共查询到20条相似文献,搜索用时 15 毫秒
1.
The infectivity of most animal rotaviruses is dependent on the interaction of the virus spike protein VP4 with a sialic acid (SA)-containing cell receptor, and the SA-binding domain of this protein has been mapped between amino acids 93 and 208 of its trypsin cleavage fragment VP8. To identify which residues in this region are essential for the SA-binding activity, we performed alanine mutagenesis of the rotavirus RRV VP8 expressed in bacteria as a fusion polypeptide with glutathione S-transferase. Tyrosines were primarily targeted since tyrosine has been involved in the interaction of other viral hemagglutinins with SA. Of the 15 substitutions carried out, 10 abolished the SA-dependent hemagglutination activity of the protein, as well as its ability to bind to glycophorin A in a solid-phase assay. However, only alanine substitutions for tyrosines 155 and 188 and for serine 190 did not affect the overall conformation of the protein, as judged by their interaction with a panel of conformationally sensitive neutralizing VP8 monoclonal antibodies (MAbs). These findings suggest that these three amino acids play an essential role in the SA-binding activity of the protein, presumably by interacting directly with the SA molecule. The predicted secondary structure of VP8 suggests that it is organized as 11 beta-strands separated by loops; in this model, Tyr-155 maps to loop 7 while Tyr-188 and Ser-190 map to loop 9. The close proximity of these two loops is also supported by previous results from competition experiments with neutralizing MAbs directed at RRV VP8. 相似文献
2.
Mapping the functional domain of the prion protein. 总被引:4,自引:0,他引:4
Taian Cui Maki Daniels Boon Seng Wong Ruliang Li Man-Sun Sy Judyth Sassoon David R Brown 《European journal of biochemistry》2003,270(16):3368-3376
Prion diseases such as Creutzfeldt-Jakob disease are possibly caused by the conversion of a normal cellular glycoprotein, the prion protein (PrPc) into an abnormal isoform (PrPSc). The process that causes this conversion is unknown, but to understand it requires a detailed insight into the normal activity of PrPc. It has become accepted from results of numerous studies that PrPc is a Cu-binding protein and that its normal function requires Cu. Further work has suggested that PrPc is an antioxidant with an activity like that of a superoxide dismutase. We have shown in this investigation that this activity is optimal for the whole protein and that deletion of parts of the protein reduce or abolish this activity. The protein therefore contains an active domain requiring certain regions such as the Cu-binding octameric repeat region and the hydrophobic core. These regions show high evolutionary conservation fitting with the idea that they are important to the active domain of the protein. 相似文献
3.
4.
Epitopes and hemagglutination binding domain on subgenus B:2 adenovirus fibers. 总被引:1,自引:2,他引:1
下载免费PDF全文

The adenovirus fiber serves as a ligand between the virus and the host cell receptor and manifests hemagglutination (HA) activity and antigenic domains. We have screened both the antigenic and immunogenic epitopes on the adenovirus fibers of subgenus B:2 by using recombinant fiber proteins (rfibers) expressed in Escherichia coli, synthesized peptides (P1 to P8), and the corresponding antisera. The results indicated that P4 (amino acids [aa] 201 to 220), P5 (aa 231 to 250), and P7 (aa 275 to 295) presented both antigenic and immunogenic epitopes in adenovirus type 11 prototype (Ad11p), Ad34a, and Ad11a fibers. P6 (aa 251 to 270) presented both epitopes in Ad11a fiber but only an antigenic epitope in other fibers. The C-terminal 20 amino acids of the fiber, corresponding to P8, manifested an epitope of low-level immunogenicity. P5, localized at the N-terminal aa 231 to 250, displayed an epitope that reacted with fibers of all the members of subgenus B analyzed. The rfibers of Ad11p and Ad34a displayed HA activity with monkey erythrocytes, though those of Ad11a did not. Mutagenesis of the rfibers revealed that neither the fragment replacements, 11p20211a, llp26011a,and 11a28011p, nor the Ad11p rfiber with the substitutions of Tyr-260-->H (Tyr260H)and Arg279Q displayed HA activity. The Ad11a fiber knob was sensitive to proteolytic digestion, whereas that of Ad11p was resistant. The results demonstrated that the decisive HA binding domain was presented at aa 260 to 280 and was conformation dependent. Nearby amino acids, aa 283 and 284, may also affect the HA function. 相似文献
5.
6.
Human hepatic lipase (HL) is known to bind to the cell surface of hepatocytes and the sinusoidal endothelium of the liver. In each case, it appears that the enzyme remains associated with the cell surface through an ionic interaction with heparan sulfate proteoglycans. However, it remains unclear as to which residues are responsible for this critical function of the enzyme. In the present study, we have used a systematic approach to map the heparin-binding regions of human HL by utilizing peptide arrays spanning the complete sequence of the mature protein. Following probing with biotin-heparin, six peptides spanning residues 301-320 and 465-476 were identified as regions binding to heparin. Probing of an additional array containing these six parent peptides and a comprehensive series of mutant peptides identified two putative HL heparin-binding domains. The first was composed of residues R310, K312, K314, and R315 at the distal N-terminal domain and the second was composed of residues R473, K474, and R476 at the C-terminal end of the protein. 相似文献
7.
Mapping the domain structure of human erythrocyte adducin 总被引:6,自引:0,他引:6
Adducin is a 200-kDa heterodimeric protein associated with the erythrocyte membrane skeleton which binds to Ca2+/calmodulin, promotes binding of spectrin to actin, and is a substrate for protein kinases C and A. Adducin polypeptides can be structurally and functionally divided into two distinct regions. The amino-terminal 39-kDa domain of each subunit is more basic and resistant to proteases than the C-terminal 60-64-kDa domain, which is very sensitive to proteolytic degradation. Two-dimensional peptide map analysis revealed that the 39-kDa protease-resistant domains represent a portion of adducin which is highly conserved between the alpha and beta subunits whereas the protease-sensitive regions are different in each subunit. Comparison of the structural and functional properties of purified 39-kDa domains with intact adducin showed that the 39-kDa domains were not phosphorylated by protein kinases C or A and did not bind to Ca2+/calmodulin or interact with spectrin and actin. This suggests that the protease-sensitive domains may perform the various functions of adducin since these activities were all lacking from the protease-resistant domains. It is also possible that the conserved and variable domains are both required for one or more activities of adducin or that the 39-kDa domains play a role in maintaining the oligomeric state of adducin necessary for interaction of the variable domains with spectrin-actin complexes. 相似文献
8.
The folding kinetics of a three-stranded antiparallel beta-sheet (WW domain) have been measured by temperature jump relaxation. Folding and activation free energies were determined as a function of temperature for both the wild-type and the mutant domain, W39F, which modifies the beta(2)-beta(3) hydrophobic interface. The folding rate decreases at higher temperatures as a result of the increase in the activation free energy for folding. Phi-Values were obtained for thermal perturbations allowing the primary features of the folding free energy surface to be determined. The results of this analysis indicate a significant shift from an early (Phi(T)=0. 4) to a late (Phi(T)=0.8) transition state with increasing temperature. The temperature-dependent Phi-value analysis of the wild-type WW domain and of its more stable W39F hydrophobic cluster mutant reveals little participation of residue 39 in the transition state at lower temperature. As the temperature is raised, hydrophobic interactions at the beta(2)-beta(3) interface gain importance in the transition state and the barrier height of the wild-type, which contains the larger tryptophan residue, increases more slowly than the barrier height of the mutant. 相似文献
9.
The activity of telomerase in cancer cells is tightly regulated by numerous proteins including DNA replication factors. However, it is unclear how replication proteins regulate telomerase action in higher eukaryotic cells. Previously we have demonstrated that the multifunctional DNA replication and repair protein flap endonuclease 1 (FEN1) is in complex with telomerase and may regulate telomerase activity in mammalian cells. In this study, we further analyzed the nature of this association. Our results show that FEN1 and telomerase association occurs throughout the S phase, with the maximum association in the mid S phase. We further mapped the physical domains in FEN1 required for this association and found that the C-terminus and the nuclease domain of FEN1 are involved in this interaction, whereas the PCNA binding ability of FEN1 is dispensable for the interaction. These results provide insights into the nature of possible protein–protein associations that telomerase participates in for maintaining functional telomeres. 相似文献
10.
11.
12.
The way in which actin and myosin II become localized to the contractile ring of dividing cells resulting in cleavage furrow formation and cytokinesis is unknown. While much is known about actin binding proteins and actin localization, little is known about myosin localization. A 53-kDa (53K) polypeptide present in the sea urchin egg binds to myosin II in a nucleotide-dependent manner and mediates its solubility in vitro [Yabkowitz, R., & Burgess, D.R. (1987) J. Cell Biol. 105, 927-936]. The binding site of 53K on the myosin molecule was examined in an effort to understand the mechanism of 53K-induced myosin solubility and its potential function in myosin regulation. Blot overlay and chemical cross-linking techniques utilizing myosin proteolytic fragments indicate that 53K binds to fragments proximal to the head-rod junction of myosin. Fragments distal to the head-rod junction do not bind 53K. In addition, the binding of 53K to myosin largely inhibits protease digestion that produces the head and rod fragments. The binding of 53K to the head-rod domain of myosin may be critical in regulation of myosin conformation, localization, assembly, and ATPase activity. 相似文献
13.
We analyzed the serological properties of two human wild-type cell culture-adapted rotaviruses (strains 308 and 46) and of 308 X 46 reassortants which were previously obtained and genetically characterized. Strain 308, exhibiting a so-called long RNA pattern, was found to belong to human rotavirus subgroup II, serotype 1, whereas strain 46, exhibiting a so-called short RNA pattern, represented subgroup I, serotype 2. Among the 308 X 46 reassortants we analyzed, two belonged to subgroup II, serotype 1, and exhibited short RNA patterns. This showed that the correlation observed between human subgroups I and II rotaviruses and the short and long electrophoretic patterns is not supported by any molecular basis (i.e., gene segment 10 or 11 was not involved in the subgroup specificity). 相似文献
14.
Mapping of the functional determinants of the integrin beta 1 cytoplasmic domain by site-directed mutagenesis. 总被引:15,自引:6,他引:15
We describe here the expression of deletion mutants of the cytoplasmic domain of the avian integrin beta 1 subunit. These mutants, which contain termination codons at positions 767, 776, 791, and 800, were transfected into mouse 3T3 cells to determine which sequences were essential for localization of integrins into focal contact sites. In all cases, high-level expression of the truncated avian integrins was obtained. Heterodimers were formed between the exogenous truncated avian beta 1 subunits and endogenous mouse alpha subunits, and these heterodimers were efficiently exported to the cell surface. The longest truncated beta 1 subunit tested, which is only four amino acids shorter than the wild type, does localize to focal contacts. In contrast, beta 1 subunits with moderately long truncations of the cytoplasmic domain failed to localize to focal contacts, including one which contains the consensus sequence for tyrosine phosphorylation. Surprisingly, a mutant subunit in which the bulk of the cytoplasmic domain was missing (but the segment nearest the membrane including the dibasic residues (RR) remained) did localize weakly to focal contacts. These results implicate the peptide segment nearest to the transmembrane region in focal contact localization. In addition, mutant subunits that included this segment together with a larger portion of the cytoplasmic domain did not localize as well as the shorter form, suggesting that these cytoplasmic domain segments are defective, presumably because of abnormal folding. 相似文献
15.
16.
The crystal structure of the F-actin binding domain 2 of severin, the gelsolin homologue from Dictyostelium discoideum, has been determined by multiple isomorphous replacement and refined to 1.75 A resolution. The structure reveals an alpha-helix-beta-sheet sandwich similar to the domains of gelsolin and villin, and contains two cation-binding sites, as observed in other domain 1 and domain 2 homologues. Comparison of the structures of several gelsolin family domains has identified residues that may mediate F-actin binding in gelsolin domain 2 homologues. To assess the involvement of these residues in F-actin binding, three mutants of human gelsolin domain 2 were assayed for F-actin binding activity and thermodynamic stability. Two of the mutants, RRV168AAA and RLK210AAA, demonstrated a lowered affinity for F-actin, indicating a role for those residues in filament binding. Using both structural and biochemical data, we have constructed a model of the gelsolin domain 1-domain 2-F-actin complex. This model highlights a number of interactions that may serve as positive and negative determinants of filament end- and side-binding. 相似文献
17.
T J Baranski G Koelsch J A Hartsuck S Kornfeld 《The Journal of biological chemistry》1991,266(34):23365-23372
Lysosomal enzymes contain a common protein determinant that is recognized by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the initial enzyme in the biosynthesis of mannose-6-P residues. Previously, we generated a lysosomal enzyme recognition domain by substituting two regions (lysine 203 and amino acids 265-292) of the lysosomal hydrolase cathepsin D into a related secretory protein glycopepsinogen. When expressed in Xenopus oocytes, the oligosaccharides of the chimeric protein were efficiently phosphorylated (Baranski, T. J., Faust, P. L., and Kornfeld, S. (1990) Cell 63, 281-291). In the current study, incremental substitutions of cathepsin D residues into glycopepsinogen and alanine-scanning mutagenesis were utilized to define the recognition domain more precisely. A computer-generated model of the cathepsin D/pepsinogen chimeric molecule served as a guide for mutagenesis and for the interpretation of results. These studies indicate that the recognition domain is a surface patch that contains multiple interacting sites. There is a strict positional requirement for the lysine residue at position 203. 相似文献
18.
Considerable structural similarities are present in a region of approximately 270 amino acids in most known cyclic nucleotide phosphodiesterase (PDE) sequences, opening the possibility that this region encodes the catalytic domain of the enzyme. To test this hypothesis, the structure of a high affinity cAMP PDE (cAMP-PDE) was analyzed by deletion mutations and site-directed mutagenesis. A ratPDE3 cDNA was mutated using a strategy based on fragment amplification by polymerase chain reaction. The effect of the introduced mutations was determined by expressing wild type and mutated proteins in prokaryotic and eukaryotic cells. The level of expression of the PDE protein was monitored by immunoblot analysis using two specific cAMP-PDE polyclonal antibodies and by measuring the PDE activity. After removal of a 99-amino acid region at the carboxyl terminus flanking the conserved domain, the protein retains its catalytic activity even though its Km and velocity were changed. Internal deletions at the amino terminus of this PDE showed that the enzyme activity was increased when a 97-amino acid fragment (from Tyr49 to Lys145) was removed. Further deletions within the amino terminus produced inactive proteins. Within the domain that appears essential for catalysis, 1 threonine and 2 serine residues are conserved in all PDEs. Substitutions of the invariant threonine (Thr349) present in the most conserved region with alanine, proline, or serine yielded proteins of the correct size and a level of expression comparable to the wild type PDE. However, in both expression systems used, proteins were completely devoid of the ability to hydrolyze cyclic nucleotides, except when the threonine was substituted with a serine. Conversely, mutations of 2 other conserved serine residues (Ser305 and Ser398) present in the catalytic domain either had no effect or produced changes only in Km and Vmax, but did not abolish catalytic activity. In addition, 2 histidine residues (His278 and His311) present in proximity to Thr349 appeared to be essential for the structure of the catalytic domain, since any substitution performed in these residues yielded an inactive enzyme. Mutations of a serine residue (Ser295) in the region homologous to the cAMP binding site of the regulatory subunit of the cAMP-dependent protein kinase demonstrated that this region does not have the same function in the two proteins. These data provide direct evidence that a 37-kDa domain, which in part corresponds to the region of conservation in all PDEs, contains the catalytic domain, and that threonine and histidine residues are probably involved in catalysis and/or are essential for the conformation of an active enzyme. 相似文献
19.
Mapping the DNA binding domain of the Zap1 zinc-responsive transcriptional activator 总被引:6,自引:0,他引:6
Bird A Evans-Galea MV Blankman E Zhao H Luo H Winge DR Eide DJ 《The Journal of biological chemistry》2000,275(21):16160-16166
20.
Romijn RA Westein E Bouma B Schiphorst ME Sixma JJ Lenting PJ Huizinga EG 《The Journal of biological chemistry》2003,278(17):15035-15039
The multimeric glycoprotein von Willebrand factor (VWF) mediates platelet adhesion to collagen at sites of vascular damage. The binding site for collagen types I and III is located in the VWF-A3 domain. Recently, we showed that His(1023), located near the edge between the "front" and "bottom" faces of A3, is critical for collagen binding (Romijn, R. A., Bouma, B., Wuyster, W., Gros, P., Kroon, J., Sixma, J. J., and Huizinga, E. G. (2001) J. Biol. Chem. 276, 9985-9991). To map the binding site in detail, we introduced 22 point mutations in the front and bottom faces of A3. The mutants were expressed as multimeric VWF, and binding to collagen type III was evaluated in a solid-state binding assay and by surface plasmon resonance. Mutation of residues Asp(979), Ser(1020), and His(1023) nearly abolished collagen binding, whereas mutation of residues Ile(975), Thr(977), Val(997), and Glu(1001) reduced binding affinity about 10-fold. Together, these residues define a flat and rather hydrophobic collagen-binding site located at the front face of the A3 domain. The collagen-binding site of VWF-A3 is distinctly different from that of the homologous integrin alpha(2) I domain, which has a hydrophilic binding site located at the top face of the domain. Based on the surface characteristics of the collagen-binding site of A3, we propose that it interacts with collagen sequences containing positively charged and hydrophobic residues. Docking of a collagen triple helix on the binding site suggests a range of possible engagements and predicts that at most eight consecutive residues in a collagen triple helix interact with A3. 相似文献