首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exposure of sarcoplasmic reticulum membranes to 4-hydroxy-2-nonenal (HNE) resulted in inhibition of the maximal ATPase activity and Ca2+ transport ability of SERCA1a, the Ca2+ pump in these membranes. The concomitant presence of ATP significantly protected SERCA1a ATPase activity from inhibition. ATP binding and phosphoenzyme formation from ATP were reduced after treatment with HNE, whereas Ca2+ binding to the high affinity sites was altered to a lower extent. HNE reacted with SH groups, some of which were identified by MALDI-TOF mass spectrometry, and competition studies with FITC indicated that HNE also reacted with Lys515 within the nucleotide binding pocket of SERCA1a. A remarkable fact was that both the steady-state ability of SR vesicles to sequester Ca2+ as well as the ATPase activity of SR membranes in the absence of added ionophore or detergent were sensitive to concentrations of HNE much smaller than those which affected the maximal ATPase activity of SERCA1a. This was due to increase in the passive permeability to Ca2+ of HNE-treated SR vesicles, an increase in permeability which did not arise from alteration of the lipid component of these vesicles. Judging from immunodetection with an anti-HNE antibody, this HNE-dependent increase in permeability probably arose from modification of proteins of about 150–170 kDa, present in very low abundance in longitudinal SR membranes (and in slightly larger abundance in SR terminal cisternae). HNE-induced promotion, via these proteins, of Ca2+ leakage pathways, might be involved in the general toxic effects of HNE.  相似文献   

2.
3.
The use of a microsomal preparation from skeletal muscle revealed that both Ca(2+) transport and Ca(2+)-dependent ATP hydrolysis linked to Sarco-Endoplasmic Reticulum Ca(2+)-ATPase are inhibited by epigallocatechin-3-gallate (EGCG). A half-maximal effect was achieved at approx. 12?μM. The presence of the galloyl group was essential for the inhibitory effect of the catechin. The relative inhibition of the Ca(2+)-ATPase activity decreased when the Ca(2+) concentration was raised but not when the ATP concentration was elevated. Data on the catalytic cycle indicated inhibition of maximal Ca(2+) binding and a decrease in Ca(2+) binding affinity when measured in the absence of ATP. Moreover, the addition of ATP to samples in the presence of EGCG and Ca(2+) led to an early increase in phosphoenzyme followed by a time-dependent decay that was faster when the drug concentration was raised. However, phosphorylation following the addition of ATP plus Ca(2+) led to a slow rate of phosphoenzyme accumulation that was also dependent on EGCG concentration. The results are consistent with retention of the transporter conformation in the Ca(2+)-free state, thus impeding Ca(2+) binding and therefore the subsequent steps when ATP is added to trigger the Ca(2+) transport process. Furthermore, phosphorylation by inorganic phosphate in the absence of Ca(2+) was partially inhibited by EGCG, suggesting alteration of the native Ca(2+)-free conformation at the catalytic site.  相似文献   

4.
Summary

Rat liver mitochondria contain a specific Ca2+ release pathway which operates when intramitochondrial NAD+ is hydrolyzed to ADPribose and nicotinamide. The molecular details of this pathway are incompletely understood. It has been reported that NAD+ hydrolysis and therefore Ca2+ release stimulated by t-butylhydroperoxide is prevented by 4-hydroxynonenal (HNE). The reason underlying inhibition by HNE, however, remained unclear. It has also been reported that NAD+ hydrolysis and Ca2+ release are stimulated when some vicinal thiols are cross-linked, as shown with phenylarsine oxide or gliotoxin (GT). We now show that HNE also prevents the GT-induced Ca2+ release, but only when given before GT. Conversely, GT stimulates Ca2+ release only when given before HNE. Inhibition of Ca2+ release by HNE is reduced by its preincubation with thiol compounds, the effectiveness of which increases with decreasing pKa of their sulfhydryl group. Preincubation of HNE with glutathione at high, but not at low, pH similarly reduces inhibition of Ca2+ release by HNE. These findings provide evidence that HNE inhibition of Ca2+ release is due to a modification of mitochondrial thiolates in a way that their cross-linking is prevented, and give further insight into the regulation of Ca2+ release from intact mitochondria.  相似文献   

5.
The sarcoplasmic reticulum Ca2+-ATPase is able to cleave ATP through two different catalytic routes. In one of them, a part of the chemical energy derived from ATP hydrolysis is used to transport Ca2+ across the membrane and part is dissipated as heat. In the second route, the hydrolysis of ATP is completed before Ca2+ transport and all the energy derived from ATP hydrolysis is converted into heat. The second route is activated by the rise of the Ca2+ concentration in the vesicle lumen. In vesicles derived from white skeletal muscle the rate of the uncoupled ATPase is several-fold faster than the rate of the ATPase coupled to Ca2+ transport, and this accounts for both the low Ca2+/ATP ratio usually measured during transport and for the difference of heat produced during the hydrolysis of ATP by intact and leaky vesicles. Different drugs were found to selectively inhibit the uncoupled ATPase activity without modifying the activity coupled to Ca2+ transport. When the vesicles are actively loaded, part of the Ca2+ accumulated leaks to the medium through the ATPase. Heat is either produced or released during the leakage, depending on whether or not the Ca2+ efflux is coupled to the synthesis of ATP from ADP and Pi.  相似文献   

6.
7.
ATP-dependent calcium uptake by isolated sarcoplasmic reticulum vesicles is inhibited by concentrations of free thapsigargin as low as 10(-10) M. This effect is due to primary inhibition of the Ca(2+)-dependent ATPase which is coupled to active transport. When binding of calcium to the activating sites of the enzyme is measured under equilibrium conditions in the absence of ATP, addition of thapsigargin produces strong inhibition. On the other hand, if [tau-32P]ATP is added to ATPase preincubated with Ca2+ under favorable conditions, significant levels of 32P-phosphorylated intermediate are still formed transiently, even in the presence of thapsigargin. The phosphoenzyme, however, decays rapidly as the calcium-enzyme complex is destabilized as a consequence of ATP utilization, and formation of the thapsigargin-enzyme complex is favored. Formation of the thapsigargin-enzyme complex is also favored by Ca2+ chelation with EGTA, with consequent inhibition of the enzyme reactivity to Pi (i.e. reverse of the ATPase hydrolytic reaction). Neither the Ca(2+)- and ATP-induced Ca2+ release from junctional sarcoplasmic reticulum nor the Ca(2+)- and calmodulin-dependent ATPase of plasma membranes (erythrocyte ghosts) were found to be altered by thapsigargin at such low concentrations.  相似文献   

8.
Recently, we reported an elevated level of glucose-generated carbonyl adducts on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) in hearts of streptozotocin(STZ)-induced diabetic rats. We also showed these adduct impaired RyR2 and SERCA2 activities, and altered evoked Ca2+ transients. What is less clear is if lipid-derived malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) also chemically react with and impair RyR2 and SERCA2 activities in diabetes? This study used western blot assays with adduct-specific antibodies and confocal microscopy to assess levels of MDA, 4-HNE, N ε-carboxy(methyl)lysine (CML), pentosidine, and pyrraline adducts on RyR2 and SERCA2 and evoked intracellular transient Ca2+ kinetics in myocytes from control, diabetic, and treated-diabetic rats. MDA and 4-HNE adducts were not detected on RyR2 and SERCA2 from either control or 8 weeks diabetic rats with altered evoked Ca2+ transients. However, CML, pentosidine, and pyrraline adducts were elevated three- to five-fold (p < 0.05). Treating diabetic rats with pyridoxamine (a scavenger of reactive carbonyl species, RCS) or aminoguanidine (a mixed reactive oxygen species-RCS scavenger) reduced CML, pentosidine, and pyrraline adducts on RyR2 and SERCA2 and blunted SR Ca2+ cycling changes. Treating diabetic rats with the superoxide dismutase mimetic tempol had no impact on MDA and 4-HNE adducts on RyR2 and SERCA2, and on SR Ca2+ cycling. From these data we conclude that lipid-derived MDA and 4-HNE adducts are not formed on RyR2 and SERCA2 in this model of diabetes, and are therefore unlikely to be directly contributing to the SR Ca2+ dysregulation.  相似文献   

9.
Red blood cell lysis is a common symptom following severe or prolonged oxidative stress. Oxidative processes occur commonly in sickle cells, probably mediated through denatured hemoglobin and the accumulation of ferric hemes in the membranes. Calmodulin-stimulated (Ca2+ + Mg2+)-ATPase from sickle red cell membranes is partially inactivated (Leclerc et al. (1987) Biochim. Biophys. Acta 897, 33-40). In this study (Ca2+ + Mg2+)-ATPase activity from normal adult erythrocyte membranes was measured in the presence of hemin. We report a time- and concentration-dependent inhibition of the activity of the enzyme by hemin due to a decrease in the maximum velocity. Only a mild inhibitory effect was observed in the presence of iron-free protoporphyrin IX, indicating the catalytic influence of the iron. Experiments carried out with hemin (ferric iron) liganded with imidazole or with reduced protoheme (ferrous iron) liganded with carbon monoxide, demonstrated that the inhibition requires that hemin be capable of binding additional ligands. The inhibition was not influenced by the absence of oxygen but was prevented by addition of bovine serum albumin. Addition of butylated hydroxytoluene, a protective agent of lipid peroxidation, failed to prevent the inhibition of calmodulin-stimulated (Ca2+ + Mg2+)-ATPase. As dithiothreitol partially restores the enzyme activity, we postulated that hemin interacts with the thiol groups of the enzyme.  相似文献   

10.
Adult SERCA2(b/b) mice expressing the non-muscle Ca2+ transport ATPase isoform SERCA2b in the heart instead of the normally predominant sarcomeric SERCA2a isoform, develop mild concentric ventricular hypertrophy with impaired cardiac contractility and relaxation [Circ. Res. 89 (2001) 838]. Results from a separate study on transgenic mice overexpressing SERCA2b in the normal SERCA2a context were interpreted to show that SERCA2b and SERCA2a are differentially targeted within the cardiac sarcoplasmic reticulum (SR) [J. Biol. Chem. 275 (2000) 24722]. Since a different subcellular distribution of SERCA2b could underlie alterations in Ca2+ handling observed in SERCA2(b/b), we wanted to compare SERCA2b distribution in SERCA2(b/b) with that of SERCA2a in wild-type (WT). Using confocal microscopy on immunostained fixed myocytes and BODIPY-thapsigargin-stained living cells, we found that in SERCA2(b/b) mice SERCA2b is correctly targeted to cardiac SR and is present in the same SR regions as SERCA2a and SERCA2b in WT. We conclude that there is no differential targeting of SERCA2a and SERCA2b since both are found in the longitudinal SR and in the SR proximal to the Z-bands. Therefore, alterations in Ca2+ handling and the development of hypertrophy in adult SERCA2(b/b) mice do not result from different SERCA2b targeting.  相似文献   

11.
Clotrimazole (CLT) is an antimycotic imidazole derivative that is known to inhibit cytochrome P-450, ergosterol biosynthesis and proliferation of cells in culture, and to interfere with cellular Ca(2+) homeostasis. We found that CLT inhibits the Ca(2+)-ATPase of rabbit fast-twitch skeletal muscle (SERCA1), and we characterized in detail the effect of CLT on this calcium transport ATPase. We used biochemical methods for characterization of the ATPase and its partial reactions, and we also performed measurements of charge movements following adsorption of sarcoplasmic reticulum vesicles containing the ATPase onto a gold-supported biomimetic membrane. CLT inhibits Ca(2+)-ATPase and Ca(2+) transport with a K(I) of 35 mum. Ca(2+) binding in the absence of ATP and phosphoenzyme formation by the utilization of ATP in the presence of Ca(2+) are also inhibited within the same CLT concentration range. On the other hand, phosphoenzyme formation by utilization of P(i) in the absence of Ca(2+) is only minimally inhibited. It is concluded that CLT inhibits primarily Ca(2+) binding and, consequently, the Ca(2+)-dependent reactions of the SERCA cycle. It is suggested that CLT resides within the membrane-bound region of the transport ATPase, thereby interfering with binding and the conformational effects of the activating cation.  相似文献   

12.
During the last three decades, 4-hydroxy-2-nonenal (HNE), a major α,β-unsaturated aldehyde product of n-6 fatty acid oxidation, has been shown to be involved in a great number of pathologies such as metabolic diseases, neurodegenerative diseases and cancers. These multiple pathologies can be explained by the fact that HNE is a potent modulator of numerous cell processes such as oxidative stress signaling, cell proliferation, transformation or cell death. The main objective of this review is to focus on the different aspects of HNE-induced cell death, with a particular emphasis on apoptosis. HNE is a special apoptotic inducer because of its abilities to form protein adducts and to propagate oxidative stress. It can stimulate intrinsic and extrinsic apoptotic pathways and interact with typical actors such as tumor protein 53, JNK, Fas or mitochondrial regulators. At the same time, due to its oxidant status, it can also induce some cellular defense mechanisms against oxidative stress, thus being involved in its own detoxification. These processes in turn limit the apoptotic potential of HNE. These dualities can imbalance cell fate, either toward cell death or toward survival, depending on the cell type, the metabolic state and the ability to detoxify.  相似文献   

13.
Mitsugumin 53 (MG53) is a member of the membrane repair system in skeletal muscle. However, the roles of MG53 in the unique functions of skeletal muscle have not been addressed, although it is known that MG53 is expressed only in skeletal and cardiac muscle. In the present study, MG53-binding proteins were examined along with proteins that mediate skeletal muscle contraction and relaxation using the binding assays of various MG53 domains and quadrupole time-of-flight mass spectrometry. MG53 binds to sarcoplasmic reticulum Ca2+-ATPase 1a (SERCA1a) via its tripartite motif (TRIM) and PRY domains. The binding was confirmed in rabbit skeletal muscle and mouse primary skeletal myotubes by co-immunoprecipitation and immunocytochemistry. MG53 knockdown in mouse primary skeletal myotubes increased Ca2+-uptake through SERCA1a (more than 35%) at micromolar Ca2+ but not at nanomolar Ca2+, suggesting that MG53 attenuates SERCA1a activity possibly during skeletal muscle contraction or relaxation but not during the resting state of skeletal muscle. Therefore MG53 could be a new candidate for the diagnosis and treatment of patients with Brody syndrome, which is not related to the mutations in the gene coding for SERCA1a, but still accompanies exercise-induced muscle stiffness and delayed muscle relaxation due to a reduction in SERCA1a activity.  相似文献   

14.
15.
Wild-type (WT) and the double mutant D813A,D818A (ADA) of the L6-7 loop of SERCA1a were expressed in yeast, purified, and reconstituted into lipids. This allowed us to functionally study these ATPases by both kinetic and spectroscopic means, and to solve previous discrepancies in the published literature about both experimental facts and interpretation concerning the role of this loop in P-type ATPases. We show that in a solubilized state, the ADA mutant experiences a dramatic decrease of its calcium-dependent ATPase activity. On the contrary, reconstituted in a lipid environment, it displays an almost unaltered maximal calcium-dependent ATPase activity at high (millimolar) ATP, with an apparent affinity for Ca(2+) altered only moderately (3-fold). In the absence of ATP, the true affinity of ADA for Ca(2+) is, however, more significantly reduced (20-30-fold) compared with WT, as judged from intrinsic (Trp) or extrinsic (fluorescence isothiocyanate) fluorescence experiments. At low ATP, transient kinetics experiments reveal an overshoot in the ADA phosphorylation level primarily arising from the slowing down of the transition between the nonphosphorylated "E2" and "Ca(2)E1" forms of ADA. At high ATP, this slowing down is only partially compensated for, as ADA turnover remains more sensitive to orthovanadate than WT turnover. ADA ATPase also proved to have a reduced affinity for ATP in studies performed under equilibrium conditions in the absence of Ca(2+), highlighting the long range interactions between L6-7 and the nucleotide-binding site. We propose that these mutations in L6-7 could affect protonation-dependent winding and unwinding events in the nearby M6 transmembrane segment.  相似文献   

16.
Thioridazine inhibits the activity of the synaptic plasma membrane Ca(2+)-ATPase from pig brain and slightly decreases the rate of Ca(2+) accumulation by synaptic plasma membrane vesicles in the absence of phosphate. However, in the presence of phosphate, thioridazine increases the rate of Ca(2+) accumulation into synaptic plasma membrane vesicles. Phosphate anions diffuse through the membrane and form calcium phosphate crystals, reducing the free Ca(2+) concentration inside the vesicles and the rate of Ca(2+) leak. The higher levels of Ca(2+) accumulation obtained in the presence of thioridazine could be explained by a reduction of the rate of slippage on the plasma membrane ATPase.  相似文献   

17.
The use of Porphyrin derivatives as photosensitizers in Photodynamic Therapy (PDT) was investigated by means of a molecular docking study. These molecules can bind to intracellular targets such as P-type CaCa2+ ATPase of sarcoplasmic reticulum (SERCA1a). CAChe software was successfully employed for conducting the docking of Tetraphenylporphinesulfonate(TPPS), 5,10,15,20- Tetrakis (4-sulfonatophenyl) porphyrinato Iron(III) Chloride (FeTPPS) and 5,10,15,20-Tetrakis (4-sulfonatophenyl) porphyrinato Iron(III) nitrosyl Chloride (FeNOTPPS) with CaCa2+ ATPase from sarcoplasmic reticulum of rabbit. The results show that FeNOTPPS forms the most stable complex with CaCa2+ ATPase.  相似文献   

18.
Li S  Hao B  Lu Y  Yu P  Lee HC  Yue J 《PloS one》2012,7(2):e31905
Intracellular pH (pHi) and Ca(2+) regulate essentially all aspects of cellular activities. Their inter-relationship has not been mechanistically explored. In this study, we used bases and acetic acid to manipulate the pHi. We found that transient pHi rise induced by both organic and inorganic bases, but not acidification induced by acid, produced elevation of cytosolic Ca(2+). The sources of the Ca(2+) increase are from the endoplasmic reticulum (ER) Ca(2+) pools as well as from Ca(2+) influx. The store-mobilization component of the Ca(2+) increase induced by the pHi rise was not sensitive to antagonists for either IP(3)-receptors or ryanodine receptors, but was due to inhibition of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA), leading to depletion of the ER Ca(2+) store. We further showed that the physiological consequence of depletion of the ER Ca(2+) store by pHi rise is the activation of store-operated channels (SOCs) of Orai1 and Stim1, leading to increased Ca(2+) influx. Taken together, our results indicate that intracellular alkalinization inhibits SERCA activity, similar to thapsigargin, thereby resulting in Ca(2+) leak from ER pools followed by Ca(2+) influx via SOCs.  相似文献   

19.
Rat brain mitochondrial Ca2+ uptake and release were examined in the presence of amiloride (3,5-diamino-6-chloro-N-(diaminomethylene)-pyrazinecarboxamide) and nineteen amiloride analogues. Amiloride, an inhibitor of Na+-Ca2+ exchange in plasmalemma membranes, did not affect energy-dependent Ca2+ uptake, whereas several other analogues were inhibitors. Similarly, amiloride did not alter Ca2+ release in the presence or absence of Na+. However, some analogues were found that stimulated and others that inhibited Ca2+ release. While many of these analogues reduced mitochondrial respiratory control ratios, two analogues were identified which inhibited Ca2+ uptake but did not alter mitochondrial respiratory control. Similarly two analogues were identified which inhibited Ca2+ efflux without affecting respiratory control.  相似文献   

20.
Summary Inside-out vesicles prepared from human red blood cells took up Ca2+ by an active transport process. Membranes from the same red blood cells displayed Ca2+-activated, Mg2+-dependent adenosine triphosphatase activity. Both the initial rate of Ca2+ transport and the (Ca2++Mg2+)-adenosine triphosphatase activity were increased approximately twofold by the calcium binding protein, calmodulin. Activities in the absence of added calmodulin were termed basal activities. Calmodulin-activated Ca2+ transport and adenosine triphosphatase activities could be antagonized in a relatively selective fashion by the phenothiazine tranquilizer drug, trifluoperazine. High concentrations of trifluoperazine also inhibited basal Ca2+ transport and adenosine triphosphatase activity. By contrast, calmodulin binding protein from beef brain selectively antagonized the effect of calmodulin on Ca2+ transport with no inhibition of basal activity. Ruthenium red antagonized calmodulin-activated and basal activity with equal potency. The results demonstrate that although phenothiazines can act as relatively selective antagonists of calmodulin-induced effects, other effects are possible and cannot be ignored. Calmodulin-binding protein may be a useful tool in the analysis of calmodulin functions. Ruthenium red probably interacts with Ca2+ pump adenosine triphosphatase at a site not related to calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号