首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Questions are raised as to the validity of arguments that crossover positions have been demonstrated to be normally established only during pachytene (after synapsis is maximal). An alternative and testable hypothesis is that crossover commitment can occur at events of synaptic initiation.-Measurements are presented of extents of pachytene synapsis and failure in and around a region of maize chromosome heterozygous for a short paracentric inversion, and these are compared to conjectured expectations from observations of crossover frequencies within the inversion. Various hypotheses consistent with the results are considered. It is pointed out that the hypothesis that increases in crossover frequency in the synapsed region of the inversion are compensatory to crossover inhibitions elsewhere requires complex assumptions: that the adjustment must take place among, not within cells and that the enhancement is preferentially expressed within the inversion instead of elsewhere in the genome. The hypothesis that the fixing and squashing procedure forces apart non-crossover regions previously synapsed but lacking a crossover also requires complex assumptions. The simplest hypothesis proposes that crossover commitment may determine synaptic expression. A role of the synaptonemal complex in the establishment of crossover sites is questioned or minimized.-Evidence is also presented with respect to conceivable function of the telomere in synaptic initiation. Restrictions on such a function, if it exists, seem to be required to account for the observations.  相似文献   

2.
Because fresh initiations of synapsis must occur for homologous synapsis of internal heterozygously inverted chromosome segments, attention has been directed at homologous synapsis and crossing over in overlapping paracentric inversions in the long arm of chromosome 1 of maize. In an earlier study with a relatively short inversion (where double crossovers within the inversion were rare), a recombination nodule (RN) was generally found at pachytene in reverse paired (homologously synapsed) inverted regions. Crossover frequency within the inversion, which could be independently estimated from analysis of bridge and fragment frequency at anaphase I and II, closely corresponded to crossover frequency estimated from observed RN frequency in pachytene inversion loops. These findings were consistent with the interpretation that establishment of homologous synapsis in this case is generally coupled to crossing over. This coupling suggests that there is very early commitment to the form of resolution of recombination intermediates that results in reciprocal recombination events instead of conversion only or other noncrossover events. This study examines another, larger paracentric inversion in the long arm of chromosome 1 that completely overlaps the first inversion. It is sufficiently longer than the first inversion that double crossover events are found within it with substantial frequency and interference considerations are feasible. This study confers additional insight into the interrelationships of synapsis and crossing over and the probable sequence in which the various involved processes usually occur. It raises the strong possibility that crossovers can be initiated during the alignment phase that precedes synapsis.  相似文献   

3.
M. P. Maguire  R. W. Riess 《Genetics》1994,137(1):281-288
Frequency of homologous synapsis at pachytene for a relatively short heterozygous inversion was compared to the frequency of crossover occurrence within the inversion and to the frequency of the presence of a recombination nodule within the homologously synapsed inverted region. Crossover frequencies were estimated from bridge-fragment frequencies at anaphase I and anaphase II. Recombination nodules (RNs) were observed in electron micrographs. Results show very similar frequencies of homologous synapsis and the occurrence of reciprocal recombination within the inverted region, consistent with the interpretation that establishment of homologous synapsis in this case is related to at least commitment to the form of resolution of crossover intermediates which gives rise to reciprocal recombination, not conversion only, events. An RN was generally found at pachytene in homologously synapsed inverted regions.  相似文献   

4.
The pairing behavior of the sex chromosomes in male and female individuals representing seven species of Peromyscus was analyzed by electron microscopy of silver-stained zygotene and pachytene configurations. Six species possess submetacentric or metacentric X chromosomes with heterochromatic short arms. Sex-chromosome pairing in these species is initiated during early pachynema at an interstitial position on the X and Y axes. Homologous synapsis then progresses in a unidirectional fashion towards the telomeres of the X short arm and the corresponding arm of the heterochromatic Y chromosome. The distinctive pattern of synaptic initiation allowed a late-synapsing bivalent in fetal oocytes to be tentatively identified as that of the X chromosomes. In contrast to the other species, Peromyscus megalops possesses an acrocentric X chromosome and a very small Y chromosome. Sex-chromosome pairing in this species is initiated at the proximal telomeric region during late zygonema, and then proceeds interstitially towards the distal end of the Y chromosome. These observations suggest that the presence of X short-arm heterochromatin and corresponding Y heterochromatin interferes with late-zygotene alignment of the pairing initiation sites, thereby delaying XY synaptic initiation until early pachynema. The pairing initiation sites are conserved in the vicinity of the X and Y centromeres in Peromyscus, and consequently the addition of heterochromatin during sex-chromosome evolution essentially displaces these sites to an interstitial position.  相似文献   

5.
We investigated the behaviour of centromeres and distal telomeres during the initial phases of female meiosis in mice. In particular, we wished to determine whether clustering of centromeres and telomeres (bouquet formation) played the same crucial role in homologous chromosome pairing in female meiosis as it does in the male. We found that synapsis (intimate homologous chromosome pairing) is most frequently initiated in the interstitial regions of homologous chromosomes, apparently ahead of the distal regions. The proximal ends of the chromosomes appear to be disfavoured for synaptic initiation. Moreover, initiation of synapsis occurred in oocytes that showed little or no evidence of bouquet formation. A bouquet was present in a substantial proportion of cells at mid to late zygotene, and was still present in some pachytene oocytes. This pattern of bouquet formation and pairing initiation is in stark contrast to that previously described in the male mouse. We propose that although dynamic movements of centromeres and telomeres to form clusters may facilitate alignment of homologues or homologous chromosome segments during zygotene, in the female mouse positional control of synaptic initiation is dependent on some other mechanism.  相似文献   

6.
R Chatterjee  G Jenkins 《Génome》1993,36(1):131-138
Electron microscopy of whole-mount surface-spread synaptonemal complex complements and conventional light microscopy of chromosomes at first metaphase of meiosis were used to compare the relative frequencies of pairing configurations at the two stages in inbred autotetraploid rye (Secale cereale L.). Statistical tests showed significantly fewer multivalents at first metaphase than expectations based on random initiation of synapsis at each telomeric site within each group of four homologues. Direct observations of synaptic behaviour of chromosomes showed that this deviation is due primarily to a preponderance of bivalents during zygotene and pachytene. It is also the result of a significant drop in multivalent frequency from meiotic prophase to metaphase I, which is attributable both to a lack of chiasmata with which to consolidate multivalents and inhibition of chiasma formation in synaptonemal complex segments of multivalents that are nonhomologous.  相似文献   

7.
Different wild allopolyploid species of Triticeae show extensive bivalent formation at zygotene while a considerable number of multivalents is present in cultivated polyploid wheats. To study the chromosome behaviour at early meiotic stages in wild forms of tetraploid wheats Triticum turgidum and T timopheevii (2n = 4x = 28) we have analysed the synaptic pattern in fully traced spread nuclei at mid- and late zygotene and at pachytene of wild accessions of these species. The mean number of synaptonemal complex (SC) bivalents at mid-zygotene ranged from 12.22 to 13.14 among the accessions studied indicating a strong restriction of synapsis initiation to homologous chromosomes. The mean of bivalents increased at pachytene because of the transformation of multivalents into bivalents. Ring bivalents observed at metaphase I support that SC bivalents were formed by homologous chromosomes. The average values of SC bivalents at mid-zygotene in the wild forms are much higher than the average values observed in the cultivated tetraploid wheats but similar to that of a mutant line of T turgidum with a duplication that includes Ph1, the major homoeologous pairing suppressor locus. These results suggest that the efficiency of the mechanism operating in the homologous recognition for synapsis is higher in wild wheat populations than in cultivated varieties. Apparently, a relatively detrimental modification of the pairing regulating genetic system accompanied the domestication of the wild wheat forms.  相似文献   

8.
Two paracentric inversions in the mouse, In(1)1 Rk and In(2)5 Rk, have been studied in surface microspreads of spermatocytes from heterozygotes. At zytogene, synaptic initiation occurs independently in three regions: within the inversion, and without, on either side. Synaptonemal complex (SC) formation is restricted to homologous regions, resulting in inversion loops in all early pachytene spermatocytes. An adjusting phase then occurs during pachytene in which the inversion loop is reduced by desynapsis of homologously synapsed SC, followed immediately by non-homologous synapsis with the alternate pairing partner, progressing from the ends toward the middle. Adjustment occurs during the first half of pachytene, but is not closely synchronized with sub-stage. It is complete by late pachytene, the loop having been eliminated in all cases and replaced by straight SCs in which the inverted region is heterosynapsed. Synapsis in the adjustment phase is evidently permitted only after the homosynaptic phase, and is indifferent to homology. It may lead to heterosynapsis, as in the inversion region, or to synapsis of homologous regions not synapsed at zytogene. The anaphase bridge frequency, a measure of crossing over within the inversion, is about 34% for both inversions studied, indicating that such crossovers do not block adjustment, that crossing over probably occurs before or during the adjustment period, and that there is some crossover suppression. The last could be the consequence of blocking by desynapsis/heterosynapsis. Synaptic adjustment appears to be a general phenomenon that occurs to varying extents in different forms. A hypothetical scheme for two phases of synapsis is proposed: at zytogene, a basic propensity for indifferent SC formation is limited by a restricting condition to synapsis between homologous regions. Subsequently, the restriction is lifted, whereupon synaptic instability is resolved by desynapsis, followed by resynapsis that is indifferent to homology, but that results in a topologically more stable structure.  相似文献   

9.
Formation of the synaptonemal complex (SC), or synapsis, between homologs in meiosis is essential for crossing over and chromosome segregation [1-4]. How SC assembly initiates is poorly understood but may have a critical role in ensuring synapsis between homologs and regulating double-strand break (DSB) and crossover formation. We investigated the genetic requirements for synapsis in Drosophila and found that there are three temporally and genetically distinct stages of synapsis initiation. In "early zygotene" oocytes, synapsis is only observed at the centromeres. We also found that nonhomologous centromeres are clustered during this process. In "mid-zygotene" oocytes, SC initiates at several euchromatic sites. The centromeric and first euchromatic SC initiation sites depend on the cohesion protein ORD. In "late zygotene" oocytes, SC initiates at many more sites that depend on the Kleisin-like protein C(2)M. Surprisingly, late zygotene synapsis initiation events are independent of the earlier mid-zygotene events, whereas both mid and late synapsis initiation events depend on the cohesin subunits SMC1 and SMC3. We propose that the enrichment of cohesion proteins at specific sites promotes homolog interactions and the initiation of euchromatic SC assembly independent of DSBs. Furthermore, the early euchromatic SC initiation events at mid-zygotene may be required for DSBs to be repaired as crossovers.  相似文献   

10.
The process of homolog pairing is well characterised in meiosis of male mammals, but much less information is available from female meiosis. We have therefore studied telomere dynamics by FISH and synapsis formation by immunostaining of synaptonemal complex proteins (SCP3, SCP1) on ovarian sections from 15 bovine fetuses, which covered the entire female prophase I. Telomeres displayed a dispersed intranuclear distribution in oogonia and relocated to the nuclear periphery during the preleptotene stage. Tight telomere clustering (bouquet formation) coincided with synapsis initiation at the leptotene/zygotene transition. Clustering of telomeres persisted during zygotene and even into the pachytene stage in a subset of nuclei, while it was absent in diplotene/dictyotene stage nuclei. Thus, the bouquet stage in the bovine female lasts significantly longer than in the male. Further, we observed that synapsis in the female initiated both terminally and interstitially in earliest zygotene stage oocytes, which contrasts with the predominantly terminal synapsis initiation in early zygotene spermatocytes of the bovine male. Altogether, our data disclose a sex-specific difference in telomere dynamics and synapsis initiation patterns in male and female bovine germ cells that may be related to the sex-specific differences in recombination rates observed in this and other mammalian species.  相似文献   

11.
The meiotic behavior of heterozygotes from three different maize pericentric inversion stocks was quantitatively observed at a variety of stages throughout meiosis I and II. With heterozygosity for either of two of these inversions, the usual mode of pairing observed at pachytene involved synapsis of the centromere containing inverted region, and synaptic failure of the centromere region was rarely found. Abnormal chromosome behavior at subsequent meiotic stages was rare in these cases. With heterozygosity for the third inversion, however, homologous synapsis was generally found in the distal regions of the chromosome involved, the inverted region was often non-homologously synapsed, and a substantial frequency of cells apparently showed synaptic failure in the centromere containing inverted region. A substantial frequency of cells at anaphase II in this case contained two lagging monads in the plate region of the spindle. Where cells could be identified as sisters, sister cells showed identical behavior at anaphase II. Findings seem to be most simply explained by the supposition that pachytene synapsis of the centromere region is important to provision for sister centromere association until anaphase II.  相似文献   

12.
C. B. Gillies 《Chromosoma》1985,92(3):165-175
A spreading technique was used to allow ultrastructural analysis of seventeen zygotene nuclei of rye (Secale cereale). Twenty pachytene nuclei were also examined. Lateral element lengths of the haploid complements decreased from 742 m at the beginning of zygotene to 451 m at the end of zygotene. Variation in pachytene synaptonemal complex lengths was also noted. Zygotene synaptonemal complex formation in rye is characterised by: (1) existence of a bouquet, with telomeric pairing initiation earliest; (2) multiple sites of initiation in each bivalent (maximum of 76 synaptonemal complex segments seen in one nucleus); (3) the potential number of pairing initiation sites may be higher (the average spacing of 4.42 m would allow approximately 160 sites per nucleus); (4) new pairing initiations occur almost until the end of zygotene; (5) initiation of new synaptonemal complexes and extension of existing synaptonemal complexes occur simultaneously. A simple zipping up of a few initiation sites is not the case in rye. Pairing in different bivalents of a nucleus is not completely synchronised, and the NOR in particular is often late to pair. Interlocking of lateral elements and synaptonemal complexes may lead to delayed completion of pairing in portions of bivalents, but interlocks are ultimately resolved. This resolution may involve breakage and rejoining of lateral elements.  相似文献   

13.
In the tetraploid somatic hybrid between the diploid Lycopersicon species L. esculentum (tomato) and L. peruvianum, synaptonemal complexes formed quadrivalents in 73 of the 120 sets of four chromosomes (60.8%) in 10 cells studied in detail at pachytene. Of these, 43 had one pairing partner exchange, 22 had two, and 8 had three, very close to a Poisson distribution. The points of pairing partner exchange were concentrated at the middle of the two arms. The frequency per arm corresponded with physical arm length. There was a sharp drop around the centromere, and pericentric heterochromatin had a slightly lower probability of being involved in pairing partner exchange than euchromatin. The chromosomes align before pairing and there are several points of pairing initiation, with concentrations at or near the ends and the centromere. From zygotene to late pachytene the quadrivalent frequency decreased considerably. At late pachytene it was lower than expected with the observed high frequency of pairing partner exchange. Pairing affinity between species was only slightly lower than affinity within species, in spite of considerable genetic differentiation. The frequency of recombination nodules increased from early to late zygotene and then decreased strongly to full pachytene. There is a highly significant negative correlation between percent pairing and SC length. At metaphase I the frequency of quadrivalents was 0.444, and branched quadrivalents were rare, probably caused by interference and restriction of chiasma formation to distal euchromatin. Metaphase I quadrivalent frequency is a relatively good indication of pairing affinity in this material.  相似文献   

14.
Interference of colchicine with meiotic chromosome pairing in the wild garlic, Allium ursinum, was studied using a whole-mount spreading technique for synaptonemal complexes. Colchicine was found to cause (i) pairing suppression (arrest of leptotene) and (ii) deficient pairing initiation at zygotene in connection with morphologically anomalous, malfunctioning pairing initiation sites. Both of these phenomena could be responsible for the reduction of chiasma frequency by colchicine previously reported in the literature.  相似文献   

15.
16.
Martí DA  Bidau CJ 《Hereditas》2001,134(3):245-254
Dichroplus pratensis has a complex system of Robertsonian rearrangements with central-marginal distribution; marginal populations are standard telocentric. Standard bivalents show a proximal-distal chiasma pattern in both sexes. In Robertsonian individuals a redistribution of chiasmata occurs: proximal chiasmata are suppressed in fusion trivalents and bivalents which usually display a single distal chiasma per chromosome arm. In this paper we studied the synaptic patterns of homologous chromosomes at prophase I of different Robertsonian status in order to find a mechanistic explanation for the observed phenomenon of redistribution of chiasmata. Synaptonemal complexes of males with different karyotypes were analysed by transmission electron microscopy in surface-spread preparations. The study of zygotene and early pachytene nuclei revealed that in the former, pericentromeric regions are the last to synapse in Robertsonian trivalents and bivalents and normally remain asynaptic at pachytene in the case of trivalents, but complete pairing in bivalents. Telocentric (standard) bivalents usually show complete synapsis at pachytene, but different degrees of interstitial asynapsis during zygotene, suggesting that synapsis starts in opposite (centromeric and distal) ends. The sequential nature of synapsis in the three types of configuration is directly related to their patterns of chiasma localisation at diplotene-metaphase I, and strongly supports our previous idea that Rb fusions instantly produce a redistribution of chiasmata towards chromosome ends by reducing the early pairing regions (which pair first, remain paired longer and thus would have a higher probability of forming chiasmata) from four to two (independently of the heterozygous or homozygous status of the fusion). Pericentromeric regions would pair the last, thus chiasma formation is strongly reduced in these areas contrary to what occurs in telocentric bivalents.  相似文献   

17.
J. Loidl  G. H. Jones 《Chromosoma》1986,93(5):420-428
A surface-spreading technique for synaptonemal complexes was applied to triploid Allium sphaerocephalon L. (Liliaceae). In early pachytene two of the three axial elements of each set of three homologues are synapsed, the third is intimately aligned with and accompanies them throughout their whole length. The unsynapsed axis is attached to the synaptonemal complex of the other 2 at up to 50 association sites per trivalent. The distribution of these sites within the trivalents is not even; they are under-represented in the proximal regions. From nought to eight switches (pairing partner exchanges), where the accompanying axis joins in synapsis in exchange for one of the two other strands, occur per trivalent. Very often the telomeres of the aligned axes are attached to their synapsed counterparts by dense spherules, which makes this type of association different from the interstitial ones. Frequently the unsynapsed axes show a double structure along short distances. In late pachytene the intercalary associations are abolished, allowing the unsynapsed axes to engage in various types of non-homologous pairing. Since the association sites involve homologous chromosomes and are less abundant in the pericentric regions (which are usually the last to synapse), it is conceivable that similar structures are responsible for the pre-synaptic alignment of homologues and provide the initiation sites for synaptonemal complex formation in diploids.  相似文献   

18.
The temporal and functional relationships between DNA events of meiotic recombination and synaptonemal complex formation are a matter of discussion within the meiotic field. To analyse this subject in grasshoppers, organisms that have been considered as models for meiotic studies for many years, we have studied the localization of phosphorylated histone H2AX (gamma-H2AX), which marks the sites of double-strand breaks (DSBs), in combination with localization of cohesin SMC3 and recombinase Rad51. We show that the loss of gamma-H2AX staining is spatially and temporally linked to synapsis, and that in grasshoppers the initiation of recombination, produced as a consequence of DSB formation, precedes synapsis. This result supports the idea that grasshoppers display a pairing pathway that is not present in other insects such as Drosophila melanogaster, but is similar to those reported in yeast, mouse and Arabidopsis. In addition, we have observed the presence of gamma-H2AX in the X chromosome from zygotene to late pachytene, indicating that the function of H2AX phosphorylation during grasshopper spermatogenesis is not restricted to the formation of gamma-H2AX foci at DNA DSBs.  相似文献   

19.
In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RL(inv)) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RL(inv) during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis.  相似文献   

20.
Chromosome pairing behaviour of the natural allotetraploid Aegilops biuncialis (genome UUMM) and a triploid hybrid Ae. biuncialis x Secale cereale (genome UMR) was analyzed by electron microscopy in surface-spread prophase I nuclei. Synaptonemal-complex analysis at zygotene and pachytene revealed that synapsis in the allotetraploid was mostly between homologous chromosomes, although a few quadrivalents were also formed. Only homologous bivalents were observed at metaphase I. In contrast, homoeologous and heterologous chromosome associations were common at prophase I and metaphase I of the triploid hybrid. It is concluded that the mechanism controlling bivalent formation in Ae. biuncialis acts mainly at zygotene by restricting pairing to homologous chromosomes, but also acts at pachytene by preventing chiasma formation in the homoeologous associations. In the hybrid the mechanism fails at both stages. Key words : Aegilops biuncialis, allotetraploid, intergeneric hybrid, pairing control, synaptonemal complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号