首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The effect of various edaphic factors on Meloidogyne incognita population densities and cotton yield were evaluated from 2001 to 2003 in a commercial cotton field in southeastern Arkansas. The 6.07-ha field was subdivided into 512 plots (30.5 m × 3.9 m), and each plot was sampled for M. incognita prior to fumigation (Ppre), at planting (Pi), at peak bloom (Pm) and at harvest (Pf) each year. Soil texture (percent sand fraction) and the pre-plant soil fertility levels each year were determined from each plot. To ensure that a range of nematode population densities was available for study, 1,3-dichloropropene was applied in strips (3.9-m wide) at rates of 14.1, 29.2 and 42.2 liter/ha (128 plots each) each year 2 wk prior to planting. Data were evaluated using both stepwise and multiple regression analyses to determine relationships among edaphic factors, nematode population densities and yield. Although Pi and the percent sand fraction of the soil were the most important factors in explaining the variation in cotton yield, regression models only accounted for <26% of the variation in yield. When the same data were evaluated on a more homogeneous large-scale platform based on similar geographic locations, soil types and nematicide treatments, regression models that included both Pi and sand content explained 65%, 86% and 83% of the variability in yield for 2001, 2002 and 2003, respectively. Prediction profiles of the combined effects also demonstrated that damage potential for M. incognita on cotton in this study varied by soil texture.  相似文献   

2.
The relationships between densities of all members of a plant-parasitic nematode community and yield of ''Davis'' soybean and between final and preplant population levels were examined in small plots on sandy soils in north-central Florida. Plant-parasitic nematodes present in the community included Belonolaimus longicaudatus, Criconemella sphaerocephala, Meloidogyne incognita, Paratrichodorus minor, Pratylenchus brachyurus, and Xiphinema sp. Plant growth, including stand count, soybean yield (kg/ha), and size of young plants, was occasionally inversely correlated (P ≤ 0.05) with densities of B. longicaudatus or P. brachyurus, but not with densities of other species or with a range of soil variables. The nature of this relationship varied with season, with more severe stand losses noted during 1987 than in 1988. Final population densities (Pf) of most nematode species showed significant (P ≤ 0.05) linear relationships to densities measured at planting or earlier (Pi). These relationships were stronger (higher r²) with the ectoparasite B. longicaudatus than with the endoparasites M. incognita and P. brachyurus. Criconemella sphaerocephala declined under soybean cultivation, reaching levels near zero after two seasons. A quadratic model showed an improvement (P ≤ 0.05) over the linear model in describing the relationship between Pf and Pi measured at planting for B. longicaudatus, and gave a better indication of the leveling off of Pf at high values of Pi.  相似文献   

3.
Four populations of Pratylenchus penetrans did not differ (P > 0.05) in their virulence or reproductive capability on Lahontan alfalfa. There was a negative relationship (r = -0 .7 9 ) between plant survival and nematode inocula densities at 26 ± 3 C in the greenhouse. All plants survived at an inoculum level (Pi) of 1 nematode/cm³ soil, whereas survival rates were 50 to 55% at 20 nematodes/cm³ soil. Alfalfa shoot and root weights were negatively correlated (r = - 0.87; P < 0.05) with nematode inoculum densities. Plant shoot weight reductions ranged from 13 % at Pi 1 nematode/cm³ soil to 69% for Pi 20 nematodes/cm³ soil, whereas root weight reductions ranged from 17% for Pi 1 nematode/cm³ soil to 75% for Pi 20 nematodes/cm³ soil. Maximum and minimum nematode reproduction (Pf/Pi) for the P. penetrans populations were 26.7 and 6.2 for Pi 1 and 20 nematodes/cm³ soil, respectively. There were negative correlations between nematode inoculum densities and plant survival (r = 0.84), and soil temperature and plant survival (r = -0 .7 8 ). Nematode reproduction was positively correlated to root weight (r = 0.89).  相似文献   

4.
The effects of aldicarb, oxamyl, 1,3-D, and plastic mulch (solarization) on soil population densities of the golden nematode (GN) Globodera rostochiensis was assessed in field and microplot experiments with different soil types. Oxamyl was evaluated in both soil and foliar treatments, whereas aldicarb, 1,3-D, and solarization were applied only to soil. Soil applications of aldicarb and oxamyl resulted in reduced nematode populations after GN-susceptible potatoes in plots with initial population densities (Pi) of > 20 and 7.5 eggs/cm³ soil, respectively, but nematode populations increased in treated soil when Pi were less than 20 and 7.5 eggs/cm³soil. In clay loam field plots with Pi of 19-76 eggs/cm³ soil, nematode densities increased even with repeated foliar applications of oxamyl, whereas nematode populations at Pi greater than 76 eggs/cm³ soil were reduced by foliar oxamyl. Treatment with 1,3-D or solarization, singly or in combination, reduced GN soil population densities regardless of soil type or Pi. Temperatures lethal to GN were achieved 5 cm deep under clear plastic but not 10 or 15 cm deep.  相似文献   

5.
Damage functions and reproductive curves were determined for Hoplolaimus columbus on cotton cv. Deltapine 90 and soybean cv. Gordon over 2 years in field plots in Georgia. Maximum potential yield suppressions of 18% on cotton and 48% on soybean were predicted with respect to increasing Pi. Similar functions indicated yield suppressions of 38% on cotton and 30% on soybean with respect to increasing midseason nematode densities (Pm). Maximum Pf predicted by reproductive curves were 123 and 474/100 cm³ soil on cotton and soybean, respectively. Thresholds at which 10% yield suppression would occur were lower on soybean (Pi of 4) than on cotton (Pi of 70/100 cm³ soil). The economic threshold for a control measure costing $72/ha was a Pi of 60/100 cm³ soil on cotton, assuming a price for cotton lint of $1.44/kg ($0.60/lb), whereas a similar treatment would not be economically feasible on soybean at any Pi with an assumed price of $0.04/kg ($5.50/bu) soybean seed. Damage functions and reproductive curves as determined in this study offer potentially useful tools for analyzing cropping systems and providing decision tools for nematode management.  相似文献   

6.
Belonolaimus longicaudatus has long been recognized as a pathogen of potato (Solanum tuberosum). However, a damage function relating expected yield of potato to population densities of B. longicaudatus at planting has not been derived, and the economic threshold for nematicide application is unknown. The objectives of this study were to derive the damage function of B. longicaudatus on potato and to calculate the economic threshold population density. The damage function data for B. longicaudatus on potato were obtained from an ongoing field study to evaluate cropping systems and nematode management practices. Soil samples were collected from experimental field plots, and nematodes were extracted from a 130-cm³ subsample with a centrifugal-flotation method. A damage function was derived by linear regression of potato yield on nematode population density at planting. Based on this derived damage function and published potato prices, the economic threshold for nematicide application was calculated at 2 to 3 B. longicaudatus/130 cm³ of soil, which was near the detection threshold based on methodology used in this study.  相似文献   

7.
Lettuce was seeded in pots in the greenhouse and in field microplots in 1991 and 1992. Pots and microplots were filled with untreated or fumigated organic soil infested with Meloidogyne hapla at seven initial population densities (Pi) (0 to 32 eggs/cm³ soil). Lettuce weight, severity of root galling, and number of eggs per root system (Pf) were determined after 8 weeks. At the highest Pi, M. hapla caused yield losses up to 64% in the microplots and plant death in the greenhouse tests. The Seinhorst equation was used to describe the relation between lettuce weight and Pi (r² = 0.73 - 0.98) and to calculate the damage threshold density (T). Values of T were 7 and 8 eggs/cm³ soil in the greenhouse tests of 1991 and 1992, respectively. In the microplot tests, T was 1 egg/cm³ soil in 1991 and 2 eggs/cm³ soil in 1992. The damage threshold was the same in untreated and fumigated soils. At low Pi, root galling was more severe in the pots than in the microplots. Pf increased with increasing Pi of M. hapla in both tests, but declined at Pi > T in the greenhouse tests. The reproduction rate (Pf/Pi) of M. hapla was highest at the lowest Pi.  相似文献   

8.
Buildup of plant-parasitic nematode populations on corn (Zea mays), soybean (Glycine max), and sorghum (Sorghum bicolor) were compared in 1991 and 1992. Final population densities (Pf) of Meloidogyne incognita were lower following sorghum than after soybean in both seasons, and Pf after sorghum was lower than Pf after corn in 1992. In both seasons, Pf differed among the sorghum cultivars used. No differences in Pf on corn, sorghum, and soybean were observed for Criconemella spp. (a mixture of C. sphaerocephala and C. ornata) or Paratrichodorus minor in either season. Pf levels of Pratylenchus spp. (a mixture of P. brachyurus and P. scribneri) were greatest after corn in 1992, but no differences with crop treatments were observed in 1991. When data from field tests conducted with corn and sorghum during the past four seasons were pooled, negative linear relationships between ln(Pf/Pi) and ln(Pi) were observed for Criconemella spp. and P. minor on each crop, and for M. incognita on corn (Pi = initial population density). Although ln(Pf/Pi) and ln(Pi) were not related for M. incognita with pooled sorghum data, separate relationships were derived for various sorghum cultivars. Regression equations from pooled data were used to obtain estimates of equilibrium density and maximum reproductive rate, and these estimates were used to construct models expressing nematode Pf across a range of initial densities. Many of these models were robust, encompassing a range of sites, season, crop cultivars, and planting dates. Quadratic models derived from pooled field data provided an alternative method for expressing Pf as a function of Pi.  相似文献   

9.
The influence of resistant and susceptible potato cultivars on Globodera rostochiensis population density changes was studied at different nematode inoculum levels (Pi) in the greenhouse and field. Soil in which one susceptible and two resistant cultivars were grown and fallow soil in pots was infested with cysts to result in densities of 0.04-75 eggs/cm³ soil. A resistant cultivar was grown in an infested field with Pi of 0.7-16.7 eggs/cm³ soil. Pi was positively correlated with decline of soil population densities due to hatch where resistant potatoes were grown in the greenhouse and in the field but not in fallow soil. However, Pi was not correlated with in vitro hatch of G. rostochiensis cysts in water or potato root diffusate. Under continuous culture o f a resistant cultivar, viable eggs per cyst declined 60-90% per plant growth cycle (4 weeks) and the number of cysts containing viable eggs had decreased by 77% after five cycles. The rate of G. rostochiensis reproduction on both resistant and susceptible cultivars was negatively correlated with Pi. These data were used to predict the effect of resistant and susceptible potato cultivars on G. rostochiensis soil population dynamics.  相似文献   

10.
Correspondence analyses were used to explore the relationships between yield and populations of Pratylenchus zeae in an upland rice field and in a greenhouse experiment. Initial soil (Pi) and final root (Pf) population densities of P. zeae, and yield (Y) of rice cv. UPL Ri5 were determined at 490 spots in the field. Very low Y was linked to very high Pf. Low Y was linked to medium or high Pi and medium Pf. Medium to very high Y were clustered with undetectable Pi and very low or high Pf. All yield levels were independent of very high Pi. In the greenhouse experiment where seven nematode inoculum levels and three fertilizer levels were evaluated, low Y was associated with medium or high Pf and high Y with high or low Pf. The analyses indicated that nematode-yield interaction involved a complex, dynamic process, in which the root-carrying capacity probably was a determining factor. Correspondence analysis, which does not require assumptions on the shape of nematode population-yield relationships or on variable distributions, revealed meaningful associations in these complex data sets.  相似文献   

11.
Sting nematode (Belonolaimus longicaudatus) is recognized as a pathogen of cotton (Gossypium hirsutum), but the expected damage from a given population density of this nematode has not been determined. The objective of this study was to quantify the effects of increasing initial population densities (Pi) of B. longicaudatus on cotton yield and root mass. In a field plot study, nematicide application and cropping history were used to obtain a wide range of Pi values. Cotton yields were regressed on Pi density of B. longicaudatus to quantify yield losses in the field. In controlled environmental chambers, cotton was grown in soil infested with increasing Pi''s of B. longicaudatus. After 40 days, root systems were collected, scanned on a desktop scanner, and root lengths were measured. Root lengths were regressed on inoculation density of B. longicaudatus to quantify reductions in the root systems. In the field, high Pi''s (>100 nematodes/130 cm³ of soil) reduced yields to near zero. In controlled environmental chamber studies, as few as 10 B. longicaudatus/130 cm³ of soil caused a 39% reduction in fine cotton roots, and 60 B. longicaudatus/130 cm³ of soil caused a 70% reduction. These results suggest that B. longicaudatus can cause significant damage to cotton at low population densities, whereas at higher densities crop failure can result.  相似文献   

12.
The effects of host genotype and initial nematode population densities (Pi) on yield of soybean and soil population densities of Heterodera glycines (Hg) race 3 and Meloidogyne incognita (Mi) race 3 were studied in a greenhouse and field microplots in 1983 and 1984. Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were planted in soil infested with 0, 31, or 124 eggs of Hg and Mi, individually and in all combinations, per 100 cm³ soil. Yield responses of the soybean cultivars to individual and combined infestations of Hg and Mi were primarily dependent on soybean resistance or susceptibility to each species separately. Yield of Centennial was stimulated or unaffected by nematode treatments, yield of Braxton was suppressed by Hg only, and yield suppressions caused by Hg and Mi were additive and dependent on Pi for Coker 237. Other plant responses to nematodes were also dependent on host resistance or susceptibility. Population densities of Mi second-stage juveniles (J2) in soil were related to Mi Pi and remained constant in the presence of Hg for all three cultivars. Population densities of Hg J2 on the two Hg-susceptible Cultivars, Braxton and Coker 237, were suppressed in the presence of Mi at low Hg Pi.  相似文献   

13.
Relationships between nematode density and yield and between final and preplant population levels were examined in small maize plots on sandy soils in north-central Florida. Plant-parasitic nematodes present in the community included Belonolaimus longicaudatus, Criconemella sphaerocephala, Meloidogyne incognita, Paratrichodorus minor, Pratylenchus brachyurus, and a Xiphinema sp. Plant growth--including stand count, grain yield, stalk weight, and size of young plants--often was inversely correlated (P ≤ 0.05) with densities of B. longicaudatus and occasionally with P. brachyurus, but not with densities of other species or with a range of soil variables. More severe losses in grain yields from B. longicaudatus occurred in 1987 than in 1988, although mean preplant nematode densities in February were similar in both years (4.4 vs. 3.9/100 cm³ soil). Final population densities of most nematode species were linearly related (P ≤ 0.05) to densities measured at planting or earlier. These relationships were stronger (higher r²) with the ectoparasites B. longicaudatus and C. sphaerocephala than with the endoparasites M. incognita and P. brachyurus. No significant correlations were found between population densities of different nematode species.  相似文献   

14.
The reproductive and damage potential of Ditylenchus destructor on peanut, Arachis hypogaea cv. Sellie, was determined in greenhouse tests. Final nematode population densities (Pf) in roots, hulls, and seeds increased (P = 0.01) as a function of increasing initial population (Pi). Final population densities were higher in hulls than in seeds and roots. Final densities in hulls and seeds were positively (P = 0.01) correlated. Fresh root and hull weight and number of pods and seeds per plant were not affected by D. destructor. Second generation germination and pod and seed disease severity increased (P = 0.01), whereas fresh seed weight decreased (P = 0.01) as a function of increasing Pi, and Pf in seeds and Pf in hulls. At Pi 250 and higher, 10-25% of seeds germinated into second generation seedlings before harvest. At Pi 250 and higher, fresh weight of harvested seed was suppressed 20-50%. At Pi 50 or Pf greater than 20 per seed, pod disease severity was 3-7 (on a scale of 1 to 10) and 15-80% of seeds were blemished or unsound.  相似文献   

15.
A direct relationship exists between soil temperature and Heterodera schachtii development. The average developmental period of two nematode populations from Lewiston, Utah, and Rupert, Idaho, from J2 to J3, J4, adult, and the next generation J2 at soil temperatures of 18-28 C were 100, 140,225, and 399 degree-days (base 8 C), respectively. There was a positive relationship (P < 0.05) between nematode Pi, nematode generations, and sugarbeet yields. The greatest sugarbeet growth inhibition (87%) occurred when sugarbeets were exposed to a Pi of 12 eggs/cm³ soil for five generations (1,995 degree-days), compared with a 47% inhibition when plants were exposed to the same Pi for two generations. There was a negative correlation (P < 0.05) between the Pi, Pf, and sugarbeet yield for each population threshold. The smaller the Pi, the greater the sugarbeet yields and the greater the Pf. Root yields were 80 and 29 t /ha and Pf were 8.4 and 3.6 eggs/cm³ soil when sugarbeet seeds were planted at Pi of 0.4 and 7.9 eggs/cm³. respectively, at a soil temperature of 8 C. The number of years rotation with a nonhost crop required to reduce the nematode population density below a damage threshold level of 2 eggs/cm³ depends on the Pi. A Pi of 33.8 eggs/cm³ soil required a 5-year crop rotation, whereas a Pi of 8.4 eggs/cm³ soil required a 2-year crop rotation.  相似文献   

16.
Four similar growth chamber experiments were conducted to test the hypothesis that the initial population density (Pi) of Pratylenchus penetrans influences the severity of interactive effects of P. penetrans and Verticillium dahliae on shoot growth, photosynthesis, and tuber yield of Russet Burbank potato. In each experiment, three population densities of P. penetrans with and without concomitant inoculation with V. dahliae were compared with nematode-free controls. The three specific Pi of JR penetrans tested varied from experiment to experiment but fell in the ranges 0.8-2.5, 1.8-3.9, 2.1-8.8, and 7.5-32.4 nematodes/cm³ soil. Inoculum of V. dahliaewas mixed into soil, and the assayed density was 5.4 propagules/gram dry soil. Plants were grown 60 to 80 days in a controlled environment. Plant growth parameters in two experiments indicated significant interactions between P. penetrans and V. dahliae. In the absence of V. dahliae, P. penetrans did not reduce plant growth and tuber yield below that of the nematode-free control or did so only at the highest one or two population densities tested. In the presence of K dahliae, the lowest population density significantly reduced shoot weight and photosynthesis in three and four experiments, respectively. Higher densities had no additional effect on shoot weight and caused additional reductions in photosynthesis in only one experiment. Population densities of 0.8 and 7.5 nematodes/cm³ soil reduced tuber yield by 51% and 45%, whereas higher densities had no effect or a 15% additional effect, respectively. These data indicate that interactive effects between P. penetrans and V. dahliae on Russet Burbank potato are manifested at P. penetrans population densities less than 1 nematode/cm³ soil and that the nematode population density must be substantially higher before additional effects are apparent.  相似文献   

17.
Blueberry replant disease (BRD) is an emerging threat to continued blueberry (Vaccinium spp.) production in Georgia and North Carolina. Since high populations of ring nematode Mesocriconema ornatum were found to be associated with commercially grown blueberries in Georgia, we hypothesized that M. ornatum may be responsible for predisposing blueberry to BRD. We therefore tested the pathogenicity of M. ornatum on 10-wk-old Rabbiteye blueberries (Vaccinium virgatum) by inoculating with initial populations (Pi) of 0 (water control), 10, 100, 1,000. and 10,000 mixed stages of M. ornatum/pot under both greenhouse (25 ± 2°C) and field microplot conditions. Nematode soil population densities and reproduction rates were assessed 75, 150, 225, and 255, and 75, 150, 225, and 375 d after inoculation (DAI) in both the greenhouse and field experiments, respectively. Plant growth parameters were recorded in the greenhouse and field microplot experiments at 255 and 375 DAI, respectively. The highest M. ornatum population density occurred with the highest Pi level, at 75 and 150 DAI under both greenhouse (P < 0.01) and field (P < 0.01) conditions. However, M. ornatum rate of reproduction increased significantly in pots receiving the lowest Pi level of 10 nematodes/plant compared with the pots receiving Pi levels of 100, 1,000, and 10,000 nematodes 75 DAI. Plant-parasitic nematode populations were determined in commercial blueberry replant sites in Georgia and North Carolina during the 2010 growing season. Mesocriconema ornatum and Dolichodorus spp. were the predominant plant-parasitic nematodes in Georgia and North Carolina, respectively, with M. ornatum occurring in nearly half the blueberry fields sampled in Georgia. Other nematode genera detected in both states included Tylenchorhynchus spp., Hoplolaimus spp., Hemicycliophora spp., and Xiphinema spp. Paratrichodorus spp. was also found only in Georgia. In Georgia, our results indicate that blueberry is a host for M. ornatum and its relationship to BRD warrants further investigation.  相似文献   

18.
Summer-active (continental) and summer-dormant (Mediterranean) tall fescue morphotypes are each adapted to different environmental conditions. Endophyte presence provides plant parasitic nematode resistance, but not with all endophyte strains and cultivar combinations. This study sought to compare effects of four nematode genera on continental and Mediterranean cultivars infected with common toxic or novel endophyte strains. A 6-mon greenhouse study was conducted with continental cultivars, Kentucky 31 (common toxic) and Texoma MaxQ II (novel endophyte) and the Mediterranean cultivar Flecha MaxQ (novel endophyte). Endophyte-free plants of each cultivar were controls. Each cultivar × endophyte combination was randomly assigned to a control, low or high inoculation rate of a mixed nematode culture containing stunt nematodes (Tylenchorhynchus spp.), ring nematodes (Criconemella spp.), spiral nematodes (Helicotylenchus spp.), and lesion nematodes (Pratylenchus spp.). Endophyte infection had no effect on nematode population densities. The cultivar × endophyte interaction was significant. Population densities of stunt nematode, spiral nematode, and ring nematodes were higher for Flecha MaxQ than other cultivar × endophyte combinations. Novel endophyte infection enhances suitability of Flecha MaxQ as a nematode host.  相似文献   

19.
The reniform nematode, Rotylenchulus reniformis, is the most damaging nematode pathogen of cotton in Alabama. Soil texture is currently being explored as a basis for the development of economic thresholds and management zones within a field. Trials to determine the reproductive potential of R. reniformis as influenced by soil type were conducted in microplot and greenhouse settings during 2008 to 2010. Population density of R. reniformis was significantly influenced by soil texture and exhibited a general decrease with increasing median soil particle size (MSPS). As the MSPS of a soil increased from 0.04 mm in clay soil to > 0.30 mm in very fine sandy loam and sandy loam soils, R. reniformis numbers decreased. The R. reniformis population densities on all soil types were also greater with irrigation. Early season cotton development was significantly affected by increasing R. reniformis Pi, with plant shoot-weight-to-root-weight ratios increasing at low R. reniformis Pi and declining with increasing R. reniformis Pi. Plant height was increased by irrigation throughout the growing season. The results suggests that R. reniformis will reach higher population densities in soils with smaller MSPS; however, the reduction in yield or plant growth very well may be no greater than in a soil that is less preferential to the nematode.  相似文献   

20.
The effect of inoculating peanut, Arachis hypogaea cv. Sellie, with Ditylenchus destructor at timed intervals after planting and with different initial nematode population densities (Pi) was tested in greenhouse experiments. Final nematode population densities (Pf) in hulls and seeds were greater (Pf < 0.001) in plants inoculated at or before 9 weeks after planting. Pod disease symptoms correlated positively with the Pf in the pods. The seedgrade of peanuts inoculated at or before 9 weeks after planting was reduced, whereas grade of peanuts from plants inoculated at 15 weeks or later was not reduced. Peanut plants inoculated 12 weeks after planting with a Pi of 10-100 had a lower Pf (P < 0.05) than plants with a Pi of 250 to 8,000. Seed of plants with a Pi of 250 or less could be marketed as choice edible seed, whereas those with a Pi of 500 or more were of reduced seedgrade. These results suggest that as few as 500 nematodes per plant at 12 weeks after planting can build up to injurious levels before harvest. A nematicide should therefore be active for longer than 12 weeks after planting to sufficiently suppress the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号