首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The M27 and H59 variants of Lewis lung carcinoma differ in their responsiveness to the chemotactic elastin peptide Val-Gly-Val-Ala-Pro-Gly (VGVAPG). M27 cells, selected for metastasis to lung, are highly responsive to a positive gradient of VGVAPG. H59 cells, selected for metastasis to liver, do not migrate in response to VGVAPG. Although both cell types bind radiolabeled VGVAPG, Scatchard analysis of 125I-Tyr-VGVAPG binding reveals that M27 cells bind the chemoattractant with a Kd of 2.7 nM, whereas nonresponsive H59 cells bind the peptide with a Kd of 67 nM. These findings indicate that the failure of H59 cells to migrate in response to VGVAPG may be due to the reduced affinity of their VGVAPG receptors. Both receptor affinity and chemotactic responsiveness to VGVAPG can be modulated in each of these two tumor cell lines by the levels of active membrane-associated protein kinase C. Treatment of nonresponsive H59 cells with 12-O-tetradecanoylphorbol 13-acetate increases the level of membrane-bound protein kinase C activity with a concomitant increase in VGVAPG binding affinity and induction of chemotactic responsiveness to VGVAPG. Treatment of M27 cells with the protein kinase C inhibitor, staurosporine, reduces VGVAPG binding affinity and abrogates the chemotactic response. We conclude that chemotactic responsiveness of M27 and H59 tumor cells is dependent upon high VGVAPG receptor affinity, which is strongly correlated to high levels of membrane-bound protein kinase C activity.  相似文献   

2.
Recent studies have demonstrated that tropoelastin and elastin-derived peptides are chemotactic for fibroblasts and monocytes. To identify the chemotactic sites on elastin, we examined the chemotactic activity of Val-Gly-Val-Ala-Pro-Gly (VGVAPG), a repeating peptide in tropoelastin. We observed that VGVAPG was chemotactic for fibroblasts and monocytes, with optimal activity at approximately 10(-8) M, and that the chemotactic activity of VGVAPG was substantial (half or greater) relative to the maximum responses to other chemotactic factors such as platelet-derived growth factor for fibroblasts and formyl-methionyl-leucyl-phenylalanine for monocytes. The possibility that at least part of the chemotactic activity in tropoelastin and elastin peptides is contained in VGVAPG sequences was supported by the following: (a) polyclonal antibody to bovine elastin selectively blocked the fibroblast and monocyte chemotactic activity of both elastin-derived peptides and VGVAPG; (b) monocyte chemotaxis to VGVAPG was selectively blocked by preexposing the cells to elastin peptides; and (c) undifferentiated (nonelastin producing) bovine ligament fibroblasts, capable of chemotaxis to platelet-derived growth factor, did not show chemotactic responsiveness to either VGVAPG or elastin peptides until after matrix-induced differentiation and the onset of elastin synthesis. These studies suggest that small synthetic peptides may be able to reproduce the chemotactic activity associated with elastin-derived peptides and tropoelastin.  相似文献   

3.
Basophils circulate in the blood and are able to migrate into tissues at sites of inflammation. Urokinase plasminogen activator (uPA) binds a specific high affinity surface receptor (uPAR). The uPA-uPAR system is crucial for cell adhesion and migration, and tissue repair. We have investigated the presence and function of the uPA-uPAR system in human basophils. The expression of uPAR was found at both mRNA and protein levels. The receptor was expressed on the cell surface of basophils, in the intact and cleaved forms. Basophils did not express uPA at either the protein or mRNA level. uPA (10(-12)-10(-9) M) and its uPAR-binding N-terminal fragment (ATF) were potent chemoattractants for basophils, but did not induce histamine or cytokine release. Inactivation of uPA enzymatic activity by di-isopropyl fluorophosphate did not affect its chemotactic activity. A polyclonal Ab against uPAR inhibited uPA-dependent basophil chemotaxis. The uPAR-derived peptide 84-95 (uPAR84-95) induced basophil chemotaxis. Basophils expressed mRNA for the formyl peptide receptors formyl peptide receptor (FPR), FPR-like 1 (FPRL1), and FPRL2. The FPR antagonist cyclosporin H prevented chemotaxis induced by FMLP, but not that induced by uPA and uPAR84-95. Incubation of basophils with low and high concentrations of FMLP, which desensitize FPR and FPRL1, respectively, but not FPRL2, slightly reduced the chemotactic response to uPA and uPAR84-95. In contrast, desensitization with WKYMVm, which also binds FPRL2, markedly inhibited the response to both molecules. Thus, uPA is a potent chemoattractant for basophils that seems to act through exposure of the chemotactic uPAR epitope uPAR84-95, which is an endogenous ligand for FPRL2 and FPRL1.  相似文献   

4.
Fibronectin (FN) is a multidomain extracellular matrix protein that induces attachment and chemotactic migration of fibroblastic cells. In this study we analyzed the molecular determinants involved in the FN-induced chemotactic migration of normal and SV40-transformed 3T3 cells. Two different monoclonal antibodies to the cell-binding site of FN blocked chemotaxis to a 140-kD FN fragment (Ca 140) containing the cell-binding domain. A monoclonal antibody to a determinant distant from the cell-binding site did not affect chemotaxis. A synthetic tetrapeptide, RGDS, which represents the major cell-attachment sequence, was able to compete with FN and the Ca 140 fragment in chemotaxis assays, but this peptide itself had no significant chemotactic activity. A larger peptide encompassing this sequence, GRGDSP, was chemotactic, while the peptide GRGESP, where a glutamic acid residue was substituted for aspartic acid, was inactive. Chemotactic migration could be prevented in a dose-dependent manner by a rabbit polyclonal antiserum to a 140-kD cell surface FN receptor. This antibody was more effective on normal than on transformed 3T3 cells. Neither the anti-FN receptor antiserum nor a monoclonal antibody to the cell-binding site of FN blocked migration induced by another potent chemoattractant, platelet-derived growth factor. These data indicate that FN-induced chemotaxis of 3T3 and SV3T3 cells is mediated via the RGDS cell-attachment site of FN and the 140-kD cell surface FN receptor. The interaction is specific and can be altered by transformation.  相似文献   

5.
Differential roles of the NPXXY motif in formyl peptide receptor signaling   总被引:1,自引:0,他引:1  
The NPXXY motif (X represents any amino acid) in the seventh transmembrane domain of the chemotactic formyl peptide receptor (FPR) is highly conserved among G protein-coupled receptors. Recent work suggested that this motif contributes to G protein-coupled receptor internalization and signal transduction; however, its role in FPR signaling remains unclear. In this study we replaced Asn(297) and Tyr(301) in the NPXXY motif of the human FPR with Ala (N297A) and Ala/Phe (Y301A/Y301F), respectively, and determined the effects of the substitutions on FPR functions in transfected rat basophilic leukemia cells. Whereas all the mutant receptors were expressed on the cell surface, the N297A receptor exhibited reduced binding affinity and was unable to mediate activation of phospholipase C-beta and the p42/44 mitogen-activated protein kinase (MAP kinase). The Y301F receptor displayed significantly decreased ligand-stimulated internalization and MAP kinase activation, suggesting that the hydrogen bonding at Tyr(301) is critical for these functions. The Y301F receptor showed a chemotactic response similar to that of wild-type FPR, indicating that cell chemotaxis does not require receptor internalization and hydrogen bonding at the Tyr(301) position. In contrast, the Y301A receptor displayed a left-shifted, but overall reduced, chemotaxis response that peaked at 0.1-1 nM. Finally, using a specific MAP kinase kinase inhibitor, we found that activation of MAP kinase is required for efficient FPR internalization, but is not essential for chemotaxis. These findings demonstrate that residues within the NPXXY motif differentially regulate the functions of FPR.  相似文献   

6.
A nonagglutinating derivative of wheat germ agglutinin (WGA), prepared by treating the native lectin with cyanogen bromide and formic acid and purified by affinity chromatography on an N-acetyl-D-glucosamine column, inhibited human polymorphonuclear leukocyte (PMN) chemotaxis to the synthetic chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP). The WGA derivative (WGA-D) did not influence either the ability of PMN to migrate randomly or their chemotactic response to the complement-derived peptide C5a. Similarly, WGA-D had no effect on either FMLP-induced PMN polarization or other FMLP-induced PMN functions (i.e., selective discharge of lysosomal enzymes from cytochalasin B-treated cells, generation of superoxide anion). The inhibition of FMLP-induced PMN chemotaxis by WGA-D could not be reversed by washing the cells, or by incubating lectin-treated PMN at 37 degrees C for 20 min. The inhibitory effect of WGA-D was mediated by its specific binding to N-acetyl-D-glucosamine residues on the cell surface. WGA-D did not alter the specific binding of [3H]-FMLP to its receptor(s) on the PMN membrane. The data presented here suggest that WGA-D inhibits FMLP-induced PMN chemotaxis at a step distal to stimulus recognition.  相似文献   

7.
The formyl peptide receptor (FPR) and the glycosyl-phosphatidylinositol-linked type III receptor for the Fc portion of IgG (Fc gamma RIIIB; CD16) play important roles in various inflammatory responses in human neutrophils. The mechanisms of signaling by the glycosyl phosphatidylinositol-anchored Fc gamma RIIIB are not known. Therefore, we investigated the possibility that Fc gamma RIIIB and FPR may act in concert to mediate neutrophil functions. We observed that pretreatment of normal human neutrophils with Fab fragments of a mAb to the Fc gamma RIII (3G8) specifically inhibited their chemotaxis into micropore filters in response to the formylated peptides FMLP or formyl-norleucyl-leucyl-phenylalanine. Pretreatment of neutrophils with a saturating concentration of 3G8 Fab (100 nM or 5 micrograms/ml) followed by exposure to FMLP (0.5 to 500 nM) indicated that significant inhibition of chemotaxis was observed at peptide concentrations greater than 5 nM. However, 3G8 Fab had no effect on the neutrophil response to a wide range (0.05 to 500 nM) of other chemotactic factors, including C5a, leukotriene B4, IL-8 (neutrophil-activating peptide-1), and platelet-activating factor. Moreover, pretreatment of neutrophils with mAb to other cell surface molecules (decay-accelerating factor, Fc gamma RII, and HLA class I) did not affect chemotaxis to FMLP. Inhibition of movement was not due to degradation of FMLP by the cell surface endopeptidase 24.11 (CD10), because neutrophils pretreated with the CD10 inhibitor phosphoramidone and 3G8 Fab displayed the same altered response to FMLP as cells pretreated with 3G8 Fab alone. Ligation of the Fc binding site of Fc gamma RIIIB appears to be essential for altering the FMLP-induced response, since soluble aggregated IgG and other anti-Fc gamma RIII antibodies, all of which recognize the ligand binding site, mimic the inhibitory effect of the 3G8 Fab on FMLP-induced chemotaxis. In contrast, a mAb (214.1) that does not recognize the Fc binding site of Fc gamma RIIIB had no effect on FMLP-induced chemotaxis. Not only did anti-Fc gamma RIII inhibit neutrophil chemotaxis to FMLP in a filter-based migration assay, but 3G8 Fab also inhibited FMLP-induced neutrophil transendothelial migration. Scatchard plot analysis of radioligand binding experiments indicated that 3G8 Fab did not significantly alter the number of FMLP binding sites on neutrophils but significantly increased the affinity of the FPR for [3H]FMLP. Removal of greater than 80% of cell surface Fc gamma RIIIB by phospholipase C abolished the neutrophil chemotactic response to FMLP but did not affect movement toward C5a, IL-8, or leukotriene B4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
A novel in vitro technique is described for measuring the chemotactic activity of soluble substances for human spermatozoa. This new bioassay has demonstrated that the synthetic chemotactic peptide N-formyl-Met-Leu-Phe elicits a potent, specific (i.e., receptor-mediated) chemotactic effect on human spermatozoa with an EC50 of 3.2 X 10(-10) M. Quantitative chemotactic studies on human spermatozoa with nine N-formylated-peptide analogs have shown a rank order of peptide potency indistinguishable (p less than 0.001) from that obtained in binding and chemotactic studies with rabbit neutrophils. The competitive antagonist Boc (t-butoxycarbonyl)-Phe-Leu-Phe-Leu-Phe, 10(-6) M, completely inhibited the chemotaxis elicited by f-Met-Leu-Phe, 10(-9) M, and was able to shift by one order of magnitude the molar concentration required by f-Met-Leu-Phe-Phe and f-Met-Leu-Phe to elicit the maximal response. The ability of N-formylated peptides to function as sperm chemoattractants reveals a high degree of correlation with binding, chemotaxis, and lysosomal enzyme release previously employed to define the neutrophil chemotactic receptor. This first unequivocal demonstration of substances having a receptor-mediated chemotactic effect for human male gametes suggests that human spermatozoa may indeed have the ability to respond chemotactically to appropriate environmental signals.  相似文献   

9.
Elastin is one of the most significant components of the extracellular matrix, which supports the stretchiness of the blood vessels via its helical structure and cross‐links. Enzymatic decomposition of this protein could induce chemotactic responses of cell populations in the surrounding tissues by several peptide sequences, e.g. XGXXPG. In our present work the VGVAPG variant and its oligomers were studied. The objective of the experiments was to learn (i) whether the chemotactic effect of these peptides is general in different levels of phylogeny; (ii) whether increasing the number of monomer units influences the chemotactic behaviour of the cell? The trimer had the strongest chemoattractant effect in a wide concentration range (10?12–10?7 M ), while the monomer and the pentamer were chemorepellent. All tri‐, tetra‐, penta‐ and hexamers could chemotactically select subpopulations with a high chemotactic responsiveness to the identical peptide, in the long term. With regard to its repellent effect, the pentamer had a negative effect on phagocytosis. All six oligomers had a growth‐promoter effect in Tetrahymena. The characteristic cell‐physiological effects of VGVAPG oligomers signal that molecules of the extracellular matrix can induce identical responses even in lower levels of phylogeny, e.g. in the Ciliates. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Human chemokine-like factor 1 (CKLF1) exhibits chemotactic effects on leukocytes. A previous study demonstrated that CKLF1 is a functional ligand for human CC chemokine receptor 4 (CCR4). In this study, N-terminal amino acid sequencing of secreted CKLF1 protein showed that it contains at least two peptides, C27 and C19. To examine whether C27 or C19 play a role via CCR4, C27 and C19 were chemically synthesized and analyzed by chemotaxis, calcium mobilization, and receptor internalization assays in CCR4-tranfected HEK293 cells or Hut78 cells. The chemotaxis assay showed that C27 could induce chemotaxis to CCR4-transfected HEK293 cells or Hut78 cells while C19 had weaker chemotactic activity, especially in Hut78 cells. C27- or C19-induced chemotaxis was abolished by pertussis toxin, suggesting the involvement of a Gi/o pathway. C27- or C19-induced chemotaxis was also inhibited by an antagonist of CCR4 that show good binding potency, excellent chemotaxis inhibitory activity and selectivity toward CCR4, suggesting that their chemotactic activity specifically involved CCR4. The chemotactic response of CCR4-tranfected HEK293 cells to C27 or C19 was markedly inhibited by preincubation with TARC/CCL17. TARC/CCL17 effectively desensitized the calcium mobilization induced by C27 or C19. Similarly, both of C27 or C19 also desensitized the calcium mobilization and chemotaxis of CCR4-tranfected HEK293 cells in response to TARC/CCL17, suggesting that they might interact with a common receptor. Both C27- and C19-induced clear internalization of CCR4-EGFP. These results confirm that the secreted peptides of CKLF1, C27 and C19, have functional activation via CCR4.  相似文献   

11.
Murine Schistosomiasis mansoni is a parasitic infection associated with a delayed-type hypersensitivity granulomatous reaction to the schistosome eggs. This reaction is characterized by the accumulation of mononuclear cells and other inflammatory cell types around the eggs. Granuloma macrophages produce angiotensin II (AII), which appears to have immunoregulatory function. By using an in vitro chemotaxis assay, this study demonstrated that AII is a chemotactic factor for splenic mononuclear cells derived from infected mice. The response was bimodal, with peak activities occurring at 10(-10) and 10(-6) M. AII was chemotactic for T lymphocytes, B lymphocytes, and a large population of unidentified mononuclear cells at the optimal chemotactic concentrations of the peptide. At high concentrations, AII was also chemotactic for phagocytic mononuclear cells. Sar1, ala8-AII, an analog of AII with antagonist activity, completely blocked AII-induced chemotaxis. A [3H]-AII binding assay revealed high-affinity specific binding on spleen cells. The binding was rapid, was dependent on radioligand concentration, and was reversible. These latter observations suggest that the chemotactic activity of AII for subpopulations of splenic mononuclear cells is mediated via AII receptors.  相似文献   

12.
The response of human endothelial cell migration to various extracellular matrix components and growth factors has been assessed. Human endothelial cells demonstrate increased chemotaxis and chemokinesis when placed in a modified Boyden chamber with endothelial cell growth factor (ECGF) used at a concentration of 10(-9) M. Anti-ECGF antibody inhibits the chemotactic response. Heparin (10(-8) to 10(-10) M) was also chemotactic and was shown to potentiate the chemotactic activity of ECGF. Although laminin, fibronectin, the polypeptide (epidermal, fibroblast, and nerve) growth factors, and collagen types I, II, III, IV, and V demonstrate a chemotactic response, these activities were one third to one half less than observed with ECGF. These data suggest that ECGF and heparin may play a significant role as response modifiers of human endothelial cell migration which may be relevant to tumor metastasis, wound healing, and atherogenesis.  相似文献   

13.
Chemotaxis by leukocytes appears to be initiated by the binding of chemo-attractants to specific cell surface receptors. In other biological systems, the affinity and functional activity of membrane receptors are regulated by the local microviscosity. The present studies were undertaken to determine if the number and/or affinity of chemotactic factor receptors expressed on human polymorphonuclear leukocytes were similarly affected. Aliphatic alcohols and cis-vaccenic acid, agents known to decrease membrane microviscosity, were studied for their effects on the binding of the radiolabeled chemoattractant f-Met-Leu-[3H]Phe to human polymorphonuclear leukocytes. Butanol and propanol increased the number of f-Met-Leu-[3H]Phe binding sites approximately 1.5 fold. More dramatically, these same agents enhanced the affinity of the receptor by ten-fold, without affecting the specificity of the receptor. Similarly, cis-vaccenic acid enhanced both the number and affinity of this chemotactic factor receptor on human polymorphonuclear leukocytes contain cryptic receptors for the N-formylated peptide chemotactic factors, but more importantly that the affinity of these receptors can exist in more than one state and can be modulated by membrane microviscosity. Alterations of membrane fluidity in leukocytes during chemotaxis may be an important mechanism for regulating their sensitivity to chemoattractants.  相似文献   

14.
Leukocyte chemotaxis is initiated by the binding of chemotactic factors to specific, high-affinity receptors. Amphotericin B, a polyene antibiotic that binds to membrane cholesterol, inhibits human neutrophil (PMN) chemotaxis. We examined the effects of this drug on PMN functions mediated by the oligopeptide chemotactic factor receptor. The antibiotic irreversibly inhibited chemotaxis and depressed the binding of the radiolabeled chemoattractant, fMet-Leu-[3H]Phe, to its receptor without affecting the receptor's specificity. The drug lowered the binding affinity of the receptor by up to fivefold and slightly increased its number. Doses of amphotericin B that depressed receptor affinity and inhibited chemotaxis did not diminish lysosomal enzyme secretion or superoxide anion production. Nystatin, a less potent polyene antibiotic, also diminished chemotactic factor binding, but to a lesser degree than amphotericin B did. A chemically unrelated antifungal agent had no effect on either binding or chemotaxis. Thus, pharmacologic manipulation can alter the affinity of the chemotactic factor receptor on human PMN; this alteration is associated with a change in receptor function. The data suggest that receptor affinity regulates or at least reflects its functional state, and that the transduction mechanisms for various biologic responses mediated by the chemoattractant receptor are heterogeneous. By pharmacologic alterations of receptor affinity, one may be able to modulate specific biologic responses elicited by chemoattractant receptor-ligand interactions.  相似文献   

15.
Normal human peripheral blood PMN were exposed to varying concentrations of partially purified chemotactic complement fragments (C5fr) and a chemotactic peptide N-formyl methionylleucylphenylalanine (f-Met-Leu-Phe). This exposure resulted in a decreased chemotactic response termed deactivation of chemotaxis. Deactivation was found to be nonpreferential for the deactivating stimulus when high concentrations of either f-Met-Leu-Phe (10(-6) M) or C5fr (20 micrograms/ml) were used. When PMN were incubated with lower concentrations of C5fr (10 micrograms/ml), there was preferential deactivation towards C5fr. Similarly, preferential deactivation of chemotaxis was observed when PMN were incubated with 10(-6) M f-Met-Leu-Phe, but this was transient and cells were nonpreferentially deactivated 60 min after the initial exposure to f-Met-Leu-Phe. The availability of receptors for tritiated f-Met-Leu-Phe was examined by Scatchard analyses and measurement of reversible f-Met-Leu-[3H]Phe binding to C5fr and f-Met-Leu-Phe-deactivated PMN. When PMN f-Met-Leu-Phe receptors were studied immediately after exposure to concentrations of C5fr causing either preferential or nonpreferential deactivation, there was increased receptor availability compared with control PMN. In contrast, PMN deactivated with high concentrations of f-Met-Leu-Phe 10(-6) M) had a transient decrease in the number of receptors followed 1 hr later by an increase in the number of receptors. This was similar to the functional correlate of preferential deactivation of chemotaxis immediately after incubation with f-Met-Leu-Phe followed by nonpreferential deactivation in these same PMN. The data indicate that preferential deactivation of chemotaxis may be associated with a preferential decrease (down-regulation) of chemoattractant receptors and that nonpreferential deactivation is associated with an increase in chemoattractant receptors.  相似文献   

16.
A chemotactic peptide stimulated the high-affinity GTPase activity in membrane preparations from guinea pig neutrophils. The enzyme stimulation was inhibited by prior exposure of the membrane-donor cells to islet-activating protein (IAP), pertussis toxin, or by direct incubation of the membrane preparations with its A-protomer (the active peptide) in the presence of NAD. The affinity for the chemotactic peptide binding to its receptors was lowered by guanyl-5'-yl beta, gamma-imidodiphosphate (Gpp(NH)p) reflecting its coupling to the guanine nucleotide regulatory protein in neutrophils. The affinity in the absence of Gpp(NH)p was lower, but the affinity in its presence was not, in the A-protomer-treated membranes than in nontreated membranes. The inhibitory guanine nucleotide regulatory protein of adenylate cyclase (Ni) was purified from rat brain, and reconstituted into the membranes from IAP-treated cells. The reconstitution was very effective in increasing formyl-Met-Leu-Phe-dependent GTPase activity and increasing the chemotactic peptide binding to membranes due to affinity increase. The half-maximal concentration of IAP to inhibit GTPase activity was comparable to that of the toxin to inhibit the cellular arachidonate-releasing response which was well correlated with ADP-ribosylation of a membrane Mr = 41,000 protein (Okajima, F., and Ui, M. (1984) J. Biol. Chem. 259, 13863-13871). It is proposed that the IAP substrate, Ni, couples to the chemotactic peptide receptor and mediates arachidonate-releasing responses in neutrophils, as it mediates adenylate cyclase inhibition in many other cell types.  相似文献   

17.
The chemokines are a family of small chemoattractant proteins that have a range of functions, including activation and promotion of vectorial migration of leukocytes. Regulation on activation, normal T cell expressed and secreted (RANTES; CCL5), a member of the CC-chemokine subfamily, has been implicated in a variety of immune responses. In addition to the interaction of CC-chemokines with their cognate cell-surface receptors, it is known that they also bind to glycosaminoglycans (GAGs), including heparan sulfate. This potential for binding to GAG components of proteoglycans on the cell surface or within the extracellular matrix might allow formation of the stable chemokine concentration gradients necessary for leukocyte chemotaxis. In this study, we created a panel of mutant RANTES molecules containing neutral amino acid substitutions within putative, basic GAG-binding domains. Despite showing reduced binding to GAGs, it was found that each mutant containing a single amino acid substitution induced a similar leukocyte chemotactic response within a concentration gradient generated by free solute diffusion. However, we found that the mutant K45A had a significantly reduced potential to stimulate chemotaxis across a monolayer of microvascular endothelial cells. Significantly, this mutant bound to the CCR5 receptor and showed a potential to mobilize Ca(2+) with an affinity similar to the wild-type protein. These results show that the interaction between RANTES and GAGs is not necessary for specific receptor engagement, signal transduction, or leukocyte migration. However, this interaction is required for the induction of efficient chemotaxis through the extracellular matrix between confluent endothelial cells.  相似文献   

18.
To exhibit chemotaxis, the orientation of locomotion along a chemical gradient cells sense differences in concentrations of a chemotactic factor by detecting some difference in the occupancy of their chemotactic receptors. Thus chemotaxis is sensitive to the number of receptors present and might be used to evaluate the consequences of receptor down-regulation. The ability of rabbit peritoneal polymorphonuclear leukocytes (PMNs) to orient to a standard gradient at various concentrations of N-formylnorleucylleucylphenylalanine (FNLLP) was examined. The observed orientation was compared to that expected if the directional signal were proportional to a difference in the absolute number or the fractional number of receptors occupied. The receptor occupancy in varying gradients was calculated from the binding constant of FNLLP, 2 X 10(-8) M (Zigmond and Sullivan, 1979, J. Cell Biol. 82:517-527), and the receptor number (a) present initially or (b) present after down-regulation (Sullivan and Zigmond, 1980, J. Cell Biol. 85:703-711). The observed concentration dependence of cell orientation is similar to the change in the number of receptors occupied, the receptor number being corrected for down-regulated cells. The net effect of receptor loss appears to be a decreased sensitivity to gradients at high concentrations of peptide.  相似文献   

19.
Chemotactic activity of porcine insulin for human T lymphocytes in vitro   总被引:3,自引:0,他引:3  
T lymphocytes bear insulin receptors only after activation and entry into the cell cycle. To determine whether cell motility is concomitant with growth factor action in T lymphocytes, we measured the chemotactic activity of porcine insulin (10(-11) to 10(-5) M) for T lymphocytes. We found that the chemotactic response of human T cells activated with phytohemagglutinin (PHA) to porcine insulin was increased over that of resting T cells, with a concomitant two log leftward shift in the dose response. CD4+ and CD8+ subsets responded identically. Checkerboard analysis showed insulin to be chemotactic, as well as chemokinetic. The nature and time course of acquisition of the dose-response shift suggest that chemotaxis may be signaled by insulin acting on high affinity insulin receptors. The chemotactic effect of insulin exemplifies the general chemotactic effect of growth factors for motile target cells, and may be a useful model for the study of chemotactic signaling in T lymphocytes.  相似文献   

20.
Urokinase plasminogen activator (uPA) is thought to exert its effects on cell growth, adhesion, and migration by mechanisms involving proteolysis and interaction with its cell surface receptor (uPAR). The functional properties of uPA and the significance of its various domains for chemotactic activity were analyzed using human airway smooth muscle cells (hAWSMC). The wild-type uPA (r-uPAwt), inactive urokinase with single mutation (His(204) to Gln) (r-uPA(H/Q)), urokinase with mutation of His(204) to Gln together with a deletion of growth factor-like domain (r-uPA(H/Q)-GFD), the catalytic domain of urokinase (r-uPA(LMW)), and its kringle domain (r-KD) were expressed in Escherichia coli. We demonstrate that glycosylated uPA, r-uPAwt, r-uPA(H/Q), and r-uPA(H/Q)-GFD elicited similar chemotactic effects. Half-maximal chemotaxis (EC(50)) were apparent at approximately 2 nm with all the uPA variants. The kringle domain induced cell migration with an EC(50) of about 6 nm, whereas the denaturated r-KD and r-uPA(LMW) were without effect. R-uPAwt-induced chemotaxis was dependent on an association with uPAR and a uPA-kringle domain-binding site, determined using a monoclonal uPAR antibody to prevent the uPA-uPAR interaction, and a monoclonal antibody to the uPA-kringle domain. The binding of iodinated r-uPAwt with hAWSMC was due to interaction with a high affinity binding site on the uPAR, and a lower affinity binding site on an unidentified cell surface target, which was mediated exclusively through the kringle domain of urokinase. Specific binding of r-uPA(H/Q)-GFD to hAWSMC involved an interaction with a single site whose characteristics were similar to those of the low affinity site of r-uPAwt binding to hAWSMC. uPAR-deficient HEK 293 cells specifically bound r-uPAwt and r-uPA(H/Q)-GFD via a single, similar type of binding site. These cells migrated when stimulated by r-uPA(H/Q)-GFD and uPAwt, but not r-uPA(LMW). HEK 293 cells transfected with the uPAR cDNA expressed two classes of sites that bound r-uPAwt; however, only a single site was responsible for the binding of r-uPA(H/Q)-GFD. Together, these findings indicate that uPA-induced chemotaxis is dependent on the binding of the uPA-kringle to the membrane surface of cells and the association of uPA with uPAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号