首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several bovine brain proteins have been found to interact with a hydrophobic chromatography resin (phenyl-Sepharose CL-4B) in a Ca2+-dependent manner. These include calmodulin, the Ca2+/phospholipid-dependent protein kinase (protein kinase C) and a novel Ca2+-binding protein that has now been purified to electrophoretic homogeneity. This latter protein is acidic (pI 5.1) and, like calmodulin and some other high-affinity Ca2+-binding proteins, exhibits a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, with an apparent Mr of 22 000 in the absence of Ca2+ and Mr 21 000 in the presence of Ca2+. This novel calciprotein is distinct from known Ca2+-binding proteins on the basis of Mr under denaturing conditions, Cleveland peptide mapping and amino acid composition analysis. It may be a member of the calmodulin superfamily of Ca2+-binding proteins. This calciprotein does not activate two calmodulin-dependent enzymes, namely cyclic nucleotide phosphodiesterase and myosin light-chain kinase, nor does it have any effect on protein kinase C. It may be a Ca2+-dependent regulatory protein of an as-yet-undefined enzymic activity. The Ca2+/phospholipid-dependent protein kinase is also readily purified by Ca2+-dependent hydrophobic-interaction chromatography followed by ion-exchange chromatography, during which it is easily separated from calmodulin. A preparation of protein kinase C that lacks contaminating kinase or phosphatase activities is thereby obtained rapidly and simply. Such a preparation is ideal for the study of phosphorylation reactions catalysed in vitro by protein kinase C.  相似文献   

2.
A calmodulin-dependent protein phosphatase (calcineurin) was converted to an active, calmodulin-independent form by a Ca2+-dependent protease (calpain I). Proteolysis could be blocked by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, leupeptin, or N-ethylmaleimide, but other protease inhibitors such as phenylmethanesulfonyl fluoride, aprotinin, benzamidine, diisopropyl fluorophosphate, and trypsin inhibitor were ineffective. Phosphatase proteolyzed in the absence of calmodulin was insensitive to Ca2+ or Ca2+/calmodulin; the activity of the proteolyzed enzyme was greater than the Ca2+/calmodulin-stimulated activity of the unproteolyzed enzyme. Proteolysis of the phosphatase in the presence of calmodulin proceeded at a more rapid rate than in its absence, and the proteolyzed enzyme retained a small degree of sensitivity to Ca2+/calmodulin, being further stimulated some 15-20%. Proteolytic stimulation of phosphatase activity was accompanied by degradation of the 60-kilodalton (kDa) subunit; the 19-kDa subunit was not degraded. In the absence of calmodulin, the 60-kDa subunit was sequentially degraded to 58- and 45-kDa fragments; the 45-kDa fragment was incapable of binding 125I-calmodulin. In the presence of calmodulin, the 60-kDa subunit was proteolyzed to fragments of 58, 55 (2), and 48 kDa, all of which retained some ability to bind calmodulin. These data, coupled with our previous report that the human platelet calmodulin-binding proteins undergo Ca2+-dependent proteolysis upon platelet activation [Wallace, R. W., Tallant, E. A., & McManus, M. C. (1987) Biochemistry 26, 2766-2773], suggest that the Ca2+-dependent protease may have a role in the platelet as an irreversible activator of certain Ca2+/calmodulin-dependent reactions.  相似文献   

3.
A novel Ca2+-dependent protein kinase from Paramecium tetraurelia   总被引:3,自引:0,他引:3  
The ciliated protozoan Paramecium tetraurelia contained two protein kinase activities that were dependent on Ca2+. We purified one of the enzymes to homogeneity by Ca2+-dependent affinity chromatography on phenyl-Sepharose and ion exchange chromatography. The purified enzyme contained polypeptides of 50 and 55 kDa, with the 50-kDa species predominant. From its Stokes radius (32 A) and sedimentation coefficient (3.9 S), we calculated a native molecular weight of 51,000, suggesting that the active form is a monomer. Its specific activity was 65-130 nmol X min-1 X mg-1 and the Km for ATP was 17-35 microM, depending on the exogenous substrate used. Kinase activity was completely dependent upon Ca2+; half-maximal activation occurred at approximately 1 microM free Ca2+ at pH 7.2. Phosphatidylserine and diacylglycerol did not stimulate activity, nor did the addition of purified Paramecium calmodulin. The enzyme phosphorylated casein and histones, forming primarily phosphoserine and phosphothreonine, respectively. It also catalyzed its own phosphorylation in a Ca2+-dependent reaction; the half-maximal rate of autophosphorylation occurred at approximately 1-1.5 microM free Ca2+, and both the 50- and 55-kDa species were autophosphorylated. After separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renaturation in situ, the 50-kDa protein retained its Ca2+-dependent ability to phosphorylate casein, suggesting that Ca2+ interacts directly with this polypeptide. This was confirmed by direct binding studies; when the enzyme was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis transferred to nitrocellulose, and renatured, there was 45Ca2+-binding in situ to both the 50- and 55-kDa polypeptides. The Paramecium enzyme appears to be a new and unique type of Ca2+-dependent protein kinase.  相似文献   

4.
5.
6.
Interaction of Cu(II) and Gly-His-Lys, a growth-modulating tripeptide from plasma, was investigated by 13C- and 1H-n.m.r. and e.p.r. spectroscopy. The n.m.r. line-broadening was interpreted in terms of major and minor species formed as a function of pH. The results indicate that the n.m.r. line-broadening is due to the presence of minor species in rapid exchange and not due to the major species in solution, which has a large tau M. It is concluded that the technique of 13C- and 1H-n.m.r. line broadening, caused by paramagnetic Cu(II) ion, should be undertaken with caution, since the method may not be useful for obtaining structural information on the major species. The e.p.r. spectra over a wide pH range are almost entirely due to similarly co-ordinating species. Starting at pH 5.5, the narrowest absorption near 340 mT shows superhyperfine structure, which comes out sharply in the pH region 6.0-9.6. The spectra in this pH range showed the seven lines of nitrogen superhyperfine splitting, indicating clearly the co-ordination of three nitrogen atoms to Cu(II). The e.p.r. parameters in the medium pH range, A parallel = 19.5 mT and g parallel = 2.21, fit well with the contention that Cu(II) is ligated to Gly-His-Lys through one oxygen atom and three nitrogen atoms in a square-planar configuration.  相似文献   

7.
Based on sequence information from tryptic peptides an almost full-size cDNA coding for the human vascular anticoagulant was isolated from a placental cDNA library and sequenced. The coding region was cloned into an Escherichia coli expression vector and the protein expressed at high levels. The recombinant protein was purified and found to be indistinguishable from its natural counterpart in several biological assays.  相似文献   

8.
AFPs (antifreeze proteins) are produced by many organisms that inhabit ice-laden environments. They facilitate survival at sub-zero temperatures by binding to, and inhibiting, the growth of ice crystals in solution. The Antarctic bacterium Marinomonas primoryensis produces an exceptionally large(>1 MDa) hyperactive Ca2+-dependent AFP. We have cloned,expressed and characterized a 322-amino-acid region of the protein where the antifreeze activity is localized that shows similarity to the RTX (repeats-in-toxin) family of proteins. The recombinant protein requires Ca2+ for structure and activity, and it is capable of depressing the freezing point of a solution in excess of 2 degrees C at a concentration of 0.5 mg/ml, therefore classifying it as a hyperactive AFP. We have developed a homology-guided model of the antifreeze region based partly on the Ca2+-bound beta-roll from alkaline protease. The model has identified both a novel beta-helical fold and an ice-binding site. The interior of the beta-helix contains a single row of bound Ca2+ ions down one side of the structure and a hydrophobic core down the opposite side. The ice binding surface consists of parallel repetitive arrays of threonine and aspartic acid/asparagine residues located down the Ca2+-bound side of the structure. The model was tested and validated by site-directed mutagenesis. It explains the Ca2+-dependency of the region, as well its hyperactive antifreeze activity. This is the first bacterial AFP to be structurally characterized and is one of only five hyperactive AFPs identified to date.AFPS  相似文献   

9.
Ca2+-dependent neurotransmitter release requires synaptotagmins as Ca2+ sensors to trigger synaptic vesicle (SV) exocytosis via binding of their tandem C2 domains—C2A and C2B—to Ca2+. We have previously demonstrated that SNT-1, a mouse synaptotagmin-1 (Syt1) homologue, functions as the fast Ca2+ sensor in Caenorhabditis elegans. Here, we report a new Ca2+ sensor, SNT-3, which triggers delayed Ca2+-dependent neurotransmitter release. snt-1;snt-3 double mutants abolish evoked synaptic transmission, demonstrating that C. elegans NMJs use a dual Ca2+ sensor system. SNT-3 possesses canonical aspartate residues in both C2 domains, but lacks an N-terminal transmembrane (TM) domain. Biochemical evidence demonstrates that SNT-3 binds both Ca2+ and the plasma membrane. Functional analysis shows that SNT-3 is activated when SNT-1 function is impaired, triggering SV release that is loosely coupled to Ca2+ entry. Compared with SNT-1, which is tethered to SVs, SNT-3 is not associated with SV. Eliminating the SV tethering of SNT-1 by removing the TM domain or the whole N terminus rescues fast release kinetics, demonstrating that cytoplasmic SNT-1 is still functional and triggers fast neurotransmitter release, but also exhibits decreased evoked amplitude and release probability. These results suggest that the fast and slow properties of SV release are determined by the intrinsically different C2 domains in SNT-1 and SNT-3, rather than their N-termini–mediated membrane tethering. Our findings therefore reveal a novel dual Ca2+ sensor system in C. elegans and provide significant insights into Ca2+-regulated exocytosis.  相似文献   

10.
Ca2+-dependent binding of modulator protein to the particulate fraction was studied. The particulate fraction from one gram of rat brain bound in a Ca2+-dependent fashion 144 microgram of modulator protein, representing more than one third of the total soluble modulator protein in this tissue. The binding site was present in both the mitochondrial and microsomal fractions, the specific activity of the microsomes being the higher. The binding was reversible with a physiological concentration of Ca2+, and was temperature-dependent, and the site can be saturated with modulator protein (4.5 microgram modulator protein per mg of microsomal protein). Tryptic digestion of the membranes caused complete disappearance of the binding activity, but heat-treatment for 5 min at 70 degrees C caused only 40% loss of activity. The binding site may be a known or unknown enzyme(s), the activity of which is regulated by Ca2+ and modulator. Alternatively, this binding site may be a nonenzymic protein that regulates the concentration of free modulator protein in the cell.  相似文献   

11.
A Ca2+-dependent, calmodulin-stimulated protein phosphatase (EC 3.1.3.16) is known to be associated with calcineurin, a major calmodulin binding protein in brain. The protein phosphatase activity has now been shown to be retained by a substrate affinity column (thiophosphorylated myosin P-light chain Sepharose) in the presence of Ca2+, and to be eluted specifically with EGTA. Calcineurin behaved identically. This establishes that calcineurin is the Ca2+-dependent protein phosphatase, and that interaction of Ca2+ with the B-subunit is essential for substrate binding.  相似文献   

12.
13.
Two cDNA clones, AATCDPK1 and cATCDPK2, encoding Ca2+-dependent, calmodulin-independent protein kinases (CDPK) were cloned from Arabidopsis thaliana and their nucleotide sequences were determined. Northern blot analysis indicated that the mRNAs corresponding to the ATCDPK1 and ATCDPK2 genes are rapidly induced by drought and high-salt stress but not by low-temperature stress or heat stress. Treatment of Arabidopsis plants with exogenous abscisic acid (ABA) had no effect on the induction of ATCDPK1 or ATCDPK2. These findings suggest that a change in the osmotic potential of the environment can serve as a trigger for the induction of ATCDPK1 and ATCDPK2. Putative proteins encoded by ATCDPK1 and ATCDPK2 which contain open reading frames of 1479 and 1488 bp, respectively, are designated ATCDPK1 and ATCDPK2 and show 52% identity at the amino acid sequence level. ATCDPK1 and ATCDPK2 exhibit significant similarity to a soybean CDPK (51 % and 73%, respectively). Both proteins contain a catalytic domain that is typical of serine/threonine protein kinases and a regulatory domain that is homologous to the Ca2+-binding sites of calmodulin. Genomic Southern blot analysis suggests the existence of a few additional genes that are related to ATCDPK1 and ATCDPK2 in the Arabidopsis genome. The ATCDPK2 protein expressed in Escherichia coli was found to phosphorylate casein and myelin basic protein preferentially, relative to a histone substrate, and required Ca2+ for activation.  相似文献   

14.
In cultured porcine aortic smooth muscle cells,sphingosylphosphorylcholine (SPC), ATP, or bradykinin (BK) induced arapid dose-dependent increase in the cytosolicCa2+ concentration([Ca2+]i)and also stimulated inositol 1,4,5-trisphosphate(IP3) generation. Pretreatmentof cells with pertussis toxin blocked the SPC-induced IP3 generation and[Ca2+]iincrease but had no effect on the action of ATP or BK. In addition, SPCstimulated the mitogen-activated protein kinase (MAPK) and increasedDNA synthesis, whereas neither ATP nor BK produced such effects. Boththe SPC-induced MAPK activation and DNA synthesis were pertussis toxinsensitive. SPC-induced MAPK activation was blocked by treatment ofcells with the phospholipase C inhibitor, U-73122, or the intracellularCa2+-ATPase inhibitor,thapsigargin, but not by removal of extracellular Ca2+. Lysophosphatidic acidinduced cellular responses similar to SPC in a pertussistoxin-sensitive manner in terms of[Ca2+]iincrease, IP3 generation, MAPKactivation, and DNA synthesis. Platelet-derived growth factor (PDGF)also induced a[Ca2+]iincrease, MAPK activation, and DNA synthesis in the same cells; however, the PDGF-induced MAPK activation was not sensitive to pertussis toxin and changes in[Ca2+]i.SPC-induced MAPK activation was inhibited by pretreatment of cells withstaurosporine, W-7, or calmidazolium. Our results suggest that, inporcine aortic smooth muscle cells, MAPK is not activated by theincrease in[Ca2+]iunless a pertussis toxin-sensitive G protein is simultaneously stimulated, indicating the role ofCa2+ in pertussis toxin-sensitiveG protein-mediated MAPK activation.

  相似文献   

15.
We have examined the activities of phospholipid/Ca2+-dependent and cyclic AMP-dependent protein kinases of the parathyroid adenomas and the atrophic glands which were resected from three patients with primary hyperparathyroidism. Phospholipid/Ca2+-dependent protein kinase activity of atrophic parathyroid gland was exclusively present in cytosol fraction (90.7 +/- 12.3%). On the other hand, phospholipid/Ca2+-dependent protein kinase activity of parathyroid adenomas was 66.9 +/- 6.4% in cytosol and 33.1 +/- 6.4% in membrane fraction, suggesting a translocation of the enzyme from the cytosol to the membranes. Cyclic AMP-dependent protein kinase activity appeared to be higher in parathyroid adenoma than in atrophic parathyroid gland in both cytosol and membrane fractions.  相似文献   

16.
17.
The EF-hand family of calcium-binding proteins regulates cellular signal transduction events via calcium-dependent interactions with target proteins. Here, we show that the COOH-terminal tail of the leech homolog of protein phosphatase 4 regulatory subunit 2 (PP4-R2) interacts with the small neuronal EF-hand calcium-binding protein, Calsensin, in a calcium-dependent manner. Using two-dimensional NMR spectroscopy and chemical shift perturbations we have identified and mapped the residues of Calsensin that form a binding surface for PP4-R2. We show that the binding groove is formed primarily of discontinuous hydrophobic residues located in helix 1, the hinge region, and helix 4 of the unicornate-type four helix structure of Calsensin. The findings suggest the possibility that calcium-dependent modulation of phosphatase complexes through interactions with small calcium-binding proteins may be a general mechanism for regulation of signal transduction pathways.  相似文献   

18.
19.
电压门控钙通道受钙依赖性易化和失活两种相互对立的反馈机制调节.不同浓度的钙离子,通过作为钙感受器的钙调蛋白的介导,主要与钙通道α1亚基羧基端的多个不连续片段发生复杂的相互作用,分别引发钙依赖性易化和失活.钙/钙调蛋白依赖性蛋白激酶Ⅱ及其它钙结合蛋白等也参与此调节过程.新近研究表明,钙通道的钙依赖性调节机制失衡与心律失常等的发病机制密切相关.  相似文献   

20.
An acidic, low molecular weight (18 400--19 100) protein capable of activating porcine brain phosphodiesterase in the presence of calcium has been purified 2700-fold from the anthozoan coelenterate, Renilla reniformis. The protein has physical, spectral, and chemical properties similar to those of modulator proteins isolated from mammalian species. Amino acid composition studies reveal no significant differences between the Renilla and mammalian modulator proteins. For example, we observed 1 mol of epsilon-N-trimethyllysine per mol of protein, no tryptophan or cysteine, and high levels of glutamic and aspartic acid residues. The protein from Renilla complexes with troponin I and T subunits in the presence of calcium and quantitatively replaces porcine brain modulator in the calcium-dependent activation of porcine brain phosphodiesterase. The protein has a high affinity for calcium as judged by the low levels of free calcium required for modulator-dependent activation of phosphodiesterase. The similarities in physical and chemical properties, high affinity for calcium, and identical calcium-dependent activities of this protein from Renilla (as compared with modulator protein purified from mammalian systems) suggest that a high degree of structural conservation has been retained in modulator proteins isolated from these diverse evolutionary forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号