首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrococcus woesei (DSM 3773) α-amylase gene was cloned into pET21d(+) and pYTB2 plasmids, and the pET21d(+)α-amyl and pYTB2α-amyl vectors obtained were used for expression of thermostable α-amylase or fusion of α-amylase and intein in Escherichia coli BL21(DE3) or BL21(DE3)pLysS cells, respectively. As compared with other expression systems, the synthesis of α-amylase in fusion with intein in E. coli BL21(DE3)pLysS strain led to a lower level of inclusion bodies formation—they exhibit only 35% of total cell activity—and high productivity of the soluble enzyme form (195,000 U/L of the growth medium). The thermostable α-amylase can be purified free of most of the bacterial protein and released from fusion with intein by heat treatment at about 75°C in the presence of thiol compounds. The recombinant enzyme has maximal activity at pH 5.6 and 95°C. The half-life of this preparation in 0.05 M acetate buffer (pH 5.6) at 90°C and 110°C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120°C. Maltose was the main end product of starch hydrolysis catalyzed by this α-amylase. However, small amounts of glucose and some residual unconverted oligosaccharides were also detected. Furthermore, this enzyme shows remarkable activity toward glycogen (49.9% of the value determined for starch hydrolysis) but not toward pullulan.  相似文献   

2.
Rabbit antisera were prepared against the purified glucoamylases I and II ofAspergillus niger. Relationships between the two enzyme forms were investigated by using the antisera in immunodiffusion and immunoinhibition experiments. Both the forms of glucoamylase gave a single continuous precipitin band demonstrating very close structural resemblance. They gave almost identical immunoprecipitation patterns and had the same equivalence points indicating that the two forms ofA. niger gluoamylases were immunologically identical. The enzyme treated with periodate was immunologically identical with the controls and had slightly less enzyme activity but showed greatly reduced stability on storage at 4‡ C.  相似文献   

3.
The secondary structure of the trimeric protein 4-chlorobenzoyl coenzyme A dehalogenase from Arthrobacter sp. strain TM-1, the second of three enzymes involved in the dechlorination of 4-chlorobenzoate to form 4-hydroxybenzoate, has been examined. EmM for the enzyme was 12.59. Analysis by circular dichroism spectrometry in the far uv indicated that 4-chlorobenzoyl coenzyme A dehalogenase was composed mostly of α-helix (56%) with lesser amounts of random coil (21%), β-turn (13%) and β-sheet (9%). These data are in close agreement with a computational prediction of secondary structure from the primary amino acid sequence, which indicated 55.8% α-helix, 33.7% random coil and 10.5% β-sheet; the enzyme is, therefore, similar to the 4-chlorobenzoyl coenzyme A dehalogenase from Pseudomonas sp. CBS-3. The three-dimensional structure, including that of the presumed active site, predicted by computational analysis, is also closely similar to that of the Pseudomonas dehalogenase. Study of the stability and physicochemical properties revealed that at room temperature, the enzyme was stable for 24 h but was completely inactivated by heating to 60°C for 5 min; thereafter by cooling at 1°C min−1 to 45°C, 20.6% of the activity could be recovered. Mildly acidic (pH 5.2) or alkaline (pH 10.1) conditions caused complete inactivation, but activity was fully recovered on returning the enzyme to pH 7.4. Circular dichroism studies also indicated that secondary structure was little altered by heating to 60°C, or by changing the pH from 7.4 to 6.0 or 9.2. Complete, irreversible destruction of, and maximal decrease in the fluorescence yield of the protein at 330–350 nm were brought about by 4.5 M urea or 1.1 M guanidinium chloride. Evidence was obtained to support the hypothetical three-dimensional model, that residues W140 and W167 are buried in a non-polar environment, whereas W182 appears at or close to the surface of the protein. At least one of the enzymes of the dehalogenase system (the combined 4-chlorobenzoate:CoA ligase, the dehalogenase and 4-hydroxybenzoyl coenzyme A thioesterase) appears to be capable of association with the cell membrane.
Anthony R. W. SmithEmail:
  相似文献   

4.
A novel fibrinolytic enzyme (AJ) was purified from Staphylococcus sp. strain AJ screened from Korean salt-fermented Anchovy-jeot. Relative molecular weight of AJ was determined as 26 kDa by using SDS-PAGE and fibrin zymography. Based on a 2D gel, AJ was found to consist of three active isoforms (pI 5.5–6.0) with the same N-terminal amino acid sequence. AJ exhibited optimum pH and temperature at 2.5–3.0 and 85°C, respectively. AJ kept 85% of the initial activity after heating at 100°C for 20 min on the zymogram gel. The Michaelis constant (K m) and K cat values of AJ towards α-casein were 0.38 mM and 19.73 s−1, respectively. AJ cleaved the Aα-chain of fibrinogen but did not affect the Bβ- and γ-chains, indicating that it is an α-fibrinogenase. The fibrinolytic activity was inhibited by diisopropyl fluorophosphate, indicating AJ is a serine protease. Interestingly, AJ was very stable at acidic condition, SDS, and heat (100°C), whereas it was easily degraded at neutral and alkaline conditions. In particular, AJ formed an active homo-dimer in the pH range from 7.0 to 8.0. To our knowledge, a similar combination of acid and heat stability has not yet been reported for other fibrinolytic enzymes.  相似文献   

5.
The starch-binding domain of Bacillus sp. strain TS-23 α-amylase was introduced into the C-terminal end of Bacillus kaustophilus leucine aminopeptidase (BkLAP) to generate a chimeric enzyme (BkLAPsbd) with raw-starch-binding activity. BkLAPsbd, with an apparent molecular mass of approximately 65 kDa, was overexpressed in Escherichia coli M15 cells and purified to homogeneity by nickel–chelate chromatography. Native PAGE and chromatographic analyses revealed that the purified fusion protein has a hexameric structure. The half-life for BkLAPsbd was 12 min at 70°C, while less than 20% of wild-type enzyme activity retained at the same heating condition. Compared with the wild-type enzyme, the 60% decrease in the catalytic efficiency of BkLAPsbd was due to a 91% increase in K m value. Starch-binding assays showed that the K d and B max values for the fusion enzyme were 2.3 μM and 0.35 μmol/g, respectively. The adsorption of the crude BkLAPsbd onto raw starch was affected by starch concentration, pH, and temperature. The adsorbed enzyme could be eluted from the adsorbent by 2% soluble starch in 20 mM Tris–HCl buffer (pH 8.0). About 49% of BkLAPsbd in the crude extract was recovered through one adsorption–elution cycle with a purification of 11.4-fold.  相似文献   

6.
An amylase was purified from the culture filtrate ofTermitomyces clypeatus by ammonium sulphate precipitation, DEAE-Sephadex chromatography and gel filtration on Bio-Gel P-200 column. The electrophoretically homogeneous preparation also exhibited hydrolytic activity (in a decreasing order) on amylose, xylan, amylopectin, glycogen, arabinogalactan and arabinoxylan. The enzyme had characteristically endo-hydrolytic activity on all the substrates tested and no xylose, glucose, arabinose or glucuronic acid could be detected even after prolonged enzymatic digestion of the polysaccharides. Interestingly the enzyme had similar pH optima (5.5), temperature optima (55°C), pH stability (pH 3–10) and thermal denaturation kinetics when acted on both starch and xylan (larch wood) .K m values were found to be 2.63 mg/ml for amylase and 6.25 mg/ml for xylanase activity. Hill’s plot also indicated that the enzyme contained a single active site for both activities. Hg2+ was found to be most potent inhibitor. Ca2+, a common activator for amylase activity, appeared to be an inhibitor for this enzyme. Thus it appeared that the enzyme had multisubstrate specificity acting as α-amylase on starch and also acting as xylanase on side chain oligosaccharides of xylan containing α-linked sugars.  相似文献   

7.
A novel α-galactosidase gene (aga-F75) from Gibberella sp. F75 was cloned and expressed in Escherichia coli. The gene codes for a protein of 744 amino acids with a 24-residue putative signal peptide and a calculated molecular mass of 82.94 kDa. The native structure of the recombinant Aga-F75 was estimated to be a trimer or tetramer. The deduced amino acid sequence showed highest identity (69%) with an α-galactosidase from Hypocrea jecorina (Trichoderma reesei), a member of the glycoside hydrolase family 36. Purified recombinant Aga-F75 was optimally active at 60°C and pH 4.0 and was stable at pH 3.0–12.0. The enzyme exhibited broad substrate specificity and substantial resistance to neutral and alkaline proteases. The enzyme K m values using pNPG, melibiose, stachyose, and raffinose as substrates were 1.06, 1.75, 54.26, and 8.23 mM, respectively. Compared with the commercial α-galactosidase (Aga-A) from Aspergillus niger var. AETL and a protease-resistant α-galactosidase (Aga-F78) from Rhizopus sp. F78, Aga-F75 released 1.4- and 4.9-fold more galactose from soybean meal alone, respectively, and 292.5- and 8.6-fold more galactose from soybean meal in the presence of trypsin, respectively. The pH and thermal stability and hydrolytic activity of Aga-F75 make it potentially useful in the food and feed industries.  相似文献   

8.
Properties of the extracellular amylase produced by the psychrotrophic bacterium, Arthrobacter psychrolactophilus, were determined for crude preparations and purified enzyme. The hydrolysis of soluble starch by concentrated crude preparations was found to be a nonlinear function of time at 30 and 40 °C. Concentrates of supernatant fractions incubated without substrate exhibited poor stability at 30, 40, or 50 °C, with 87% inactivation after 21 h at 30 °C, 45% inactivation after 40 min at 40 °C and 90% inactivation after 10 min at 50 °C. Proteases known to be present in crude preparations had a temperature optimum of 50 °C, but accounted for a small fraction of thermal instability. Inactivation at 30, 40, or 50 °C was not slowed by adding 20 mg/ml bovine serum albumin or protease inhibitor cocktail to the preparations or the assays to protect against proteases. Purified amylase preparations were almost as thermally sensitive in the absence of substrate as crude preparations. The temperature optimum of the amylase in short incubations with Sigma Infinity Amylase Reagent was about 50 °C, and the amylase required Ca+2 for activity. The optimal pH for activity was 5.0–9.0 on soluble starch (30 °C), and the amylase exhibited a K m with 4-nitrophenyl-α-D-maltoheptaoside-4,6-O-ethylidene of 120 μM at 22 °C. The amylase in crude concentrates initially hydrolyzed raw starch at 30 °C at about the same rate as an equal number of units of barley α-amylase, but lost most of its activity after only a few hours.  相似文献   

9.
Chitinase,β-1,3-glucanase, cellulase, xylanase and protease activity were detected in a crude enzyme preparation obtained from a slime mold (Badhamia utricularis) which was grown on autoclaved mycelia ofPholiota nameko in a petri dish. The optimal pH of the enzyme preparation for lytic activity against fruit bodies ofLentinus edodes was 4.0, and those ofβ-1,3-glucanase and cellulase were the same. On the other hand, chitinase and protease showed optimal activity at pH 5.0 and 8.0, respectively. The lytic activity was stable below 40°C but completely inactivated at 70°C, and was most stable at pH 5.0. The studies of the optimal pH, thermal stability, and pH stability, and isoelectric focusing analysis of the enzyme preparation suggest that chitinase,β-1,3-glucanase and cellulase activities may be responsible for lysis of fruit bodies of some mushrooms. The crude enzyme preparation from the slime mold lysed fruit bodies of several mushrooms more efficiently than did commercial lytic enzymes preparations (Driselase and Usukizyme).  相似文献   

10.
Trehalase from the culture filtrate ofLentinula edodes was purified and characterized. Molecular masses were estimated to be 158 kDa and 79–91 kDa by gel filtration and SDS-PAGE under the reduced condition, respectively. The enzyme was composed of two identical subunits and contained carbohydrate molecules. The optimum temperature and pH were obtained at around 40°C and pH 5.0, respectively. The enzyme was stable up to 40°C and in a range pH of 4–10 at 30°C. It cleaved α-1,1 linkages of trehalose, but not α-1,4, α-1,6 or β-1,4 glycosyl linkages, and was defined as an acid trehalase.  相似文献   

11.
Summary Response surface methodology was applied to optimize medium components for maximum production of a thermostable α-galactosidase by thermotolerant Absidia sp. WL511. First, the Plackett-Burman screening design was used to evaluate the effects of variables on enzyme production. Among these variables, MgSO4 and soybean meal were identified as having the significant effects (with confidence level (90%). Subsequently, the concentrations of MgSO4 and soybean meal were further optimized using central composite designs. The optimal parameters were determined by response surface and numerical analyses as 0.0503% (g/g) MgSO4 and 0.406% (g/g) soybean meal and allowed α-galactosidase production to be increased from 4.4 IU g−1 to 117.8 IU g−1. The subsequent verification experiments confirmed the validity of the model. The optimum pH of enzymatic activity was 7.5 and the enzyme was stable at pH values ranging from 5.0 to 9.0. The optimum temperature was 73 °С. The enzyme was fairly stable at temperatures up to 60 °С and had 87% of its full activity at 65 °С after 2 h of incubation.  相似文献   

12.
Penicillium sp. X−1, isolated from decayed raw corn, produced high level of raw-starch-digesting glucoamylase (RSDG) under solid state fermentation (SSF). Maximum enzyme yield of 306.2 U g−1 dry mouldy bran (DMB) was obtained after 36 h of culture upon optimized production. The enzyme could hydrolyse both small and large granule starches but did not adsorb on raw starch. The enzyme exhibited maximum activity at 65°C and pH 6.5, which provided an opportunity of synergism with α-amylase. It significantly hydrolysed 15% (w/v) raw corn starch slurry in synergism with the commercial α-amylase and a degree of hydrolysis of 92.4% was obtained after 2 h of incubation.  相似文献   

13.
An acid α-galactosidase from the seeds of the jack fruit seed (Artocarpus integrifolia) has been purified to homogeneity by affinity chromatography on a matrix formed by cross-linking the soluble α-galactose-bearing guar seed galactomannan. The 35kDa enzyme was a homotetramer of 9.5kDa subunits. Its carbohydrate part (5.5%) was composed of galactose and arabinose. TheK m withp-nitrophenyl α-D-galactoside as substrate was 0.35 mM. TheK i values indicated inhibition by galactose, 1-O-methyl α-galactose and melibiose in the decreasing order. Among α-galactosides, the enzyme liberated galactose from melibiose, but not from raffinose or stachyose at its pH optimum (5.2). The guar seed galactomannan was however efficiently degalactosidated; limited enzyme treatment abolished the precipitability of the polysaccharide by the α-galactose-specific jack fruit seed lectin, and complete hydrolysis yielded insoluble polysaccharide. Though similar in sugar specificity and subunit assembly, α-galactosidase and the lectin coexisting in the jack fruit seed gave no indication of immunological identity.  相似文献   

14.
Alkaline stable (pH 7.75–12.5) urease from Sporosarcina ureae was purified over 400-fold by ion exchange and hydrophobic interaction chromatography. The cytoplasmic enzyme was remarkably active with a specific activity of greater than 9300 μmol urea degraded min-1 mg protein-1 at pH 7.5, where it has optimal activity. Although S. ureae is closely related to Bacillus pasteurii, known to posses a homopolymeric urease containing 1 nickel per subunit [M r=65000], the S. ureae enzyme is comprised of three subunits [apparent M r=63100 (α), 14500 (β), and 8500 (γ)] in an estimated ∝βγ stoichiometry and contains 2.1±0.6 nickel ions per ∝βγ unit as measured by atomic absorption spectrometry. Stationary phase cultures sometimes possessed low levels of urease activity, but the specific activity of cell extracts of partially purified urease preparations from such cultures could be elevated by heat treatment, dilution, or dialysis to values comparable to those observed in samples from exponentially grown cells.  相似文献   

15.
α-Galactosidase production by a newly isolated actinomycete Streptomyces griseoloalbus under submerged fermentation was investigated. The influence of initial pH of medium, incubation temperature, inoculum age and inoculum size on α-galactosidase formation was studied. Various carbon sources were supplemented in the medium to study their effect on enzyme production. The influence of the concentration of locust bean gum on enzyme production also was optimized. Optimization of process parameters resulted in a highest α-galactosidase activity of 20.4 U/ml. The highest α-galactosidase activity was obtained when the fermentation medium with initial pH 6.0 and containing 1% locust bean gum as growth substrate was inoculated with 10% (v/v) of 72 h grown inoculum and incubated at 30°C. The hydrolysis of flatulence-causing oligosaccharides in soymilk by the enzyme was also investigated. Thin layer chromatographic analysis of enzyme-treated soymilk samples showed the complete hydrolysis of soy oligosaccharides liberating galactose, the final product.  相似文献   

16.
The histidine, tyrosine, tryPtoPhan and carboxyl grouPs in the enzyme glucoamylase fromAsPergillus Candidus andRhizoPus sPecies were modified using grouP sPecific reagents. Treatment of the enzyme with diethylPyrocarbonate resulted in the modification of 0.3 and 1 histidine residues with only a slight loss in activity (10% and 35%) of glucoamylase fromAsPergillus candidus andRhizoPus sPecies resPectively. Modification of tyrosine either by N-acetylimidazole or [I125]-leads to a Partial loss of activity. Under denaturing conditions, maltose did not helP in Protecting the enzyme against tyrosine modification or inactivation. Treatment with 2-Hydroxy-5-nitro benzyl bromide in the Presence of urea, Photooxidation at PH 9.0, N-bromosuccinamide at PH 4.8 resulted in a comPlete loss of activity. However, the results of exPeriments in the Presence of maltose and at PH 4.8 Photooxidation and N-bromosuccinamide treatment suggested the Presence of two tryPtoPhan residues at the active site. There was a comPlete loss of enzyme activity when 10 and 28 carboxyl grouPs fromAsPergillus candidus andRhizoPus, resPectively were modified. Modification in the Presence of substrate maltose, showed at least two carboxyl grouPs were Present at the active site of enzyme and that only one active center seems to be involved in breaking ally 3 tyPes of α-glucosidic linkages namely α-1, 4, α-1, 6 and α-l, 3.  相似文献   

17.
The purification and properties of glucoamylase (α-l,4-glucan glucohydrolase, EC 3.2.1.3) from different fungal sources have been compared. The studies on the conformation and activity of the native enzyme at a function of pH, temperature, substrate concentration and the effect of denaturants and on the role of carbohydrate moiety on structure and stability have been reviewed. The chemical modification of the active centre, binding kinetics of the substrate and active site and the mechanism of action have been summarized. They differ in their fine structure as revealed by their near ultra-violet circular dichroism spectra and contain 30–35 % α-helix, 24–36 %Β-structure and the rest aperiodic structure. The activity of the enzyme is very sensitive to the environment around aromatic aminoacid residues. The glucoamylases are glycoprotein in nature, differ in their content and nature of carbohydrate from different sources. The carbohydrate moiety plays an important role in stabilising the native conformation of the enzyme and is not involved in activity and antigenecity. At the active site of the enzyme, two tryptophan and two carboxyl (glutamate or aspartate) groups are present. It is likely that the histidine and tyrosine residues which are present away from the active site are involved in binding of the substrate. There seems to be seven subsites which are involved in binding of the substrate and the catalytic site is situated in between 1 and 2 subsites. In breaking of α-1,4-, α-1,3-, and α-l,6-bonds only one active centre is involved. Studies on the immobilization of either glucoamylase alone or as a part of a multienzyme system have been reviewed briefly  相似文献   

18.
β-Mannanase catalyzes endo-wise hydrolysis of the backbone of mannan and heteromannan, which are abundant in the cell wall structure of ungerminated leguminous seeds. The mature β-mannanase originated from Bacillus subtilis was expressed in Pichia pastoris, a methylotrophic yeast, using the leader peptide sequence of Saccharomyces cerevisiae α-factor. The cultivation of β-mannanase expressing Pichia pastoris yields up to 1.8 g/L protein. In the supernatant the activity of the 40 kDa—total mannanase attained a level of 1102.0 IU/mL. The properties of the β-mannanase were characterized. Optimum pH and temperature for the recombinant enzyme were 5.5 and 50°C respectively. The enzyme was stable at pH 5.0–10.0 and maintained over 30% original activity after incubating at 70°C for 30 min. __________ Translated from China Biotechnology, 2005, 26(7): 52–56 [译自: 中国生物工程杂志]  相似文献   

19.
Formate oxidase was found in cell-free extracts of Debaryomyces vanrijiae MH201, a soil isolate. After purification by column chromatography, the preparation showed a protein band corresponding to a molecular mass (MM) of 64 kDa on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The MM, estimated by a gel filtration, was 99 kDa. The preparation showed two and three bands on isoelectric focusing under denaturing and native conditions, respectively. These results suggest that the preparation contained three isoforms, each of which might be composed of αα, αβ, and ββ subunits with apparently similar MM. The preparation acted on formate with K m and V max values of 11.7 mM and 262 μmol min−1 mg−1, respectively, at pH 4.5 and 25°C, but showed no evidence of activity on the other compounds tested. The optimum pH and temperature were pH 4.0 and 35°C, respectively. The preparation showed activities of 85% of the initial activity after storage at pH 6.0 and 4°C for 8 weeks. When 10 mM formaldehyde was reacted with 2.0 U ml−1 of the enzyme preparation at pH 5.5 and room temperature in the presence of 2.0 U ml−1 of a microbial aldehyde oxidase and 100 U ml−1 of catalase for 180 min, neither of formate nor formaldehyde was detected, suggesting that the reaction involved the quantitative conversion of formaldehyde to carbon dioxide.  相似文献   

20.
A novel α-l-arabinofuranosidase (α-AraF) belonging to glycoside hydrolase (GH) family 43 was cloned from Humicola insolens and expressed in Aspergillus oryzae. 1H-NMR analysis revealed that the novel GH43 enzyme selectively hydrolysed (1→3)-α-l-arabinofuranosyl residues of doubly substituted xylopyranosyl residues in arabinoxylan and in arabinoxylan-derived oligosaccharides. The optimal activity of the cloned enzyme was at pH 6.7 and 53 °C. Two other novel α-l-arabinofuranosidases (α-AraFs), both belonging to GH family 51, were cloned from H. insolens and from the white-rot basidiomycete Meripilus giganteus. Both GH51 enzymes catalysed removal of (1→2) and (1→3)-α-l-arabinofuranosyl residues from singly substituted xylopyranosyls in arabinoxylan; the highest arabinose yields were obtained with the M. giganteus enzyme. Combinations (50:50) of the GH43 α-AraF from H. insolens and the GH51 α-AraFs from either M. giganteus or H. insolens resulted in a synergistic increase in arabinose release from water-soluble wheat arabinoxylan in extended reactions at pH 6 and 40 °C. This synergistic interaction between GH43 and GH51 α-AraFs was also evident when a GH43 α-AraF from a Bifidobacterium sp. was supplemented in combination with either of the GH51 enzymes. The synergistic effect is presumed to be a result of the GH51 α-AraFs being able to catalyse the removal of single-sitting (1→2)–α-l-arabinofuranosyls that resulted after the GH43 enzyme had catalysed the removal of (1→3)–α-l-arabinofuranosyl residues on doubly substituted xylopyranosyls in the wheat arabinoxylan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号