首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the absence of a hepatitis C virus (HCV) culture system, the use of a Semliki Forest virus replicon expressing genes encoding HCV structural proteins that assemble into HCV-like particles provides an opportunity to study HCV morphogenesis. Using this system, we showed that the HCV core protein constitutes the budding apparatus of the virus and that its targeting to the endoplasmic reticulum by means of the signal sequence of E1 protein is essential for budding. In addition, the aspartic acid at position 111 in the HCV core protein sequence was found to be crucial for virus assembly, demonstrating the usefulness of this system for mapping amino acids critical to HCV morphogenesis.  相似文献   

2.
Previous work has shown that the Sindbis structural proteins, core, the internal protein, and PE2 and E1, the integral membrane glycoproteins are synthesized as a polyprotein from a 26S mRNA; core PE2 and E1 are derived by proteolytic cleavage of a nascent chain. Newly synthesized core protein remains on the cytoplasmic side of the endoplasmic reticulum while newly synthesized PE2 and E1 are inserted into the lipid bilayer, presumably via their amino-termini. PE2 and E1 are glycosylated as nascent chains. Here, we examine a temperature-sensitive mutant of Sindbis virus which fails to cleave the structural proteins, resulting in the production of a polyprotein of 130,000 mol wt in which the amino-termini of PE2 and E1 are internal to the protein. Although the envelope sequences are present in this protein, it is not inserted into the endoplasmic reticulum bilayer, but remains on the cytoplasmic side as does the core protein in cells infected with wild-type Sindbis virus. We have also examined the fate of PE2 and E1 in cells treated with tunicamycin, an inhibitor of glycosylation. Unglycosylated PE2 and E1 are inserted normally into the lipid bilayer as are the glycosylated proteins. These results are consistent with the notion that a specific amino-terminal sequence is required for the proper insertion of membrane proteins into the endoplasmic reticulum bilayer, but that glycosylation is not required for this insertion.  相似文献   

3.
T C Hobman  R Shukin    S Gillam 《Journal of virology》1988,62(11):4259-4264
Rubella virus (RV) contains four structural proteins, C (capsid), E2a, E2b, and E1, which are derived from posttranslational processing of a single polyprotein precursor, p110. C protein is nonglycosylated and is thought to interact with RV RNA to form a nucleocapsid. E1 and E2 are membrane glycoproteins that form the spike complexes located on the virion exterior. Two different E1 cDNAs were used to analyze the requirements for translocation of E1 into the endoplasmic reticulum. Analysis of expression of these cDNAs both in vivo and in vitro showed that RV E1 was stably expressed and glycosylated in COS cells and correctly targeted into microsomes in the absence of E2 glycoprotein. The results provide experimental evidence that translocation of RV E1 glycoprotein into the endoplasmic reticulum is mediated by a signal peptide contained within the 69 carboxyl-terminal residues of E2.  相似文献   

4.
To investigate the function of heavy chain binding protein (BiP, GRP 78) in the endoplasmic reticulum, we have characterized its interaction with a model plasma membrane glycoprotein, the G protein of vesicular stomatitis virus. We used a panel of well characterized mutant G proteins and immunoprecipitation with anti-BiP antibodies to determine if BiP interacted with newly synthesized G protein and/or mutant G proteins retained in the endoplasmic reticulum. We made three major observations: 1) BiP bound transiently to folding intermediates of wild-type G protein which were incompletely disulfide-bonded; 2) BiP did not bind stably to all mutant G proteins which remain in the endoplasmic reticulum; and 3) BiP bound stably only to mutant G proteins which do not form correct intrachain disulfide bonds.  相似文献   

5.
6.
Hepatitis C virus (HCV) contains two membrane-associated envelope glycoproteins, E1 and E2, which assemble as a heterodimer in the endoplasmic reticulum (ER). In this study, predictive algorithms and genetic analyses of deletion mutants and glycosylation site variants of the E1 glycoprotein were used to suggest that the glycoprotein can adopt two topologies in the ER membrane: the conventional type I membrane topology and a polytopic topology in which the protein spans the ER membrane twice with an intervening cytoplasmic loop (amino acid residues 288 to 360). We also demonstrate that the E1 glycoprotein is able to associate with the HCV core protein, but only upon oligomerization of the core protein in the presence of tRNA to form capsid-like structures. Yeast two-hybrid and immunoprecipitation analyses reveal that oligomerization of the core protein is promoted by amino acid residues 72 to 91 in the core. Furthermore, the association between the E1 glycoprotein and the assembled core can be recapitulated using a fusion protein containing the putative cytoplasmic loop of the E1 glycoprotein. This fusion protein is also able to compete with the intact E1 glycoprotein for binding to the core. Mutagenesis of the cytoplasmic loop of E1 was used to define a region of four amino acids (residues 312 to 315) that is important for interaction with the assembled HCV core. Taken together, our studies suggest that interaction between the self-oligomerized HCV core and the E1 glycoprotein is mediated through the cytoplasmic loop present in a polytopic form of the E1 glycoprotein.  相似文献   

7.
The addition of N-linked glycans to a protein is catalyzed by oligosaccharyltransferase, an enzyme closely associated with the translocon. N-glycans are believed to be transferred as the protein is being synthesized and cotranslationally translocated in the lumen of the endoplasmic reticulum. We used a mannosylphosphoryldolichol-deficient Chinese hamster ovary mutant cell line (B3F7 cells) to study the temporal regulation of N-linked core glycosylation of hepatitis C virus envelope protein E1. In this cell line, truncated Glc(3)Man(5)GlcNAc(2) oligosaccharides are transferred onto nascent proteins. Pulse-chase analyses of E1 expressed in B3F7 cells show that the N-glycosylation sites of E1 are slowly occupied until up to 1 h after protein translation is completed. This posttranslational glycosylation of E1 indicates that the oligosaccharyltransferase has access to this protein in the lumen of the endoplasmic reticulum for at least 1 h after translation is completed. Comparisons with the N-glycosylation of other proteins expressed in B3F7 cells indicate that the posttranslational glycosylation of E1 is likely due to specific folding features of this acceptor protein.  相似文献   

8.
9.
Hepatitis C virus (HCV) is the major causative pathogen associated with liver cirrhosis and hepatocellular carcinoma. The virus has a positive-sense RNA genome encoding a single polyprotein with the virion components located in the N-terminal portion. During biosynthesis of the polyprotein, an internal signal sequence between the core protein and the envelope protein E1 targets the nascent polypeptide to the endoplasmic reticulum (ER) membrane for translocation of E1 into the ER. Following membrane insertion, the signal sequence is cleaved from E1 by signal peptidase. Here we provide evidence that after cleavage by signal peptidase, the signal peptide is further processed by the intramembrane-cleaving protease SPP that promotes the release of core protein from the ER membrane. Core protein is then free for subsequent trafficking to lipid droplets. This study represents an example of a potential role for intramembrane proteolysis in the maturation of a viral protein.  相似文献   

10.
The two transmembrane spike protein subunits of Semliki Forest virus (SFV) form a heterodimeric complex in the rough endoplasmic reticulum. This complex is then transported to the plasma membrane, where spike-nucleocapsid binding and virus budding take place. By using an infectious SFV clone, we have characterized the effects of mutations within the putative fusion peptide of the E1 spike subunit on spike protein dimerization and virus assembly. These mutations were previously demonstrated to block spike protein membrane fusion activity (G91D) or cause an acid shift in the pH threshold of fusion (G91A). During infection of BHK cells at 37 degrees C, virus spike proteins containing either mutation were efficiently produced and transported to the plasma membrane, where they associated with the nucleocapsid. However, the assembly of mutant spike proteins into mature virions was severely impaired and a cleaved soluble fragment of E1 was released into the medium. In contrast, incubation of mutant-infected cells at reduced temperature (28 degrees C) dramatically decreased E1 cleavage and permitted assembly of morphologically normal virus particles. Pulse-labeling studies showed that the critical period for 28 degrees C incubation was during virus assembly, not spike protein synthesis. Thus, mutations in the putative fusion peptide of SFV confer a strong and thermoreversible budding defect. The dimerization of the E1 spike protein subunit with E2 was analyzed by using either cells infected with virus mutants or mutant virus particles assembled at 28 degrees C. The altered-assembly phenotype of the G91D and G91A mutants correlated with decreased stability of the E1-E2 dimer.  相似文献   

11.
The glycolipid transfer protein (GLTP) is a cytoplasmic protein with an ability to bind glycolipids and catalyze their in vitro transfer. In this study, we have found a FFAT-like motif in GLTP. The FFAT (two phenylalanines in an acidic tract) motif in lipid-binding proteins has previously been shown to interact with the VAPs (vesicle-associated membrane protein-associated proteins) in the endoplasmic reticulum. Here we used glutathione S-transferase pull-down experiments to confirm that GLTP and VAP-A interact. By displacing different amino acids in the motif we clearly show that the interaction is dependent on the FFAT-like motif in GLTP. The potential role of GLTP in the endoplasmic reticulum association is discussed.  相似文献   

12.
To sort out possible influences of protein sequences and fatty acid acylation on the plasma membrane association of simian virus 40 large T-antigen, we have analyzed the membrane interactions of carboxy-terminal fragments of large T-antigen, encoded by the adenovirus type 2 (Ad2+)-simian virus 40 hybrid viruses Ad2+ND1 and Ad2+ND2. The 28,000 (28K)-molecular-weight protein of Ad2+ND1 as well as the 42K and 56K proteins of Ad2+ND2 associate preferentially with membranous structures and were found in association with the membrane system of the endoplasmic reticulum and with plasma membranes. Neither the endoplasmic reticulum membrane- nor the plasma membrane-associated 28K protein of Ad2+ND1 is fatty acid acylated. We, therefore, conclude that fatty acid acylation is not necessary for membrane association of this protein and suggest that an amino acid sequence in this protein is responsible for its membrane interaction. In contrast, the 42K and 56K proteins of Ad2+ND2 in plasma membrane fractions contain fatty acid. However, the interaction of these proteins with the plasma membrane differs from that of the 28K protein of Ad2+ND1: whereas the 28K protein of Ad2+ND1 interacts stably with Nonidet P-40-soluble constituents of the plasma membrane, the 42K and 56K proteins of Ad2+ND2 are tightly bound to the Nonidet P-40-insoluble plasma membrane lamina. Thus, an amino acid sequence in the amino-terminal region of the 28K protein confers membrane affinity to these proteins, whereas a region between the amino-terminal end of the 42K protein of Ad2+ND2 and the amino-terminal end of the 28K protein of Ad2+ND1 contains a reactive site for fatty acid acylation. This posttranslational modification correlates with the stable association of the 42K and 56K proteins with the plasma membrane lamina. We suggest that the same sequences also mediate the proper plasma membrane association of large T-antigen in simian virus 40-transformed cells.  相似文献   

13.
Hepatitis C virus glycoproteins E1 and E2 do not reach the plasma membrane of the cell but accumulate intracellularly, mostly in the endoplasmic reticulum. Previous studies based on transient expression assays have shown that the transmembrane domains of both glycoproteins are sufficient to localize reporter proteins in the endoplasmic reticulum and that other localization signals may be contained in the ectodomain of E1 protein. To identify such signals we generated chimeric proteins between E1 and two reporter proteins, the human CD8 glycoprotein and the human alkaline phosphatase, and analyzed their subcellular localization in stable as well as transient transfectants. Our results showed that (i) an independent localization determinant for the endoplasmic reticulum is present in the juxtamembrane region of the ectodomain of E1 protein and (ii) the localization dictated by this determinant is either due to direct retention or to a recycling mechanism from the intermediate compartment/cis-Golgi complex region, which is clearly different from those previously described for other retrieval signals. These results show for the first time in mammalian cells that the localization in the endoplasmic reticulum of transmembrane protein can be determined by specific targeting signals acting in the lumen of the compartment.  相似文献   

14.
The role of the Japanese encephalitis virus (JEV) premembrane (prM) protein in maturation of the envelope (E) glycoprotein was evaluated by using recombinant vaccinia viruses encoding E in the presence (vP829) or absence (vP658) of prM. Immunofluorescence analyses showed that E appeared to be localized in the endoplasmic reticulum of cells infected with JEV, vP829, or vP658. However, reactivity with monoclonal antibodies and behavior in Triton X-114 indicated that E produced in the absence of prM behaved abnormally. Furthermore, E produced in the presence of prM by recombinant vaccinia viruses could be incorporated into flavivirus pseudotypes, whereas E synthesized in the absence of prM could not. These results demonstrate that cosynthesis of prM is required for proper folding, membrane association, and assembly of the flavivirus E protein.  相似文献   

15.
Three proteins, namely, the core protein C and envelope glycoproteins E1 and E2, are main structural proteins forming a hepatitis C virus (HCV) virion. The virus structure and assembly and the role of the structural proteins in virion morphogenesis remain unknown because of the lack of an efficient culture system for HCV to be grown in vitro. Highly efficient heterologous expression systems make it possible to obtain self-assembled, nonreplicating, genome-lacking particles that are morphologically similar to intact virions. Using recombinant baculoviruses expressing the HCV structural protein genes in insect cells, the individual HCV structural proteins were expressed to 25–35% of the total cell protein, and the CE1 and E1E2 heterodimers and HCV-like particles were obtained. It was demonstrated that the recombinant C, E1, and E2 proteins underwent posttranslational modification, the glycoproteins formed a noncovalent heterodimer, and HCV- like particles were located in endoplasmic reticulum membranes of infected cells. The formation of E1E2 dimers and HCV-like particles was used to study the effect of E1 glycosylation on the expression and processing of the coat proteins.  相似文献   

16.
The gene encoding a novel extrinsic protein (Psb31) found in Photosystem II (PSII) of a diatom, Chaetoceros gracilis, was cloned and sequenced. The deduced protein contained three characteristic leader sequences targeted for chloroplast endoplasmic reticulum membrane, chloroplast envelope membrane and thylakoid membrane, indicating that Psb31 is encoded in the nuclear genome and constitutes one of the extrinsic proteins located on the lumenal side. Homologous genes were found in a red alga and chromophytic algae but not in other organisms. Genes encoding the other four extrinsic proteins in C. gracilis PSII were also cloned and sequenced, and their leader sequences were characterized and compared. To search for the nearest neighbor relationship between Psb31 and the other PSII components, we crosslinked the PSII particles with the water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and found that Psb31 directly associates with PSII core components through electrostatic interaction, suggesting that the novel Psb31 protein is one of the extrinsic proteins constituting the functional oxygen-evolving complex of C. gracilis PSII.  相似文献   

17.
The eta isoform of protein kinase C, isolated from a cDNA library of mouse skin, has unique tissue and cellular distributions. It is predominantly expressed in epithelia of the skin, digestive tract, and respiratory tract in close association with epithelial differentiation. We report here that this isoform is localized on the rough endoplasmic reticulum in transiently expressing COS1 cells and constitutively expressing keratinocytes. By the use of polyclonal antibodies raised against peptides of the diverse D1 and D2/D3 regions, we found that immunofluorescent signals were strongest in the cytoplasm around the nucleus and became weaker toward the peripheral cytoplasm. Under immunoelectron microscopic examination, electron-dense signals were located on the rough endoplasmic reticulum and on the outer nuclear membrane which is continuous with the endoplasmic reticulum membrane. However, no signals were detected in the nucleus, inner nuclear membrane, smooth endoplasmic reticulum, Golgi apparatus, mitochondria, or plasma membrane. Treatment of the cells in situ with detergents suggested association of the isoform of protein kinase C with intracellular structures. By immunoblotting, a distinct single band with an M(r) of 80,000 was detected in whole-cell lysate and in rough microsomal and crude nuclear fractions, all of which contain outer nuclear membrane and/or rough endoplasmic reticulum. We further demonstrated the absence of a nuclear localization signal in the pseudosubstrate sequence. The present observation is not consistent with the report of Greif et al. (H. Greif, J. Ben-Chaim, T. Shimon, E. Bechor, H. Eldar, and E. Livneh, Mol. Cell. Biol. 12:1304-1311, 1992).  相似文献   

18.
Li B  Yau P  Kemper B 《Proteomics》2011,11(16):3359-3368
Interactions of microsomal cytochromes P450 (CYPs) with other proteins in the microsomal membrane are important for their function. In addition to their redox partners, CYPs have been reported to interact with other proteins not directly involved in their enzymatic function. In this study, proteins were identified that interact with CYP2C2 in vivo in mouse liver. Flag-tagged CYP2C2 was expressed exogenously in mouse liver and was affinity purified, along with associated proteins which were identified by MS and confirmed by Western blotting. Over 20 proteins reproducibly copurified with CYP2C2. The heterogeneous sedimentation velocity of CYP2C2 and associated proteins by centrifugation in sucrose gradients and sequential immunoprecipitation analysis were consistent with multiple CYP2C2 complexes of differing composition. The abundance of CYPs and other drug metabolizing enzymes and NAD/NADP requiring enzymes associated with CYP2C2 suggest that complexes of these proteins may improve enzymatic efficiency or facilitate sequential metabolic steps. Chaperones, which may be important for maintaining CYP function, and reticulons, endoplasmic reticulum proteins that shape the morphology of the endoplasmic reticulum and are potential endoplasmic reticulum retention proteins for CYPs, were also associated with CYP2C2.  相似文献   

19.
20.
With the aim of identifying new intracellular binding partners for acidic fibroblast growth factor (aFGF), proteins from U2OS human osteosarcoma cells were adsorbed to immobilized aFGF. One of the adsorbed proteins is a member of the leucine-rich repeat protein family termed ribosome-binding protein p34 (p34). This protein has previously been localized to endoplasmic reticulum membranes and is thought to span the membrane with the N terminus on the cytosolic side. Confocal microscopy of cells transfected with Myc-p34 confirmed the endoplasmic reticulum localization, and Northern blotting determined p34 mRNA to be present in a multitude of different tissues. Cross-linking experiments indicated that the protein is present in the cell as a dimer. In vitro translated p34 was found to interact with maltose-binding protein-aFGF through its cytosolic coiled-coil domain. The interaction between aFGF and p34 was further characterized by surface plasmon resonance, giving a K(D) of 1.4 +/- 0.3 microm. Even though p34 interacted with mitogenic aFGF, it bound poorly to the non-mitogenic aFGF(K132E) mutant, indicating a possible involvement of p34 in intracellular signaling by aFGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号