首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemistry of the lipoxygenase pathways in neutrophils   总被引:2,自引:0,他引:2  
Three mammalian lipoxygenases have been reported to date. They catalyze the insertion of oxygen at positions 5, 12, and 15 of various 20-carbon polyunsaturated fatty acids. In the case of arachidonic acid, the immediate products are hydroperoxyeicosatetraenoic acids (HPETEs). HPETEs can undergo different transformations. One reaction is a reduction of the hydroperoxy group yielding the corresponding hydroxyeicosatetraenoic acids (HETEs). In the neutrophils, the major pathway of arachidonic acid metabolism is the 5-lipoxygenase. In these cells the 5-HPETE undergoes a cyclization reaction leading to a 5(6)-epoxy(oxido)eicosatetraenoic acid or leukotriene A4. The 5(6)-epoxy fatty acid can undergo three additional transformations: (a) a nonenzymatic hydrolysis to epimeric dihydroxyeicosatetraenoic acids (diHETEs); (b) stereospecific enzymatic hydrolysis to a specific diHETE, leukotriene B4; or (c) ring opening by reduced glutathione (GSH) to yield a peptidolipid, named leukotriene C4, in which GSH is attached via a sulfoether linkage. The leukotrienes constitute a group of biologically active substances probably involved in allergic and inflammatory reactions. The 5(6)-epoxy-eicosatetraenoic acid and the products derived from it contain a conjugated triene unit; the term leukotriene also denotes the cells (leukocytes) recognized to form these products, mainly the neutrophils, eosinophils, basophils, monocytes, mast cells, and macrophages. In the present article various aspects of the biochemistry of the lipoxygenase pathways of neutrophils are reviewed.  相似文献   

2.
The synthesis and metabolism of leukotrienes (LTs) by endothelial cells was investigated using reverse-phase high-performance liquid chromatography. Cells were incubated with [14C]arachidonic acid. LTA4 or [3H]LTA4 and stimulated with ionophore A23187. The cells did not synthesize leukotrienes from [14C]arachidonic acid. LTA4 and [3H]LTA4 were converted to LTC4, LTD4, LTE4 and 5,12-diHETE. Endothelial cells metabolized [3H]LTC4 to [3H]LTD4 and [3H]LTE4. The metabolism of [3H]LTC4 was inhibited by L-serine-borate complex, phenobarbital and acivicin in a concentration-related manner, with maximal inhibition occurring at a concentration of 0.1 M, 0.01 M and 0.01 M, respectively. LTC4, LTB4 and LTD4 stimulated the synthesis of prostacyclin, measured by radioimmunoassays as 6-keto-PGF1 alpha. The stimulation by LTC4 was greater than that by LTD4 or LTB4. LTE4, 14,15-LTC4 and 14,15-LTD4 failed to stimulate the synthesis of prostacyclin. LTD4 and LTB4 also stimulated the release of PGE2, whereas LTC4 did not. Serine-borate and phenobarbital inhibited LTC4-stimulated synthesis of prostacyclin in a concentration-related manner. They also inhibited the release of prostacyclin by histamine, A23187 and arachidonic acid. Acivicin had no effect on the release of prostacyclin by LTC4, histamine or A23187. Furthermore, FPL-55712, an LT receptor antagonist, inhibited LTC4-stimulated prostacyclin synthesis but had no effect on histamine-stimulated release of prostacyclin or PGE2. Indomethacin inhibited both LTC4- and histamine-stimulated release. The results show that (a) endothelial cells metabolize LTA4, LTC4 and LTD4 but do not synthesize LTs from arachidonic acid; (b) LTC4 act directly at the leukotriene receptor to stimulation prostacyclin synthesis; (c) the presence of the glutathione moiety at the C-6 position of the eicosatetraenoic acid skeleton is necessary for leukotriene stimulation of prostacyclin release; and (d) the metabolism of LTC4 to LTD4 and LTE4 does not appear to alter the ability of LTC4 to stimulate the synthesis of PGI2.  相似文献   

3.
Black cumin seed, Nigella sativa L., and its oils have traditionally been used for the treatment of asthma and other inflammatory diseases. Thymoquinone (TQ) has been proposed to be one of the major active components of the drug. Since leukotrienes (LTs) are important mediators in asthma and inflammatory processes, the effects of TQ on leukotriene formation were studied in human blood cells. TQ provoked a significant concentration-dependent inhibition of both LTC4 and LTB4 formation from endogenous substrate in human granulocyte suspensions with IC50 values of 1.8 and 2.3 microM, respectively, at 15 min. Major inhibitory effect was on the 5-lipoxygenase activity (IC50 3 microM) as evidenced by suppressed conversion of exogenous arachidonic acid into 5-hydroxy eicosatetraenoic acid (5HETE) in sonicated polymorphonuclear cell suspensions. In addition, TQ induced a significant inhibition of LTC4 synthase activity, with an IC50 of 10 microM, as judged by suppressed transformation of exogenous LTA4 into LTC4. In contrast, the drug was without any inhibitory effect on LTA4 hydrolase activity. When exogenous LTA4 was added to intact or sonicated platelet suspensions preincubated with TQ, a similar inhibition of LTC4 synthase activity was observed as in human granulocyte suspensions. The unselective protein kinase inhibitor, staurosporine failed to prevent inhibition of LTC4 synthase activity induced by TQ. The findings demonstrate that TQ potently inhibits the formation of leukotrienes in human blood cells. The inhibitory effect was dose- and time-dependent and was exerted on both 5-lipoxygenase and LTC4 synthase activity.  相似文献   

4.
The chemotactic activity of leukotriene B4 (5S, 12R Dihydroxy 6, 14 cis, 8, 10 trans eicosatetraenoic acid) (LTB4) was examined by using a sensitive Boyden-chamber assay. The activity of LTB4 was compared to other biosynthetic stereoisomers: 5S, 12R Dihydroxy 6, 8, 10 trans 14 cis eicosatetraenoic acid (6-trans LTB4); 5S, 12S Dihydroxy 6, 8, 10 trans 14 cis eicosatetraenoic acid (12-epi-6-trans LTB4), 5S, 12S DiHETE; the metabolic product 20-Hydroxy LTB4 (20-OH LTB4); methylated LTB4 (Methyl-LTB4), and the related monoHETE 5-HETE and 12-HETE. The compounds were purified by several steps of reverse phase and straight phase HPLC. The LTB4 exhibits measurable chemotactic activity at 10(-9) M with maximal activity at 10(-7) M and an ED50 of 10(-8) M. The LTB4 isomers and monoHETE were less chemotactic than previously reported. The monoHETE (5-HETE and 12-HETE), the isomer 12-epi-6-trans LTB4, and 5S, 12S DiHETE fail to attract neutrophils at levels between 10(-6) and 10(-5) M. If these compounds are chemotactic, then activity is at least four orders of magnitude less than that of LTB4. The isomer 6-trans LTB4 at 10(-6) to 10(-5) M induced chemotaxis with an extrapolated ED50 value of 10(-5) M, indicating that a trans for cis change in configuration at position 6 reduces the chemotactic activity of LTB4 by 1000-fold. Conversely, the metabolic product 20-OH LTB4 is at least as active as the native compound LTB4. Methylation of the carboxyl group of LTB4 reduces its chemotactic activity by two orders of magnitude. These results indicate a high degree of stereospecificity for the LTB4 receptor with strict dependence on hydroxyl group, and triene configuration and considerable dependence on the carboxyl group. Modification at the aliphatic omega end of the LTB4 molecule has a minimal effect on function, suggesting that the hydrophobicity of this portion of the molecule is not important for optimal activity. Furthermore, we propose that metabolic products of LTB4 may be of greater importance than LTB4 as physiologic inflammatory mediators in vivo.  相似文献   

5.
Biosynthesis and biological activity of leukotriene B5   总被引:10,自引:0,他引:10  
Several studies indicate that increased intake of eicosapentaenoic acid (EPA) in the diet may lead to decreased incidence of thrombotic events. Most investigators agree that this is achieved by competitively inhibiting the conversion of arachidonic acid (AA) to thromboxane A2 in the platelets. The effect of high EPA-intake on the formation of prostacyclin is less clear. However, EPA is a good substrate for lipoxygenase enzymes which results in formation of hydroperoxy- and hydroxy-acids, and, in some cases, leukotrienes. The biological activities of the leukotrienes derived from arachidonic acid suggest that they mediate or modulate some symptoms associated with inflammatory and hypersensitivity reactions. In order to clarify the possible effect of dietary manipulation on inflammatory processes, leukotriene B5 (LTB5) was prepared and its biological activities assessed. LTB5 was biosynthesized by incubation EPA with glycogen-elicited polymorphonuclear neutrophils (PMN) from rabbits in the presence of the divalent cation ionophore, A23187. The LTB5 was extracted from the incubate using mini-reverse phase extraction columns (Sep-pak) and purified by reverse-phase high pressure liquid chromatography (RP-HPLC). The purity of the product assessed by repeat RP-HPLC and straight phase (SP) HPLC was greater than 95%. Ultra-violet spectrophotometry of the product confirmed its purity and also provided assessment of the yield. The biological activity of LTB5 was assessed and compared with that of LTB4 in the following tests: aggregation of rat neutrophils, chemokinesis of human PMN, lysosomal enzyme release from human PMN and potentiation of bradykinin-induced plasma exudation. In all these tests, LTB5 was considerably less active (at least 30 times) than LTB4.  相似文献   

6.
Leukotrienes B4, C4, and D4 were capable of replacing the helper cell or interleukin 2 requirement for gamma-interferon (IFN gamma) production by Lyt-1-,2+ cells from C57BL/6 mouse spleen cells at leukotriene concentrations as low as 0.002 microM. An antioxidant inhibitor (butylated hydroxyanisole) of lipoxygenase metabolism of arachidonic acid suppressed IFN gamma production. The suppression was significantly reversed by leukotriene C4, which further suggests that leukotrienes and possibly other substances produced by the lipoxygenase pathway of arachidonic acid metabolism play an important role in the regulation of IFN gamma production. All of these events may be related to activation of guanylate cyclase activity, since cyclic GMP also significantly reversed the suppressor effects of butylated hydroxyanisole in IFN gamma production. The leukotriene help for IFN gamma production was independent of DNA synthesis or cellular proliferation. The data are consistent with the hypothesis that lipxoygenase products of arachidonic acid metabolism may play a role in the mediation of interleukin 2 help in IFN gamma production. Cells that are rich sources of leukotrienes, then, should play important roles in positive regulation of lymphokine production.  相似文献   

7.
The effects of arachidonic acid metabolites on mitogen-induced interferon (IFN)-gamma production by human peripheral blood mononuclear cells (PBMC) were examined. Both prostaglandins E2 (PGE2) and leukotrienes B4 (LTB4) were produced after macrophage activation stimulated by galactose oxidase (GO) and Staphylococcal enterotoxin B (SEB), two well known inducers of IFN-gamma. To test the involvement of PGE2 and LTB4 in IFN-gamma production, GO- and SEB-activated PBMC were treated with two inhibitors of cyclooxygenase (aspirin and indomethacin) and with an inhibitor of lipoxygenase [nordihydroguaiaretic acid (NDGA)]. The results of these experiments showed that aspirin and indomethacin cause a marked increase of IFN-gamma production by GO- and SEB-activated PBMC. On the contrary, NDGA treatment reduced IFN-gamma production induced by the same agents. Moreover, whereas the addition of exogenous PGE2 reduces IFN gamma production, the addition of exogenous LTB4 does not affect IFN-gamma production. Taken together these findings indicate that arachidonic acid metabolites, produced during mitogenic activation, are involved in the regulation of IFN-gamma production and suggest that, in our system, LTB4 exerts a positive modulating signal while PGE2 represents a negative signal.  相似文献   

8.
The bronchoconstrictive leukotrienes (LTs) LTC4, LTD4 and LTE4 (cysteinyl-LTs) and the chemoattractant LTB4 were formed in chopped human lung stimulated by the calcium ionophore A23187, or supplied with the precursor LTA4. In contrast, challenge with anti-IgE exclusively induced release of cysteinyl-LTs, indicating that LTB4 is not released as a primary consequence of IgE-mediated reactions in the human lung. Furthermore, several differences were observed with respect to formation and further conversion of LTB4 and LTC4 in the chopped lung preparation. Thus, exogenous [1-14C]arachidonic acid was dose-dependently converted to radioactive LTB4, whereas the cysteinyl-LTs released were not radiolabeled and the amounts of LTC4, D4 and E4 were not influenced by addition of increasing concentrations of arachidonic acid. LTC4 was rapidly and completely converted into LTD4 and LTE4, with no further catabolism of LTE4 within 90 min. The metabolism of LTB4 was much slower than that of LTC4. Thus, following a 60 min incubation approx. 25% of the material remained as LTB4, whereas 35% was omega-oxidized and 40% eluted on RP-HPLC as two unidentified peaks.  相似文献   

9.
Reactive oxygen species (ROS) are important regulatory molecules implicated in the signaling cascade triggered by tumor necrosis factor (TNF)-alpha, although the events through which TNF-alpha induces ROS generation are not yet well characterized. We therefore investigated selected candidates likely to mediate TNF-alpha-induced ROS generation. Consistent with the role of Rac in that process, stable expression of Rac(Asn-17), a dominant negative Rac1 mutant, completely blocked TNF-alpha-induced ROS generation. To understand better the mediators downstream of Rac, we investigated the involvement of cytosolic phospholipase A(2) (cPLA(2)) activation and metabolism of the resultant arachidonic acid (AA) by 5-lipoxygenase (5-LO). TNF-alpha-induced ROS generation was blocked by inhibition of cPLA(2) or 5-LO, but not cyclooxygenase, suggesting that TNF-alpha-induced ROS generation is dependent on synthesis of AA and its subsequent metabolism to leukotrienes. Consistent with that hypothesis, TNF-alpha Rac-dependently stimulated endogenous production of leukotriene B(4) (LTB(4)), while exogenous application of LTB(4) increased levels of ROS. In contrast, application of leukotrienes C(4), D(4), and E(4) or prostaglandin E(2) had little effect. Our findings suggest that LTB(4) production by 5-LO is situated downstream of the Rac-cPLA(2) cascade, and we conclude that Rac, cPLA(2), and LTB(4) play pivotal roles in the ROS-generating cascade triggered by TNF-alpha.  相似文献   

10.
Adenosine is a renal vasoconstrictor that plays an important role in mediating renal adaptive responses to decreases in renal perfusion pressure. It is known that adenosine acts on the metabolism of arachidonic acid, but the direct repercussions of adenosine in the production of renal prostaglandins and leukotrienes have not been studied. This study was undertaken to evaluate the effect of the intrarenal infusion of adenosine upon the urinary elimination of arachidonic acid derivatives. Samples of urine were collected with lysine acetylsalicylate and determination of prostaglandins (PGs) and leukotrienes (LTs) was performed by radioimmunoassay of samples previously separated by HPLC. The infusion of adenosine decreases the urinary excretion of 6-keto-PGF1 alpha and TxB2 significantly. There was no significant change in urinary excretion of PGE2 while LTB4 and LTC4 showed a tendency to increase. These results suggest that a fall in the synthesis of PGI2 along with an increase in LTC4, which is a constrictor of mesangial cells, could be responsible for the renal vasoconstriction phase of adenosine. Therefore, it was concluded that adenosine vasoconstriction is mediated through the inhibition of the cyclo-oxygenase pathway, diminishing the synthesis of PG vasodilators.  相似文献   

11.
We have studied the effect of leukotrienes, (LT): B4, C4, D4 and E4 and the hydroxyeicosatetraenoic acids (HETEs) 5-HETE and 12-HETE on bone resorption in vitro. Resorption was measured by colorimetric assay of calcium released from neonatal mouse calvaria maintained in organ culture for 72h. All the LTs and HETEs stimulated bone resorption, with optimum responses at picomolar or nanomolar concentrations. The responses were biphasic, with a decreasing effect at higher concentrations. In contrast, prostaglandin E2 (PGE2) stimulated resorption only at 10nM and above. Indomethacin partially inhibited resorption by LTB4, LTC4 and LTD4, but did not affect resorption stimulated by LTE4, 5-HETE and 12-HETE. These results indicate that lipoxygenase products of arachidonic acid are highly potent bone resorbing factors and may play an important role in the localised bone loss associated with inflammatory lesions.  相似文献   

12.
The implication of leukotrienes as mediators of inflammation and recent evidence that prostaglandin analogues provide a beneficial effect during experimental colitis led to the speculation that (i) leukotrienes may be injurious and (ii) prostaglandins may be protective to colonic mucosa. Using a 2% acetic acid induced rat colitis model, we administered specific cyclooxygenase (indomethacin) and leukotriene biosynthesis inhibitors (MK-886) to examine the effect of endogenous prostaglandins and leukotrienes on colonic macroscopic injury, mucosal inflammation as measured by myeloperoxidase activity, net in vivo intestinal fluid absorption, and colonic PGE2 and LTB4 levels as measured by in vivo rectal dialysis. Indomethacin treatment prior to induction of colitis reduced endogenous mucosal PGE2 levels and exacerbated macroscopic ulceration and net fluid absorption. Addition of the exogenous PGE1 analogue misoprostol to the indomethacin-exacerbated colitis completely healed colonic macroscopic ulceration and inflammation but only partially improved fluid absorptive injury. The specific leukotriene biosynthesis inhibitor MK-886 administered prior to induction of colitis healed macroscopic ulceration and inflammation but not fluid absorptive injury. This mucosal reparative effect of MK-886 occurred at a dose that reduced colonic LTB4 synthesis while concomitantly enhancing PGE2 levels. Combining MK-886 with misoprostol treatment improved not only macroscopic ulceration and inflammation but also provided a synergistic effect that maintained net colonic fluid absorption at noncolitic control levels. These studies suggest that, during the induction of experimental colitis, endogenous prostaglandins play a pivotal role in providing a mucosal healing effect, and that leukotriene biosynthesis inhibitor may manifest part of its beneficial effect by shifting arachidonic acid metabolism towards production of prostaglandins.  相似文献   

13.
The effects of alcohols on the formation of leukotrienes, 5-HETE and prostaglandin D2 in mastocytoma cells and human neutrophils were studied. In murine mastocytoma cells, alcohols appear to have at least two different effects on the production of these arachidonic acid metabolites. At low levels of cellular arachidonic acid achieved after stimulation with calcium ionophore A23187 or addition of low levels of exogenous arachidonic acid, alcohols appear to have a general inhibitory effect on the production of lipoxygenase metabolites. In the presence of higher concentrations of cellular arachidonic acid, ethanol and methanol stimulated the production of lipoxygenase metabolites, but had no large stimulatory effect on the cyclo-oxygenase metabolite, prostaglandin D2. Under these conditions, n-propanol and t-butanol have inhibitory effects on leukotriene production. Human neutrophils are less sensitive to ethanol than mastocytoma cells, but stimulatory effects were still found at high ethanol concentrations (220-430 mM).  相似文献   

14.
Leukotrienes (LTs) are potent pro-inflammatory mediators derived from arachidonic acid by the action of 5-lipoxygenase. There are two groups of LTs: LTB(4) and cysteinyl LTs (LTC(4), LTD(4), and LTE(4)). Both of them play important roles in many inflammatory diseases and allergic responses. Recently, their G-protein coupled receptors have been cloned. The identification of these receptors enables us to analyze their gene structures, regulation of expression, and signal transduction in the cells, and it also leads to the development of useful antagonists. Some LT receptors have been disrupted by gene targeting. Such studies may reveal novel functions of leukotrienes, confirming deeper viewpoints for further research.  相似文献   

15.
M E Goldyne  L Rea 《Prostaglandins》1987,34(6):783-795
The ability of leukotriene B4 (LTB4) to influence T cell and natural killer (NK) cell functions makes the question of LTB4 generation by these cells important to address. Consequently, LTB4 generation was evaluated in a human (Jurkat), and in a murine (EL-4) T cell line as well as in a rat NK cell line (RNK-16). Incubation of each of the 3 cell lines with [1-14C]arachidonic acid alone or in the presence of phytohemagglutinin (PHA), of calcium ionophore A23187, or of concanavalin A (Con A) plus the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) failed to generate radiolabelled LTB4 or other eicosanoids as determined by thin layer radiochromatography. Using two different radioimmunoassays for LTB4 also failed to demonstrate the generation of LTB4 under basal or stimulated conditions. These results support earlier studies that demonstrate that T cells are not capable of de novo synthesis of prostaglandins, thromboxanes, or leukotrienes and also provide evidence that NK cells also do not have the capacity to generate LTB4 or other eicosanoids. Our findings are also critically discussed in relation to studies claiming eicosanoid synthesis by T cells.  相似文献   

16.
5-Lipoxygenase and leukotriene (LT) A4 synthase, the first two enzymes in the pathway converting arachidonic acid to leukotrienes, can be co-purified. The Ca2+-activated conversion of arachidonic acid and of 5-hydroperoxyeicosatetraenoic acid (5-HPETE) to LTB4 have been compared, using cytosol from human leucocytes. The two activities showed identical responses to a number of inhibitors, suggesting that the two catalytic activities may involve the same active centre. The effects of Ca2+ ions were further investigated. With 5-HPETE as substrate, substantial synthesis of LTB4 was given in the absence of Ca2+, and the inhibitor sensitivity of this component was quite different from that of the Ca2+-activated component. This Ca2+-independent synthase activity was, however, very low in saponin-permeabilised washed leucocytes and it may therefore be not significant physiologically. With arachidonic acid as substrate at pH 7, the activity was highly Ca2+-dependent at a low substrate concentration (6.6 microM), but at a high concentration (132 microM) substantial activity was observed without Ca2+. This was also found when 5-lipoxygenase was assayed in cytosol from RBL cells. At pH 8-8.5, however, Ca2+ was required at both high and low concentrations of arachidonic acid. This suggests that Ca2+ is required for 5-lipoxygenase activity on arachidonate ions in solution but possibly not on protonated arachidonic acid or micelles.  相似文献   

17.
Leukotrienes produced from arachidonic acid by the action of 5-lipoxygenase (5-LO) are classical mediators of inflammatory responses. Recently, it has been demonstrated that leukotrienes also play an important role in host defense against microorganisms. In vitro studies have shown that leukotrienes augmented the anti-mycobacterial activity of neutrophils. In this study, we examined the role of leukotrienes in regulating host response and cytokine generation in a murine model of tuberculosis. Administration of the 5-LO pathway inhibitor MK 886, which reduced lung levels of both the leukotriene B(4) and the anti-inflammatory substance lipoxin A(4) by approximately 50%, increased 60-day mortality from 14% to approximately 57% in Mycobacterium tuberculosis-infected mice, and increased lung bacterial burden by approximately 15-fold. Although MK 886-treated animals exhibited no reduction in pulmonary leukocyte accumulation, they did manifest reduced levels of nitric oxide generation and of the protective type 1 cytokines interleukin-12 and gamma interferon. Together our results demonstrate that 5-LO pathway product(s) - presumably leukotrienes - positively regulate protective Th1 responses against mycobacterial infection in vivo. Moreover, the immunosuppressive phenotype in infected mice observed with MK 886 is most consistent with inhibition of an activator (LTB(4)) rather than a suppressor (LXA(4)) of antimicrobial defense, suggesting the major effect of leukotrienes.  相似文献   

18.
Properties of leukotriene B4 20-hydroxylase from polymorphonuclear leukocytes   总被引:16,自引:0,他引:16  
Human polymorphonuclear leukocytes (PMNL) convert arachidonic acid (20:4) to a number of dihydroxy metabolites, including leukotriene B4 (LTB4) 5S,12R-dihydroxy-6,8,10,14-EEEZ-icosatetraenoic acid (isomer-1), 5S,12S-dihydroxy-6,8,10,14-EEEZ-icosatetraenoic acid, 5S,12S-dihydroxy-6,8,10,14-EZEZ-icosatetraenoic acid (5S,12S-dh-20:4), 5,6-dihydroxy-7,9,11,14-icosatetraenoic acid, and 5,15-dihydroxy-6,8,11,13-icosatetraenoic acid. LTB4 was synthesized rapidly after stimulation of PMNL with the divalent cation ionophore, A23187, but its concentration rapidly declined after about 4 min, in contrast to the other dihydroxy metabolites of 20:4 whose concentrations remained stable for at least 20 min. The amounts of polar metabolites (identified primarily as 20-hydroxy-LTB4) increased steadily with time up to 20 min. These results suggest that LTB4 may be specifically converted to its 20-hydroxy metabolite by PMNL. We prepared 3H- and 14C-labeled analogs of the dihydroxyicosatetraenoic acid metabolites described above by incubation of labeled 20:4 with PMNL. Although all of these substances were metabolized to some extent by human PMNL, LTB4 (apparent Km, 1.0 microM) was metabolized the most rapidly, followed by 5S,12S-dh-20:4 (apparent Km, 2.4 microM) and isomer-1 (apparent Km, 4.8 microM). All three substrates were shown by mass spectrometry to be converted to their 20-hydroxy metabolites. LTB4 was also metabolized to its omega-carboxy derivative. Human mononuclear leukocytes and rabbit PMNL metabolized LTB4 very slowly, whereas rat PMNL metabolized this substrate at about one-sixth the rate of human PMNL. These results demonstrate that human PMNL contain an omega-hydroxylase that specifically converts LTB4 to its 20-hydroxy metabolite. This enzyme may be important for the regulation of LTB4 levels in vivo.  相似文献   

19.
High-performance liquid chromatography procedures were developed which separate leukotrienes (LTs), hydroxy-fatty acids (HETEs), prostaglandins (PGs), the stable metabolite of prostacyclin (6-keto-PGF1 alpha), the stable metabolite of thromboxane A2 (TXB2), 12-hydroxyheptadecatrienoic acid (HHT), and arachidonic acid (AA). Two methods employing reverse-phase columns are described. One method uses a radial compression system, the other a conventional steel column. Both systems employ methanol and buffered water as solvents. The radial compression system requires 60 min for separation of the AA metabolites, while the conventional system requires 100 min. Both methods provide good separation and recovery of 6-keto-PGF1 alpha, TXB2, PGE2, PGF2 alpha, PGD2, LTC4, LTB4, LTD4, LTE4, HHT, 15-, 12-, and 5-HETE; and AA. The 5S,12S-dihydroxy-6-trans, 8-cis, 10-trans, 14-cis-eicosatetraenoic acid (5S,12S-diHETE), a stereoisomer of LTB4, coelutes with LTB4. To determine the applicability of the methods to biologic systems, AA metabolism was studied in two models, guinea pig lung microsomes and rat alveolar macrophages. Both HPLC systems demonstrated good recovery and resolution of eicosanoids from the two biological systems. A simple evaporation technique for HPLC sample preparation, which avoids the use of chromatographic and other time-consuming methodology, is also described.  相似文献   

20.
The purpose of this study is to examine the "in vivo" release of 15-HETE and other arachidonic acid metabolites in nasal secretions following a challenge with "Dermatophagoides Pteronyssinus" in patients with allergic rhinitis and non-allergic controls. In addition, we examine the effects of a membrane stabilizer, such as sodium cromoglycate, on these metabolites. Thirteen allergic subjects and seven healthy controls are studied. 15-HETE, peptide leukotrienes, LTB4, PGD2, PGE2 and PGF2 alpha levels are evaluated before and after nasal challenge in sodium cromoglycate treated and untreated subjects. This study provides "in vivo" evidence that the pathophysiological responses to nasal antigen challenge could be related to the release of 15-HETE as well as other arachidonic acid metabolites, mainly arising from the lipoxygenase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号