首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A high expression of angiotensin II receptors and of angiotensin-converting enzyme (ACE) activity was detected in confluent NIH 3T3 fibroblasts.2. Characterization with selective ligands, dithiothreitol, and GTPS, indicated that only the AT2 subtype was expressed.3. AT2 receptors and ACE expression were strictly dependent on the cell density and growth phase of the cells, with AT2 receptors being expressed earlier than ACE. In contrast, high expression of AT2 receptors irrespective of their growth state was observed in NIH 3T3 cells lacking contact inhibition upon neoplastic transformation with ras.4. Our results imply a possible relation of AT2 receptors to cell growth and cell–cell contact.  相似文献   

2.
The growth inhibition of Tetrahymena furgasoni (once known as “T. pyriformis W”) by C19 and C21 steroids of similar structure was measured by determining cell population at 24 h and 48 h following addition of the steroid. A cis-fusion of the A/B rings junction, unsaturation at C-1,2, or C-4,5 and carbonyl substitution all enhanced inhibition, whereas the presence of two hydroxyl groups decreased inhibition. The results indicated that the transformation of C19 and C21 steroids by this protozoon may be part of a detoxication mechanism.  相似文献   

3.
The objective of this study was to investigate the differential effects of various selenium (Se) compounds and Se-enriched broccoli extracts on cell proliferation and the possible mechanism responsible for the Se-induced growth inhibition. C6 rat glial cells were incubated with graded concentrations up to 1000 nM of selenite, selenate, selenomethionine (SeM), Se-methyl-selenocysteine (SeMCys), high-Se broccoli (H-SeB) extract or low-Se broccoli (L-SeB) extract for 24 and 48 h. MTT results indicated that all Se sources and levels examined inhibited C6 cell proliferation at 48 h. The results from cell cycle progression and apoptosis analysis indicated that SeM, SeMCys, H-SeB or L-SeB treatments at the concentration of 1000 nM reduced the cell population in G0/G1 phase, but induced G2/M phase arrest and increased apoptosis and secondary necrosis in C6 cells at 24 h. The populations of apoptotic cells and secondary necrotic cells were increased by all Se sources examined. The COMET assay indicated that there was no significant DNA single-strand break found for all Se treatments in C6 cells for 48 h. In addition, the Se-induced proliferation inhibition may involve a hydrogen peroxide (H2O2)-dependent mechanism with elevated cellular glutathione peroxidase (cGPX) activity. Both H-SeB and L-SeB inhibited C6 cell proliferation but H-SeB was less inhibitory than L-SeB. The proliferation inhibition by H-SeB in C6 cells is apparently related to the increased H2O2 with the elevated cGPX activity, but the inhibition by L-SeB was H2O2-independent without change in cGPX activity.  相似文献   

4.

Background

Cellular contact with stimulated T cells is a potent inducer of cytokine production in human monocytes and is likely to play a substantial part in chronic/sterile inflammatory diseases. High-density lipoproteins (HDL) specifically inhibit the production of pro-inflammatory cytokines induced by T cell contact.

Methodology/Principal Findings

To further elucidate the pro-inflammatory functions of cellular contact with stimulated T cells and its inhibition by HDL, we carried out multiplex and microarray analyses. Multiplex analysis of monocyte supernatant revealed that 12 out of 27 cytokines were induced upon contact with stimulated T cells, which cytokines included IL-1Ra, G-CSF, GM-CSF, IFNγ, CCL2, CCL5, TNF, IL-1β, IL-6, IL-8, CCL3, and CCL4, but only the latter six were inhibited by HDL. Microarray analysis showed that 437 out of 54,675 probe sets were enhanced in monocytes activated by contact with stimulated T cells, 164 probe sets (i.e., 38%) being inhibited by HDL. These results were validated by qPCR. Interestingly, the cytokines induced by T cell contact in monocytes comprised IL-1β, IL-6 but not IL-12, suggesting that this mechanism might favor Th17 polarization, which emphasizes the relevance of this mechanism to chronic inflammatory diseases and highlights the contrast with acute inflammatory conditions that usually involve lipopolysaccharides (LPS). In addition, the expression of miR-155 and production of prostaglandin E2—both involved in inflammatory response—were triggered by T cell contact and inhibited in the presence of HDL.

Conclusions/Significance

These results leave no doubt as to the pro-inflammatory nature of T cell contact-activation of human monocytes and the anti-inflammatory functions of HDL.  相似文献   

5.
The proliferation rate of mammalian cells is regulated normally in the G1 phase of the cell cycle. During this phase, it is convenient to assign positive and negative roles to the molecular programs that regulate the duration of G1 and the phase transition from G1 to S phase. Density-dependent inhibition of cellular proliferation results in an increase in the duration of G1. This form of regulation is due to both secreted factors and cell—cell contact. Serum is mitogenic to a variety of mammalian cell types. Because quiescent cells enter S phase as a result of serum addition to culture media, serum is usually regarded as a source of positive regulatory growth factors. We have measured the length of the G1, S and G2+ M phases of NIH 3T3 cells during exponential growth as a function of cell density and serum concentration. The G1 length increases during exponential growth as a function of density while S and G2+ M are relatively constant. Further, this increase in G1 phase time, or density mediated negative regulation, is inhibited by increasing serum concentration. This phenotype is saturable between 10% to 20% serum. Serum concentrations above 2.5% are able to increase the rate of cell cycling (decrease the G1 phase time) by inhibiting density dependent negative regulation of NIH 3T3.  相似文献   

6.
Summary The choline analog,N-isopropylethanolamine (IPE), inhibits the growth of both Chinese hamster ovary CHO-K1 and mouse L-M cells by two kinetically distinct mechanisms; I, a reversible and concentration-dependent reduction in the logarithmic population doubling rate and the saturation density of cultures by low IPE levels in the media; and II, an irreversible and time-dependent killing of cells by high IPE concentrations. Both types of inhibition are independent of media depletion, cell density, or the time of treatment after cell plating; however, the actual IPE concentration that is necessary to elicit Type I or Type II inhibition in each cell line is dependent on the choline level of the media. Ethanolamine, methionine, or betaine have no effect on IPE-induced growth inhibition. From a mutagenized population of CHO-K1 cells we isolated variant cell strains that are resistant to the lethal effect of IPE. It was determined that with both the wild type and variant strains the sensitivity of cells to growth inhibition by IPE (both Type I and Type II) was proportional to the degree by which choline uptake was inhibited by the analog. Retinoic acid, which inhibits the growth of some fibroblast and epithelial cell lines by a concentration-dependent reduction in population doubling rate and saturation density, behaves synergistically with IPE to inhibit the growth of CHO-K1 cells. Dibutyryl cyclic AMP, on the other hand, causes only an additive increase in the growth inhibition of CHO-K1 populations that also are treated with IPE. This article is based on work supported by contract DE-AC05-760R00033 from the U.S. Department of Energy to Oak Ridge Associated Universities.  相似文献   

7.
8.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5°C). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5°C, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5°C that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32°C). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

9.
The sphingomyelin derivative ceramide is a signaling molecule implicated in numerous physiological events. Recently published reports indicate that ceramide levels are elevated in insulin-responsive tissues of diabetic animals and that agents which trigger ceramide production inhibit insulin signaling. In the present series of studies, the short-chain ceramide analog C2-ceramide inhibited insulin-stimulated glucose transport by ~50% in 3T3-L1 adipocytes, with similar reductions in hormone-stimulated translocation of the insulin-responsive glucose transporter (GLUT4) and insulin-responsive aminopeptidase. C2-ceramide also inhibited phosphorylation and activation of Akt, a molecule proposed to mediate multiple insulin-stimulated metabolic events. C2-ceramide, at concentrations which antagonized activation of both glucose uptake and Akt, had no effect on the tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) or the amounts of p85 protein and phosphatidylinositol kinase activity that immunoprecipitated with anti-IRS-1 or antiphosphotyrosine antibodies. Moreover, C2-ceramide also inhibited stimulation of Akt by platelet-derived growth factor, an event that is IRS-1 independent. C2-ceramide did not inhibit insulin-stimulated phosphorylation of mitogen-activated protein kinase or pp70 S6-kinase, and it actually stimulated phosphorylation of the latter in the absence of insulin. Various pharmacological agents, including the immunosuppressant rapamycin, the protein synthesis inhibitor cycloheximide, and several protein kinase C inhibitors, were without effect on ceramide’s inhibition of Akt. These studies demonstrate ceramide’s capacity to inhibit activation of Akt and imply that this is a mechanism of antagonism of insulin-dependent physiological events, such as the peripheral activation of glucose transport and the suppression of apoptosis.  相似文献   

10.
Amiloride, a passive Na+ influx inhibitor, lowers initial rates and plateau levels of [35S]met uptake into proteins in cell-free rabbit reticulocyte lysates (ID50∽0.4 mM). Isolated hepatocytes take up amiloride through a saturable (Km∽0.02 mM; Vmax∽1.43 nmol/ 106 cells/min) Na+-dependent process. Similar temperature dependent uptake occurs in cultured hepatocyte monolayers. In chemically defined media, under growth reinitiation conditions, amiloride lowers overall rates of cellular protein and albumin synthesis (ID50∽0.4 and ∽0.028 mM, respectively). Amiloride concentrations (0.02 mM) that half-maximally inhibit reinitiation of hepatocyte DNA synthesis reach, within 30 min, cellular levels (∽0.14 mM) that block reticulocyte lysate protein synthesis by 25%. These findings complicate interpretations, from studies in many eukaryotic systems, of cause and effect between mitogen-activated membrane Na+ influxes and the reinitiation of DNA synthesis.  相似文献   

11.
In polarized HepG2 cells, the fluorescent sphingolipid analogues of glucosylceramide (C6-NBD-GlcCer) and sphingomyelin (C6-NBD-SM) display a preferential localization at the apical and basolateral domain, respectively, which is expressed during apical to basolateral transcytosis of the lipids (van IJzendoorn, S.C.D., M.M.P. Zegers, J.W. Kok, and D. Hoekstra. 1997. J. Cell Biol. 137:347–457). In the present study we have identified a non-Golgi–related, sub-apical compartment (SAC), in which sorting of the lipids occurs. Thus, in the apical to basolateral transcytotic pathway both C6-NBD-GlcCer and C6-NBD-SM accumulate in SAC at 18°C. At this temperature, transcytosing IgA also accumulates, and colocalizes with the lipids. Upon rewarming the cells to 37°C, the lipids are transported from the SAC to their preferred membrane domain. Kinetic evidence is presented that shows in a direct manner that after leaving SAC, sphingomyelin disappears from the apical region of the cell, whereas GlcCer is transferred to the apical, bile canalicular membrane. The sorting event is very specific, as the GlcCer epimer C6-NBD-galactosylceramide, like C6-NBD-SM, is sorted in the SAC and directed to the basolateral surface. It is demonstrated that transport of the lipids to and from SAC is accomplished by a vesicular mechanism, and is in part microtubule dependent. Furthermore, the SAC in HepG2 bear analogy to the apical recycling compartments, previously described in MDCK cells. However, in contrast to the latter, the structural integrity of SAC does not depend on an intact microtubule system. Taken together, we have identified a non-Golgi–related compartment, acting as a “traffic center” in apical to basolateral trafficking and vice versa, and directing the polarized distribution of sphingolipids in hepatic cells.  相似文献   

12.
Summary During anaerobic growth on methanol, Eubacterium limosum B2 produces acetic and butyric acids as overflow metabolites, but can be induced to produce other organic acids. All organic acids (C2–C6) tested had a similar effect on growth, although the toxicity of each was different e.g. increasing inhibition by acids of increasing chain length. Inhibition was only observed above a threshold concentration related to the molecular size of the organic acids. At higher concentrations the degree of inhibition was a linear function of concentration. In a mathematical treatment of the data the inhibition constant (K p) was shown to be proportionate to the threshold value (P c) of each organic acid and accurately predicted the growth characteristics of Eubacterium limosum on methanol following the addition of organic acid supplements.  相似文献   

13.
Withaferin A (WA), a C5,C6-epoxy steroidal lactone derived from a medicinal plant (Withania somnifera), inhibits growth of human breast cancer cells in vitro and in vivo and prevents mammary cancer development in a transgenic mouse model. However, the mechanisms underlying the anticancer effect of WA are not fully understood. Herein, we report that tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. The G2 and mitotic arrest resulting from WA exposure in MCF-7, SUM159, and SK-BR-3 cells was associated with a marked decrease in protein levels of β-tubulin. These effects were not observed with the naturally occurring C6,C7-epoxy analogs of WA (withanone and withanolide A). A non-tumorigenic normal mammary epithelial cell line (MCF-10A) was markedly more resistant to mitotic arrest by WA compared with breast cancer cells. Vehicle-treated control cells exhibited a normal bipolar spindle with chromosomes aligned along the metaphase plate. In contrast, WA treatment led to a severe disruption of normal spindle morphology. NMR analyses revealed that the A-ring enone in WA, but not in withanone or withanolide A, was highly reactive with cysteamine and rapidly succumbed to irreversible nucleophilic addition. Mass spectrometry demonstrated direct covalent binding of WA to Cys303 of β-tubulin in MCF-7 cells. Molecular docking indicated that the WA-binding pocket is located on the surface of β-tubulin and characterized by a hydrophobic floor, a hydrophobic wall, and a charge-balanced hydrophilic entrance. These results provide novel insights into the mechanism of growth arrest by WA in breast cancer cells.  相似文献   

14.

Background

The mTOR inhibitor rapamycin has anti-tumor activity across a variety of human cancers, including hepatocellular carcinoma. However, resistance to its growth inhibitory effects is common. We hypothesized that hepatic cell lines with varying rapamycin responsiveness would show common characteristics accounting for resistance to the drug.

Methodology/Principal Findings

We profiled a total of 13 cell lines for rapamycin-induced growth inhibition. The non-tumorigenic rat liver epithelial cell line WB-F344 was highly sensitive while the tumorigenic WB311 cell line, originally derived from the WB-F344 line, was highly resistant. The other 11 cell lines showed a wide range of sensitivities. Rapamycin induced inhibition of cyclin E–dependent kinase activity in some cell lines, but the ability to do so did not correlate with sensitivity. Inhibition of cyclin E–dependent kinase activity was related to incorporation of p27Kip1 into cyclin E–containing complexes in some but not all cell lines. Similarly, sensitivity of global protein synthesis to rapamycin did not correlate with its anti-proliferative effect. However, rapamycin potently inhibited phosphorylation of two key substrates, ribosomal protein S6 and 4E-BP1, in all cases, indicating that the locus of rapamycin resistance was downstream from inhibition of mTOR Complex 1. Microarray analysis did not disclose a unifying mechanism for rapamycin resistance, although the glycolytic pathway was downregulated in all four cell lines studied.

Conclusions/Significance

We conclude that the mechanisms of rapamycin resistance in hepatic cells involve alterations of signaling downstream from mTOR and that the mechanisms are highly heterogeneous, thus predicting that maintaining or promoting sensitivity will be highly challenging.  相似文献   

15.
3-Phosphoglycerate (PGA)-dependent O2 evolution by mesophyll chloroplasts of the C4 plant, Digitaria sanguinalis L. Scop. (crabgrass), was inhibited by micromolar levels of 4,4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS). As little as 1.8 micromolar DIDS added to the assay medium (containing 0.7 millimolar PGA) resulted in 80 to 100% inhibition of O2 evolution. The extent of inhibition of O2 evolution observed was dependent on various factors including: pH, concentration of DIDS to relative chlorophyll, concentration of PGA, and the time of addition of DIDS to the chloroplasts relative to addition of PGA.

Preincubation of crabgrass chloroplasts with micromolar levels of DIDS, followed by washing to remove any nonirreversibly bound DIDS, inhibited PGA-dependent O2 evolution. Protection against this inhibition was afforded by preincubating the chloroplasts with various substrates before adding DIDS. For example, if the chloroplasts were first incubated with 8.3 millimolar PGA, phosphoenolpyruvate (PEP) or inorganic phosphate before adding 42 micromolar DIDS, the percentage of inhibition was decreased from 100% (without any substrate) to 0, 54, and 67%, respectively. 2-Phosphoglycerate caused a slight decrease in the inhibition (about 10%) and glucose-6-phosphate had no protective effect. If the chloroplasts were pretreated with DIDS initially, the inhibition could not be overcome by PGA, suggesting that DIDS acts as an irreversible inhibitor. Micromolar levels of DIDS also inhibited PGA dependent O2 evolution by isolated chloroplasts of the C3 plant barley. As with crabgrass, preincubation with PGA or inorganic phosphate resulted in a decrease in the DIDS inhibition, but PEP was very ineffective compared to the C4 chloroplasts.

Oxalacetate-dependent O2 evolution and its stimulation by the uncoupler, NH4Cl, were unaffected by the addition of DIDS to crabgrass mesophyll chloroplasts. Furthermore, preincubation of the chloroplasts with DIDS (up to 65 micromolar) had no inhibitory effect on the extractable activity of NADP glyceraldehyde-3-P dehydrogenase and phosphoglycerate kinase. Inhibition by DIDS was interpreted to be at the substrate binding site of the phosphate translocator. The data further suggest that in C4 crabgrass chloroplasts, PEP is transported on a carrier which also transports PGA.

  相似文献   

16.
Previous work showed that accumulation of endogenous abscisic acid (ABA) acts both to maintain primary root growth and inhibit shoot growth in maize seedlings at low water potentials (ψw) (IN Saab, RE Sharp, J Pritchard, GS Voetberg [1990] Plant Physiol 93: 1329-1336). In this study, we have characterized the growth responses of the primary root and mesocotyl of maize (Zea mays L. cv FR27 × FRMo 17) to manipulation of ABA levels at low ψw with a high degree of spatial resolution to provide the basis for studies of the mechanism(s) of ABA action. In seedlings growing at low ψw and treated with fluridone to inhibit carotenoid (and ABA) biosynthesis, ABA levels were decreased in all locations of the root and mesocotyl growing zones compared with untreated seedlings growing at the same ψw. In the root, low ψw (−1.6 megapascals) caused a shortening of the growing zone, as reported previously. The fluridone treatment was associated with severe inhibition of root elongation rate, which resulted from further shortening of the growing zone. In the mesocotyl, low ψw (−0.3 megapascal) also resulted in a shortened growing zone. In contrast with the primary root, however, fluridone treatment prevented most of the inhibition of elongation and the shortening of the growing zone. Final cell length measurements indicated that the responses of both root and mesocotyl elongation to ABA manipulation at low ψw involve large effects on cell expansion. Measurements of the relative changes in root and shoot water contents and dry weights after transplanting to a ψw of −0.3 megapascal showed that the maintenance of shoot elongation in fluridone-treated seedlings was not attributable to increased water or seed-reserve availability resulting from inhibition of root growth. The results suggest a developmental gradient in tissue responsiveness to endogenous ABA in both the root and mesocotyl growing zones. In the root, the capacity for ABA to protect cell expansion at low ψw appears to decrease with increasing distance from the apex. In the mesocotyl, in contrast, the accumulation of ABA at low ψw appears to become increasingly inhibitory to expansion as cells are displaced away from the meristematic region.  相似文献   

17.
Summary In submerged culture there was negligible growth of Fusarium moniliforme with either n-tetradecane or gasoil (C13–C19) as the only carbon and energy source. In surface culture the cell yield was about 0.25 g dm–3 dry weight after four weeks incubation. Some oxidation products, mainly isomeric tetradecanones (4-one, 5-one, 6-one and 7-one), could be identified. However the cell yield in a trickle-flow column was about 3 g dm–3 dry weight after 7 days. Only traces of oxidation products could be detected. In a fixed-bed reactor, filled with glass rings, cell yields were similar to those in the trickle-flow column and depended on the medium flow rate.After termination of growth in the fixed-bed reactor, similar amounts of gibberellic acid were produced in a nitrogen-free medium with either gasoil or glucose.  相似文献   

18.
Rapid metabolite diffusion across the mesophyll (M) and bundle sheath (BS) cell interface in C4 leaves is a key requirement for C4 photosynthesis and occurs via plasmodesmata (PD). Here, we investigated how growth irradiance affects PD density between M and BS cells and between M cells in two C4 species using our PD quantification method, which combines three‐dimensional laser confocal fluorescence microscopy and scanning electron microscopy. The response of leaf anatomy and physiology of NADP‐ME species, Setaria viridis and Zea mays to growth under different irradiances, low light (100 μmol m?2 s?1), and high light (1,000 μmol m?2 s?1), was observed both at seedling and established growth stages. We found that the effect of growth irradiance on C4 leaf PD density depended on plant age and species. The high light treatment resulted in two to four‐fold greater PD density per unit leaf area than at low light, due to greater area of PD clusters and greater PD size in high light plants. These results along with our finding that the effect of light on M‐BS PD density was not tightly linked to photosynthetic capacity suggest a complex mechanism underlying the dynamic response of C4 leaf PD formation to growth irradiance.  相似文献   

19.
The toxicity and binding of aluminium to Escherichia coli has been studied. Inhibition of growth by aluminium nitrate was markedly dependent on pH; growth in medium buffered to pH 5.4 was more sensitive to 0.9 mM or 2.25 mM aluminium than was growth at pH 6.6–6.8. In medium buffered with 2-(N-morpholino)ethanesulphonic acid (MES), aluminium toxicity was enhanced by omission of iron from the medium or by use of exponential phase starter cultures. Analysis of bound aluminium by atomic absorption spectroscopy showed that aluminium was bound intracellularly at one type of site with a K m of 0.4 mM and a capacity of 0.13 mol (g dry wt)-1. In contrast, binding of aluminium at the cell surface occurred at two or more sites with evidence of cooperativity. Addition of aluminium nitrate to a weakly buffered cell suspension caused acidification of the medium attributable to displacement of protons from cell surfaces by metal cations. It is concluded that aluminium toxicity is related to pH-dependent speciation [with Al(H2O) 6 3+ probably being the active species] and chelation of aluminium in the medium. Aluminium transport to intracellular binding sites may involve Fe(III) transport pathways.  相似文献   

20.
Specific activity of the myelin enzyme, 2′:3′-cyclic-nucleotide 3′-phosphohydrolase (EC 3.1.4.37), increases 2- to 10-fold when sparsely inoculated cultures of C6 rat glioma cells are allowed to grow to high cell density. Cyclic-nucleotide phosphohydrolase specific activity is also induced in C6 cells and in oligodendrocytes by dibutyryl cyclic AMP or by agents that elevate intracellular cyclic AMP. In this report, we have compared the density-dependent induction of cyclic-nucleotide phosphohydrolase activity with the cyclic AMP-dependent induction. Dibutyryl cyclic AMP induced cyclic-nucleotide phosphohydrolase specific activity in both sparse and dense cultures which had very different density-dependent cyclic-nucleotide phosphohydrolase activities. Induction of both cyclic-nucleotide phosphohydrolase specific activity and intracellular cyclic AMP content by norepinephrine also occurred to a similar degree in sparse and dense cultures. Similar results were obtained for several clones of C6 cells, and for a clone of oligodendrocyte x C6 cell hybrids. Induction of cyclic-nucleotide phosphohydrolase by norepinephrine or dibutyryl cyclic AMP was not due to a change in cell density or rate of cell proliferation, nor did cell density have any appreciable effect on cyclic AMP content of the cells. These results show that regulation of cyclic-nucleotide phosphohydrolase activity in C6 cells involves two distinct mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号