptide effect on epithelial-mesenchymal binding. In conclusion we have shown that colorectal tumour cells are able to bind ECM proteins and that the cellular binding is an essential step in the induction of the morphological differentiation seen on living mesenchymal cells, in basement membrane extracts and in type I collagen gel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Protein factors which regulate cell motility   总被引:11,自引:0,他引:11  
Summary Cell motility (i.e., movement) is an essential component of normal development, inflammation, tissue repair, angiogenesis, and tumor invasion. Various molecules can affect the motility and positioning of mammalian cells, including peptide growth factors, (e.g., EGF, PDGF, TGF-beta), substrate-adhesion molecules (e.g., fibronectin, laminin), cell adhesion molecules (CAMs), and metalloproteinases. Recent studies have demonstrated a group of motility-stimulating proteins which do not appear to fit into any of the above categories. Examples include: 1)scatter factor (SF), a mesenchymal cell-derived protein which causes contiguous sheets of epithelium to separate into individual cells and stimulates the migration of epithelial as well as vascular endothelial cells; 2)autocrine motility factor (AMF), a tumor cell-derived protein which stimulates migration of the producer cells; and 3)migration-stimulating factor (MSF), a protein produced by fetal and cancer patient fibroblasts which stimulates penetration of three-dimensional collagen gels by non-producing adult fibroblasts. SF, AMF, and MSF are soluble and heat labile proteins with Mr of 77, 55, and 70 kd by SDS-PAGE, respectively, and may be members of a new class of cell-specific regulators of motility. Their physiologic functions have not been established, but available data suggest that they may be involved in fetal development and/or tissue repair.  相似文献   

18.
应用牵张刺激培养细胞的模型,观察原原、纤维连接蛋白、层粘连素对牵张刺激心肌细胞肥大的影响,探讨细胞外间质-融洽纱受体在超负荷心肌肥大的跨膜信号传导机制中的作用。发现,胶原、纤维连接蛋白、层粘连素明显有助于培养心肌细胞的贴壁、伸展。牵张刺激后,胶原、纤维连接蛋白基质组心肌细胞的^3H-亮氨酸掺入率和心肌细胞表面积均显著大于对照组,而层粘连素组无显著变化;可溶性纤维连接蛋白、RGD肽均可显著抑制牵张刺  相似文献   

19.
应用牵张刺激培养细胞的模型 ,观察胶原、纤维连接蛋白、层粘连素对牵张刺激心肌细胞肥大的影响 ,探讨细胞外间质 -整合素受体在超负荷心肌肥大的跨膜信号传导机制中的作用。结果发现 ,胶原、纤维连接蛋白、层粘连素明显有助于培养心肌细胞的贴壁、伸展。牵张刺激后 ,胶原、纤维连接蛋白基质组心肌细胞的 3H -亮氨酸掺入率和心肌细胞表面积均显著大于对照组 ,而层粘连素组无显著变化 ;可溶性纤维连接蛋白、RGD肽均可显著抑制牵张刺激诱导的培养心肌细胞 (胶原为粘附基质 )的3H -亮氨酸掺入率升高和心肌细胞表面积增大 ,而层粘连素无明显作用。结果表明 ,特异的细胞外间质 -整合素在超负荷心肌肥大机制中发挥了跨膜信号传导作用。  相似文献   

20.
The ability of tendons to glide smoothly during muscle contraction is impaired after injury by fibrous adhesions that form between the damaged tendon surface and surrounding tissues. To understand how adhesions form we incubated excised tendons in fibrin gels (to mimic the homeostatic environment at the injury site) and assessed cell migration. We noticed cells exiting the tendon from only the cut ends. Furthermore, treatment of the tendon with trypsin resulted in cell extravagation from the shaft of the tendons. Electron microscopy and immunolocalisation studies showed that the tendons are covered by a novel cell layer in which a collagen type IV/laminin basement membrane (BM) overlies a keratinised epithelium. PCR and western blot analyses confirmed the expression of laminin β1 in surface cells, only. To evaluate the cell retentive properties of the BM in vivo we examined the tendons of the Col4a1(+/Svc) mouse that is heterozygous for a G-to-A transition in the Col4a1 gene that produces a G1064D substitution in the α1(IV) chain of collagen IV. The flexor tendons had a discontinuous BM, developed fibrous adhesions with overlying tissues, and were acellular at sites of adhesion formation. In further experiments, tenotomy of wild-type mice resulted in expression of laminin throughout the adhesion. In conclusion, we show the existence of a novel tendon BM-epithelium that is required to prevent adhesion formation. The Col4a1(+/Svc) mouse is an effective animal model for studying adhesion formation because of the presence of a structurally-defective collagen type IV-containing BM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号