首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
pWW53 is a 110 kbp catabolic plasmid which encodes the complete pathway for the utilization of toluene and the xylenes. The upper pathway operon xylCAB is located between two homologous but distinct meta pathway operons, xylDLEGF(I,J,K)H, which are in direct repeat. These have each been cloned on large HindIII restriction fragments HA (17.5 kbp) and HB (15.6 kbp), the restriction sites of which have been mapped. During growth of MT53 on benzoate, mutants which have lost the ability to grow on hydrocarbons such as m-xylene (Mxy-) but which retain the ability to grow on their carboxylic acid metabolites such as m-toluate (Mtol+) take over the culture before ultimately being displaced by plasmid-free strains which are Mxy- Mtol-. The plasmids in the Mxy- Mtol+ mutants are formed by a large deletion between homologous regions of the two duplicate meta pathway operons. This causes the loss of the intervening xylCAB operon and the formation of a hybrid xylDLEGF(I, J, K)H operon, starting with the genes originally on HA and terminating with the genes originally on HB.  相似文献   

2.
Pseudomonas fluorescens MT15 is the host of the large (250 kbp) TOL plasmid pWW15. We have shown by a combination of hybridization, molecular cloning and enzyme assay that pWW15 carries two distinct regions which share homology with the upper pathway operons (xylCMABN) of other TOL plasmids and two distinct regions which are homologous to the meta pathway operons (xylXYZLTEGFJQKIH) of other TOL plasmids. Both the areas of homology to the upper pathway operons appear to carry all of the structural genes for the three catabolic enzymes of the operon. One of the regions of meta pathway operon homology encodes a complete functional pathway, but the second is incomplete and appears to carry only the genes from xylF downstream.  相似文献   

3.
Pseudomonas putida MT53 contains a TOL plasmid, pWW53, that encodes toluene-xylene catabolism. pWW53 is nonconjugative, is about 105 to 110 kilobase pairs (kbp) in size, and differs significantly in its restriction endonuclease digestion pattern and incompatibility group from the archetypal TOL plasmid pWW0. An RP4::pWW53 cointegrate plasmid, pWW53-4, containing about 35 kbp of pWW53 DNA, including the entire catabolic pathway genes, was formed, and a restriction map for KpnI, HindIII, and BamHI was derived. The entire regulated meta pathway genes for the catabolism of m-toluate were cloned into pKT230 from pWW53 on a 17.5-kbp HindIII fragment. The recombinant plasmid supported growth on m-toluate when mobilized into plasmid-free P. putida PaW130. A restriction map of the insert for 10 restriction enzymes was derived, and the locations of xylD, xylL, xylE, xylG, and xylF were determined by subcloning and assaying for their gene products in both Escherichia coli and P. putida hosts. Good induction of the enzymes by m-toluate and m-methylbenzyl alcohol but not by m-xylene was measured in P. putida, but little or no regulation was found in E. coli. The restriction map and the gene order showed strong similarities with published maps of the DNA encoding both the entire meta pathway operon (xylDLEGFJIH) and the regulatory genes xylS and xylR on the archetype TOL plasmid pWW0, suggesting a high degree of conservation in DNA structure for the catabolic operon on the two different plasmids.  相似文献   

4.
The hybrid pathway for chlorobenzoate metabolism was studied in WR211 and WR216, which were derived from Pseudomonas sp. B13 by acquisition of TOL plasmid pWW0 from Pseudomonas putida mt-2. Chlorobenzoates are utilized readily by these strains when meta cleavage of chlorocatechols is suppressed. When WR211 utilizes 3-chlorobenzoate (3CB), the expression of catechol 2,3-dioxygenase (C23O) and the catabolic activities for chloroaromatics via the ortho pathway coexist as a consequence of inactivation of the meta cleavage activity by 3-chlorocatechol. Utilization of 4-chlorobenzoate (4CB) by WR216 presupposes the suppression of C23O by a spontaneous mutation in the structural gene, so that 4-chlorocatechol is not misrouted into the meta pathway. Such C23O- mutants were also selected when WR211 was grown continuously on 3CB. Our data explain why the phenotypic characters 3CB+ and Mtol+ (m-toluate) are compatible, whereas 4CB+ and Mtol+ are incompatible.  相似文献   

5.
pWW53-4 is a cointegrate between RP4 and the catabolic plasmid pWW53 from Pseudomonas putida MT53, which contains 36 kbp of pWW53 DNA inserted close to the oriV gene of RP4; it encodes the ability to grow on toluene and the xylenes, characteristic of pWW53, as well as resistance to tetracycline, kanamycin and carbenicillin, characteristic of RP4. A physical map of the 36 kbp insert of pWW53 DNA for 11 restriction enzymes is presented, showing that the relative positions of the two xyl operons are different from those on the archetypal TOL plasmid pWW0. The location of the genes for 4-oxalocrotonate decarboxylase (xylI) and 4-oxalocrotonate tautomerase (xylH) were shown by subcloning and enzyme assay to lie at the distal end of the meta pathway operon. Although 2-oxopent-4-enoate hydratase (xylJ) and 4-hydroxy-2-oxovalerate aldolase (xylK) could be detected on a large cloned HindIII fragment, they could not be accurately located on smaller subcloned DNA, but the only credible position for them is between xylF and xylI. The gene order in the meta pathway operon is therefore xylDLEGF(J,K)IH. The regulatory genes xylS and xylR were located close to and downstream of the meta pathway operon, and the restriction map of the DNA in this region, as has previously been shown for the two operons carrying the structural genes, shows similarities with the corresponding region on pWW0. Evidence is also presented for the existence of two promoters, termed P3 and P4, internal to the meta pathway operon which support low constitutive expression of the structural genes downstream in Pseudomonas hosts but not in E. coli.  相似文献   

6.
WR211 is a transconjugant resulting from transfer of the 117-kilobase (kb) TOL degradative plasmid pWW0 into Pseudomonas sp. strain B13. The plasmid of this strain, pWW01211, is 78 kb long, having suffered a deletion of 39 kb. We show that WR211 contains the 39 kb that is missing from its plasmid, together with at least an additional 17 kb of pWW0 DNA integrated in another part of the genome, probably the chromosome. The ability of WR211 to grow on the TOL-specific substrate m-toluate is the result of expression of the TOL genes in this alternative location, whereas its inability to grow on m-xylene is caused by insertional mutagenesis by 3 kb of DNA of unknown origin in the xylR gene of this DNA. The resident plasmid pWW01211 plays no part in the degradative phenotype of WR211 since it can be expelled by mating in incompatible IncP9 resistance plasmid R2 or pMG18 without loss of the phenotype. This alternatively located DNA can be rescued back into the R2 and pMG18 plasmids as R2::TOL and pMG18::TOL recombinants by mating out into plasmid-free recipients and selecting for Mtol+ transconjugants. In all cases examined, these plasmids contained the entire R plasmid into which is inserted 59 kb of DNA, made up of 56 kb of pWW0 DNA and the 3-kb xylR insertion. Selection for faster growth on benzoate can lead to precise excision of the 39 kb from the TOL region of an R2::TOL recombinant, leaving a residual and apparently cryptic 17-kb segment of pWW0 DNA in the R plasmid.  相似文献   

7.
TOL plasmid pWW0 of Pseudomonas putida encodes a set of enzymes responsible for the degradation of toluene. The structural genes for these catobolic enzymes are clustered into two operons—namely, the xylCMAB and xylXYZLTEGFJQKIH operons. We examined the codon usage patterns of these catabolic genes by measuring the codon-usage distances between pairs of these catabolic genes. The codon-usage distance, d, between gene 1 and gene 2 was defined as d = [(p j q j )2]1/2, where p j > and q j are the frequencies of the j-th codon in gene 1 and 2, respectively, j being any one of the 64 possible codons. We found that the genes in the same operon exhibit similar codon-usage patterns while genes in the different operons exhibit different codon bias. This observation suggests that genes in the same operon have coevolved, and that the ancestors of the xylCMAB and xylXYZLTEGFJQKIH operons evolved in different organisms. Correspondence to: S. Harayama  相似文献   

8.
Detailed restriction and nucleotide sequence analysis of the Pseudomonas putida TOL plasmid pDK1 xylE gene revealed significant homology with isofunctional xylE (81.5%) and nahH (78.0%) genes from the TOL pWW0 and NAH7 plasmids. The highest degrees of nucleotide and apparent amino acid conservation (82.2 and 86.4%, respectively) among all three genes were found to exist within a region comprising 264 nucleotides encoding the C terminus. A comparison of localized regions revealed significantly greater homology between xylEpWW0 and xylEpDK1 within the C-terminal region, whereas xylEpWW0 and nahH showed greater similarity at the N terminus. The possibility that xylEpWW0 may represent a genetic hybrid of xylEpDK1 and nahH is discussed.  相似文献   

9.
Plasmids in conjunction with other mobile elements such as transposons are major players in the genetic adaptation of bacteria in response to changes in environment. Here we show that a large catabolic TOL plasmid, pWW0, from Pseudomonas putida carries genes (rulAB genes) encoding an error-prone DNA polymerase Pol V homologue which increase the survival of bacteria under conditions of accumulation of DNA damage. A study of population dynamics in stationary phase revealed that the presence of pWW0-derived rulAB genes in the bacterial genome allows the expression of a strong growth advantage in stationary phase (GASP) phenotype of P. putida. When rulAB-carrying cells from an 8-day-old culture were mixed with Pol V-negative cells from a 1-day-old culture, cells derived from the aged culture out-competed cells from the nonaged culture and overtook the whole culture. At the same time, bacteria from an aged culture lacking the rulAB genes were only partially able to out-compete cells from a fresh overnight culture of the parental P. putida strain. Thus, in addition to conferring resistance to DNA damage, the plasmid-encoded Pol V genes significantly increase the evolutionary fitness of bacteria during prolonged nutritional starvation of a P. putida population. The results of our study indicate that RecA is involved in the control of expression of the pWW0-encoded Pol V.  相似文献   

10.
The entire operon coding for the enzymes responsible for conversion of toluenes to benzoates has been cloned from TOL plasmid pWW53 and the position of the genes accurately located. The coding region was 7.4 kilobase pairs (kbp) long, and the gene order was operator-promoter region (OP1)-a small open reading frame-xylC (1.6 kbp)-xylA (2.9 kbp)-xylB (1.8 kbp). Within the coding region there was considerable homology with the isofunctional region of the archetypal TOL plasmid pWW0. A central region of 2.9 kbp complemented an xylA (for xylene oxygenase) mutant of Pseudomonas putida mt-2 and was also capable of conferring the ability to convert indole to indigo on strains of Escherichia coli and P. putida. This reaction has been reported previously only for dioxygenases involved in aromatic catabolism but not for monooxygenases. It is proposed that the region encodes xylene oxygenase activity capable of direct monohydroxylation of indole to 3-hydroxyindole (oxindole), which then spontaneously dimerizes to form indigo.  相似文献   

11.
Tsuda M  Genka H 《Journal of bacteriology》2001,183(21):6215-6224
It has been reported that the toluene-degrading (xyl) genes from Pseudomonas putida plasmid pWW53 are able to translocate to broad-host-range drug resistance plasmid RP4, and pWW53-4 is one of the smallest RP4 derivatives (H. Keil, S. Keil, R. W. Pickup, and P. A. Williams, J. Bacteriol. 164:887-895, 1985). Our investigation of pWW53-4 in this study demonstrated that such a translocated region that is 39 kb long is a transposon. This mobile element, Tn4656, was classified as a class II transposon since its transposition occurred by a two-step process: transposase (TnpA)-mediated formation of the cointegrate and resolvase (TnpR)-mediated site-specific resolution of the cointegrate at the two copies of the res site. The Tn4656 TnpA and TnpR functions encoded in the rightmost 4-kb region were found to be exchangeable with those specified by other Tn1721-related class II transposons, including another toluene transposon, Tn4653. Sequence analysis of the transposition-related genes and sites of Tn4656 also supported the hypothesis that this transposon is closely related to the Tn1721-related transposons. The lower transposition frequency of Tn4656 has been suggested to be due to the unique nucleotide sequence of one of the terminal 39-bp inverted repeats.  相似文献   

12.
Mutant derivatives of a plasmid, pCF20, which carries the XhoI-D fragment of the TOL plasmid pWW0 have been isolated using Tn5 transposon mutagenesis. Insertion mutations of the xylR and xylS regulatory genes of the catabolic pathway have been isolated and characterized and their ability to induce catechol 2,3-oxygenase activity determined. Analysis of the insertion mutants and also segments of the XhoI-D fragment cloned into plasmid pUC8 in maxicells has identified a 68 kDa polypeptide product encoded by the xylR gene. No clear candidate for the xylS polypeptide was observed. The nucleotide sequence of the xylS region, the intergenic region and part of the xylR region has been determined and open reading frames (ORFs) assigned for both genes. The ORF designated xylS appears capable of encoding a polypeptide of approximately 37 kDa.  相似文献   

13.
The two xylE genes for catechol 2,3-oxygenase, encoded by TOL plasmid pWW53, carry a common SalI restriction site within the reading frame. Each gene was cut at the SalI site and the 5' end of each gene spliced to the 3' end of the other to form hybrid genes, from both of which catalytically active catechol 2,3-oxygenase activities were expressed. The kinetic parameters were determined for the gene products of both the hybrid and the wild-type xylE genes with catechol, 3-methylcatechol and 4-methylcatechol as substrates. Comparison of the results suggested firstly, that the C-terminal regions of the enzymes determined both the binding and the catalytic specificity, and, secondly, that the N-terminal region of one of the enzymic gene products contained a secondary binding site which caused inhibition by excess substrate for methylcatechol substrates but not for catechol. One of the wild-type enzymes appeared to have an intrinsically higher activity for all three substrates than the other. This higher activity depended on the presence of both its C- and N-terminal regions, and in both hybrid enzymes, which contained only one of these regions, activity was significantly reduced.  相似文献   

14.
Catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida consists of four identical subunits, each containing one ferrous ion. The enzyme catalyzes ring cleavage of catechol, 3-methylcatechol, and 4-methylcatechol but shows only weak activity toward 4-ethylcatechol. Two mutants of catechol 2,3-dioxygenases (4ECR1 and 4ECR6) able to oxidize 4-ethylcatechol, one mutant (3MCS) which exhibits only weak activity toward 3-methylcatechol but retained the ability to cleave catechol and 4-methylcatechol, and one phenotypic revertant of 3MCS (3MCR) which had regained the ability to oxidize 3-methylcatechol were characterized by determining their Km and partition ratio (the ratio of productive catalysis to suicide catalysis). The amino acid substitutions in the four mutant enzymes were also identified by sequencing their structural genes. Wild-type catechol 2,3-dioxygenase was inactivated during the catalysis of 4-ethylcatechol and thus had a low partition ratio for this substrate, whereas the two mutant enzymes, 4ECR1 and 4ECR6, had higher partition ratios for it. Similarly, mutant enzyme 3MCS had a lower partition ratio for 3-methylcatechol than that of 3MCR. Molecular oxygen was required for the inactivation of the wild-type enzyme by 4-ethylcatechol and of 3MCS by 3-methylcatechol, and the inactivated enzymes could be reactivated by incubation with FeSO4 plus ascorbic acid. The enzyme inactivation is thus most likely mechanism based and occurred principally by oxidation and/or removal of the ferrous ion in the catalytic center. In general, partition ratios for catechols lower than 18,000 did not support bacterial growth. A possible meaning of the critical value of the partition ratio is discussed.  相似文献   

15.
The xylXYZ DNA region is carried on the TOL pWW0 plasmid in Pseudomonas putida and encodes a benzoate dioxygenase with broad substrate specificity. The DNA sequence of the region is presented and compared with benABC, the chromosomal region encoding the benzoate dioxygenase of Acinetobacter calcoaceticus. Corresponding genes from the two biological sources share common ancestry: comparison of aligned XylX-BenA, XylY-BenB, and XylZ-BenC amino acid sequences revealed respective identities of 58.3, 61.3, and 53%. The aligned genes have diverged to assume G+C contents that differ by 14.0 to 14.9%. Usage of the unusual arginine codons AGA and AGG appears to have been selected in the P. putida xylX gene as it diverged from the ancestor it shared with A. calcoaceticus benA. Homologous A. calcoaceticus and P. putida genes exhibit different patterns of DNA sequence repetition, and analysis of one such pattern suggests that mutations creating different DNA slippage structures made a significant contribution to the evolutionary divergence of xylX.  相似文献   

16.
The catabolism of naphthalene and salicylate is specified by two operons on an 80 Kb metabolic plasmid, NAH7. These operons, nah and sal, are carried on the contiguous 30 Kb EcoRI-A, C fragments, and are under positive control of a regulator region, nahR. Five Nah Sal Tn5 insertion mutants form two complementation groups: A = nahR203, nahR204; and B = nahR201, nahR202, nahR205. The physical and genetic maps assign the nahR location to the 15.7-17.2 Kb region of the EcoRI-A fragment, with suggestion of more than one control gene.  相似文献   

17.
TOL plasmid pWW0 from Pseudomonas putida mt-2 encodes catabolic enzymes required for the oxidation of toluene and xylenes. The structural genes for these catabolic enzymes are clustered into two operons, the xylCMABN operon, which encodes a set of enzymes required for the transformation of toluene/xylenes to benzoate/toluates, and the xylXYZLTEGFJQKIH operon, which encodes a set of enzymes required for the transformation of benzoate/toluates to Krebs cycle intermediates. The latter operon can be divided physically and functionally into two parts, the xylXYZL cluster, which is involved in the transformation of benzoate/toluates to (methyl)catechols, and the xylTEGFJQKIH cluster, which is involved in the transformation of (methyl)catechols to Krebs cycle intermediates. Genes isofunctional to xylXYZL are present in Acinetobacter calcoaceticus, and constitute a benzoate-degradative pathway, while xylTEGFJQKIH homologous encoding enzymes of a methylphenol-degradative pathway and a naphthalene-degradative pathway are present on plasmid pVI150 from P. putida CF600, and on plasmid NAH7 from P. putida PpG7, respectively. Comparison of the nucleotide sequences of the xylXYZLTEGFJQKIH genes with other isofunctional genes suggested that the xylTEGFJQKIH genes on the TOL plasmid diverged from these homologues 20 to 50 million years ago, while the xylXYZL genes diverged from the A. calcoaceticus homologues 100 to 200 million years ago. In codons where amino acids are not conserved, the substitution rate in the third base was higher than that in synonymous codons. This result was interpreted as indicating that both single and multiple nucleotide substitutions contributed to the amino acid-substituting mutations, and hence to enzyme evolution. This observation seems to be general because mammalian globin genes exhibit the same tendency.  相似文献   

18.
The regulatory gene xylR of the TOL plasmid, which functions positively on both xylABC and xylDEGF operons in the presence of m-xylene or m-methylbenzyl alcohol, was cloned onto an Escherichia coli vector, pACYC177. A fused operon consisting of the operator-promoter region of the xylABC operon and the xylE gene was cloned onto pBR322. The xylE product, catechol 2,3-dioxygenase, was induced by m-xylene or m-methylbenzyl alcohol in the cells containing the fused operon when a 2.8-kilobase segment of the TOL plasmid was provided in trans. Therefore, the segment appeared to contain the regulatory gene xylR. The xylR gene was mapped very close to the other regulatory gene, xylS, determined previously. The xylR gene was not effective on activation of the xylDEGF operon unless an additional region containing xylS was provided together with the inducer. These results indicate that both xylR and xylS are essential to the m-methylbenzyl alcohol-dependent induction of the xylDEGF operon. The map positions of xylR and xylS were precisely determined by subcloning or insertion inactivation. In addition, the operator-promoter regions of the xylABC and xylDEGF operons were mapped to the 0.6- and 0.4-kilobase regions of the TOL plasmid, respectively.  相似文献   

19.
The upper operon of the TOL plasmid pWW0 of Pseudomonas putida encodes a set of enzymes which transform toluene and xylenes to benzoate and toluates. The genetic organization of the operon was characterized by cloning of the upper operon genes into an expression vector and identification of their products in Escherichia coli maxicells. This analysis showed that the upper operon contains at least five genes in the order of xylC-xylM-xylA-xylB-xylN. Between the promoter of the operon and xylC, there is a 1.7-kilobase-long space of DNA in which no gene function was identified. In contrast, most of the DNA between xylC and xylN consists of coding sequences. The xylC gene encodes the 57-kilodalton benzaldehyde dehydrogenase. The xylM and xylA genes encode 35- and 40-kilodalton polypeptides, respectively, which were shown by genetic complementation tests to be subunits of xylene oxygenase. The structural gene for benzyl alcohol dehydrogenase, xylB, encodes a 40-kilodalton polypeptide. The last gene of this operon is xylN, which synthesizes a 52-kilodalton polypeptide of unknown function.  相似文献   

20.
Recent studies have indicated that the evolutionarily common catabolic gene clusters are loaded on structurally diverse toluene-catabolic (TOL) plasmids and their residing transposons. To elucidate the mechanisms supporting the diversification of catabolic plasmids and transposons, we determined here the complete 107,929 bp sequence of pWW53, a TOL plasmid from Pseudomonas putida MT53. pWW53 was found to belong to the IncP-7 incompatibility group that play important roles in the catabolism of several xenobiotics. pWW53 carried two distinct transposase-resolvase gene clusters (tnpAR modules), five short terminal inverted repeats (IRs), and three site-specific resolution (res) sites that are all typical of class II transposons. This organization of pWW53 suggested the four possible transposable regions, Tn4657 to Tn4660. The largest 86 kb region (Tn4657) spanned the three other regions, and Tn4657 and Tn4660 (62 kb) covered all of the 36 xyl genes for toluene catabolism. Our subsequent transposition experiments clarified that the three transposons, Tn4657 to Tn4659, indeed exhibit their transposability, and that pWW53 also generated another 37 kb toluene-catabolic transposon, Tn4656, which carried the two separated and inversely oriented segments of pWW53: the tnpRA-IR module of Tn4658 and a part of xyl gene clusters on Tn4657. The Tn4658 transposase was able to mediate the transposition of Tn4658, Tn4657, and Tn4656, while the Tn4659 transposase catalyzed only the transposition of Tn4659. Tn4656 was formed by the Tn4658 resolvase-mediated site-specific inversion between the two inversely oriented res sites on pWW53. These findings and comparison with other catabolic plasmids clearly indicate multiple copies of transposition-related genes and sites on one plasmid and their recombination activities contribute greatly to the diversification of plasmid structures as well as wide dissemination of the evolutionary common gene clusters in various plasmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号