首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By decreasing plasminogen binding to fibrin surface, the thrombin activatable fibrinolysis inhibitor (TAFI) has been hypothesized to constitute an early marker for atherothrombotic diseases. Previous studies have shown that plasma TAFI levels exhibit a high interindividual variability that is only poorly explained by lifestyle factors. Several polymorphisms of the TAFI gene have been described, and a combination of a C+1542G substitution in the 3' untranslated region and an Ala147Thr amino acid change has been shown to explain 60% of TAFI variability in a sample of unrelated individuals. A segregation-linkage analysis was performed to determine whether these polymorphisms are directly involved in the genetic regulation of TAFI levels, or whether they are only markers in linkage disequilibrium (LD) with unmeasured TAFI-linked quantitative trait loci (QTLs). The sample consisted of 97 healthy nuclear families from the Stanislas Cohort. The C+1542G and Ala147Thr polymorphisms were in complete negative LD, with minor allele frequencies of 0.27 and 0.28, respectively. Results of the segregation-linkage analysis provided evidence of two TAFI-linked QTLs in LD with the two measured polymorphisms, which would explain 78% of the TAFI variance, as compared with 55% explained by the C+1542G and the Ala147Thr polymorphisms combined. The two putative QTLs would have minor allele frequencies of 0.45 and 0.32, respectively. The hypothesis that one of the measured polymorphisms is one of the QTLs was rejected. The putative QTLs also did not seem compatible with the other TAFI gene polymorphisms that we have previously described. More extensive sequencing of the TAFI gene is necessary to identify the functional variants.  相似文献   

2.
The latent plasma carboxypeptidase thrombin-activable fibrinolysis inhibitor (TAFI) is activated by thrombin/thrombomodulin on the endothelial cell surface, and functions in dampening fibrinolysis. In this study, we examined the effect of activated TAFI (TAFIa) in modulating the proinflammatory functions of bradykinin, complement C5a, and thrombin-cleaved osteopontin. Hydrolysis of bradykinin and C5a and thrombin-cleaved osteopontin peptides by TAFIa was as efficient as that of plasmin-cleaved fibrin peptides, indicating that these are also good substrates for TAFIa. Plasma carboxypeptidase N, generally regarded as the physiological regulator of kinins, was much less efficient than TAFIa. TAFIa abrogated C5a-induced neutrophil activation in vitro. Jurkat cell adhesion to osteopontin was markedly enhanced by thrombin cleavage of osteopontin. This was abolished by TAFIa treatment due to the removal of the C-terminal Arg168 by TAFIa from the exposed SVVYGLR alpha 4 beta 1 integrin-binding site in thrombin-cleaved osteopontin. Thus, thrombin cleavage of osteopontin followed by TAFIa treatment may sequentially up- and down-modulate the pro-inflammatory properties of osteopontin. An engineered anticoagulant thrombin, E229K, was able to activate endogenous plasma TAFI in mice, and E229K thrombin infusion effectively blocked bradykinin-induced hypotension in wild-type, but not in TAFI-deficient, mice in vivo. Our data suggest that TAFIa may have a broad anti-inflammatory role, and its function is not restricted to fibrinolysis.  相似文献   

3.
Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase found in human plasma, presumably as an inactive zymogen. The current dogma is that proteolytic activation by thrombin/thrombomodulin generates the active enzyme (TAFIa), which down-regulates fibrinolysis by removing C-terminal lysine residues from partially degraded fibrin. In this study, we have shown that the zymogen exhibits continuous and stable carboxypeptidase activity against large peptide substrates, and we suggest that the activity down-regulates fibrinolysis in vivo.  相似文献   

4.
Thrombin-activatable fibrinolysis inhibitor (TAFI) is an anaphylatoxin-inactivating enzyme generated by proteolytic cleavage of its zymogen, and is the same enzyme as that first designated by our group as procarboxypeptidase R (proCPR). TAFI in plasma is presumed to influence vascular disease in its role as a fibrinolysis inhibitor. The activity of TAFI is strongly influenced by genetic polymorphism, especially at amino acids Thr/Ala-147 and Thr/Ile-325. In this study, we analyzed 202 healthy controls who were not on any medication, had no unusual medical history and whose blood data were normal. In a previous report, we established an enzyme-linked immunosorbent assay (ELISA) specific for non-activated TAFI (proCPR), and investigated levels of unactivated TAFI as an estimate of anti-fibrinolytic capacity. In this study, we determined normal Japanese TAFI levels for each age, sex, and genetic polymorphism of Thr/Ala-147 and Thr/Ile-325, and also showed that the TAFI level in young adult women is lower than in aged women.  相似文献   

5.
Thrombin-activable fibrinolysis inhibitor (TAFI) has recently been identified as a positive acute phase protein in mice, an observation that may have important implications for the interaction of the coagulation, fibrinolytic, and inflammatory systems. Activated TAFI (TAFIa) inhibits fibrinolysis by removing the carboxyl-terminal lysines from partially degraded fibrin that are important for maximally efficient plasminogen activation. In addition, TAFIa has been shown to be capable of removing the carboxyl-terminal arginine residues from the anaphylatoxins and bradykinin, thus implying a role for the TAFI pathway in the vascular responses to inflammation. In the current study, we investigated the ability of acute phase mediators to modulate human TAFI gene expression in cultured human hepatoma (HepG2) cells. Surprisingly, we found that treatment of HepG2 cells with a combination of interleukin (IL)-1 and IL-6 suppressed endogenous TAFI mRNA abundance in HepG2 cells (~60% decrease), while treatment with IL-1 or IL-6 alone had no effect. Treatment with IL-1 and/or IL-6 had no effect on TAFI promoter activity as measured using a luciferase reporter plasmid containing the human TAFI 5'-flanking region, whereas treatment with IL-1 and IL-6 in combination, but not alone, decreased the stability of the endogenous TAFI mRNA. Treatment with the synthetic glucocorticoid dexamethasone resulted in a 2-fold increase of both TAFI mRNA levels and promoter activity. We identified a functional glucocorticoid response element (GRE) in the human TAFI promoter between nucleotides 92 and 78. The GRE was capable of binding the glucocorticoid receptor, as assessed by gel mobility shift assays, and mutation of this element markedly decreased the ability of the TAFI promoter to be activated by dexamethasone.  相似文献   

6.
Besides their classical role in alimentary protein degradation, zinc-dependant carboxypeptidases also participate in more selective regulatory processes like prohormone and neuropeptide processing or fibrinolysis inhibition in blood plasma. Human pancreatic procarboxypeptidase B (PCPB) is the prototype for those human exopeptidases that cleave off basic C-terminal residues and are secreted as inactive zymogens. One such protein is thrombin-activatable fibrinolysis inhibitor (TAFI), also known as plasma PCPB, which circulates in human plasma as a zymogen bound to plasminogen. The structure of human pancreatic PCPB displays a 95-residue pro-segment consisting of a globular region with an open-sandwich antiparallel-alpha antiparallel-beta topology and a C-terminal alpha-helix, which connects to the enzyme moiety. The latter is a 309-amino acid residue catalytic domain with alpha/beta hydrolase topology and a preformed active site, which is shielded by the globular domain of the pro-segment. The fold of the proenzyme is similar to previously reported procarboxypeptidase structures, also in that the most variable region is the connecting segment that links both globular moieties. However, the empty active site of human procarboxypeptidase B has two alternate conformations in one of the zinc-binding residues, which account for subtle differences in some of the key residues for substrate binding. The reported crystal structure, refined with data to 1.6A resolution, permits in the absence of an experimental structure, accurate homology modelling of TAFI, which may help to explain its properties.  相似文献   

7.
Thrombomodulin (TM) is a cofactor for thrombin-mediated activation of protein C and thrombin-activatable fibrinolysis inhibitor (TAFI) and thereby helps coordinate coagulation, anticoagulation, fibrinolysis, and inflammation. Platelet factor 4 (PF4), a platelet α-granule protein and a soluble cofactor for TM-dependent protein C activation, stimulates protein C activation in vitro and in vivo. In contrast to stimulation of protein C activation, PF4 is shown here to inhibit activation of TAFI by thrombin-TM. Consequences of inhibition of TAFI activation by PF4 included loss of TM-dependent prolongation of clot lysis times in hemophilia A plasma and loss of TM-stimulated conversion of bradykinin (BK) to des-Arg(9)-BK by TAFIa in normal plasma. Thus, PF4 modulates the substrate specificity of the thrombin-TM complex by selectively enhancing protein C activation while inhibiting TAFI activation, thereby preventing the generation of the antifibrinolytic and anti-inflammatory activities of TAFIa. To block the inhibitory effects of PF4 on TAFI activation, heparin derivatives were tested for their ability to retain high affinity binding to PF4 despite having greatly diminished anticoagulant activity. N-acetylated heparin (NAc-Hep) lacked detectable anticoagulant activity in activated partial thromboplastin time clotting assays but retained high affinity binding to PF4 and effectively reversed PF4 binding to immobilized TM. NAc-Hep permitted BK conversion to des-Arg(9)-BK by TAFIa in the presence of PF4. In a clot lysis assay on TM-expressing cells using hemophilia A plasma, NAc-Hep prevented PF4-mediated inhibition of TAFI activation and the antifibrinolytic functions of TAFIa. Accordingly, NAc-Hep or similar heparin derivatives might provide therapeutic benefits by diminishing bleeding complications in hemophilia A via restoration of TAFIa-mediated protection of clots against premature lysis.  相似文献   

8.
A novel series of cyclic potent, selective, small molecule, thiol-based inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa) and the crystal structures of TAFIa inhibitors bound to porcine pancreatic carboxypeptidase B are described. Three series of cyclic arginine and lysine mimetic inhibitors vary significantly in their selectivity against other human basic carboxypeptidases, carboxypeptidase N and carboxypeptidase B. (-)2a displays TAFIa IC50 = 3 nM and 600-fold selectivity against CPN. Inhibition of TAFIa with (rac)2a resulted in dose dependent acceleration of human plasma clot lysis in vitro and was efficacious as an adjunct to tPA in an in vivo rabbit jugular vein thrombolysis model.  相似文献   

9.
Thrombin-activable fibrinolysis inhibitor (TAFI) is a zymogen that inhibits the amplification of plasmin production when converted to its active form (TAFIa). TAFI is structurally very similar to pancreatic procarboxypeptidase B. TAFI also shares high homology in zinc binding and catalytic sites with the second basic carboxypeptidase present in plasma, carboxypeptidase N. We investigated the effects of altering residues involved in substrate specificity to understand how they contribute to the enzymatic differences between TAFI and carboxypeptidase N. We expressed wild type TAFI and binding site mutants in 293 cells. Recombinant proteins were purified and characterized for their activation and enzymatic activity as well as functional activity. Although the thrombin/thrombomodulin complex activated all the mutants, carboxypeptidase B activity of the activated mutants against hippuryl-arginine was reduced. Potato carboxypeptidase inhibitor inhibited the residual activity of the mutants. The functional activity of the mutants in a plasma clot lysis assay correlated with their chromogenic activity. The effect of the mutations on other substrates depended on the particular mutation, with some of the mutants possessing more activity against hippuryl-His-leucine than wild type TAFIa. Thus mutations in residues around the substrate binding site of TAFI resulted in altered C-terminal substrate specificity.  相似文献   

10.
A series of 4,5,6,7-tetrahydro-1H-benzimidazole-5-carboxylic acid and 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid derivatives designed as inhibitors of TAFIa has been prepared via a common hydrogenation–alkylation sequence starting from the appropriate benzimidazole and imidazopyridine system. We present a successful design strategy using a conformational restriction approach resulting in potent and selective inhibitors of TAFIa. The X-ray structure of compound 5 in complex with a H333Y/H335Q double mutant TAFI indicate that the conformational restriction is responsible for the observed potency increase.  相似文献   

11.
Thrombin bound to thrombomodulin activates thrombin-activable fibrinolysis inhibitor (TAFI) and protein C much more efficiently than thrombin alone. Although thrombomodulin has been proposed to alter the thrombin active site, the recently determined structure of the thrombin-thrombomodulin complex does not support this proposal. In this study, the contribution of amino acids near the activation site of TAFI toward thrombomodulin dependence was determined, utilizing four variants of TAFI with specific substitutions in the P6-P'3 region surrounding the Arg-92 cleavage site. Two point mutants had either the Ser-90 or Asp-87 of TAFI replaced with Ala, a third mutant had the thrombin activation site of the fibrinogen Bbeta-chain substituted into positions 91-95 of TAFI, and a fourth mutant had the thrombin activation site of protein C substituted into positions 90-95 of TAFI. Each of these mutants was expressed, purified, and characterized with respect to activation kinetics and functional properties of the enzyme. Even though fibrinogen is poorly cleaved by thrombin-thrombomodulin, the fibrinogen activation site does not significantly alter the thrombomodulin dependence of TAFI activation. The TAFI variant with the protein C activation sequence is only slowly activated by thrombin-thrombomodulin, and not at all by free thrombin. Mutating Asp-87 to Ala increases the catalytic efficiency of activation 3-fold both in the presence and absence of thrombomodulin, whereas mutating Ser-90 to Ala effects only minor kinetic differences compared with wild type TAFI. The thermal stabilities and antifibrinolytic properties of the enzymes were not substantially altered by any of the mutations that allowed for efficient activation of the enzyme. We conclude that residues in the P6-P'3 region of TAFI do not determine the thrombomodulin dependence of activation, which lends support to the argument that the role of thrombomodulin is to optimally orient thrombin and its substrate, rather than to allosterically alter the specificity of the thrombin active site.  相似文献   

12.
13.
Chronic kidney disease (CKD) is characterised by the pathological accumulation of extracellular matrix (ECM) proteins leading to progressive kidney scarring via glomerular and tubular basement membrane expansion. Increased ECM synthesis and deposition, coupled with reduced ECM breakdown contribute to the elevated ECM level in CKD.Previous pre-clinical studies have demonstrated that increased plasmin activity has a beneficial effect in the protein overload model of CKD. As plasmin activation is downregulated by the action of the thrombin activated fibrinolytic inhibitor (TAFI), we tested the hypothesis that inhibition of TAFI might increase plasmin activity and reduce ECM accumulation in an in vitro model of glucose induced ECM expansion. Treatment of NRK52E tubular epithelial cells with increasing concentrations of glucose resulted in a 40% increase in TAFI activity, a 38% reduction in plasmin activity and a subsequent increase in ECM accumulation. In this model system, application of the previously reported TAFI inhibitor UK-396082 [(2S)-5-amino-2-[(1-n-propyl-1H-imidazol-4-yl)methyl]pentanoic acid] caused a reduction in TAFI activity, increased plasmin activity and induced a parallel decrease in ECM levels. In contrast, RNAi knockdown of plasmin resulted in an increase in ECM levels.The data presented here indicate that high glucose induces TAFI activity, inhibiting plasmin activation which results in elevated ECM levels in tubular epithelial cells. The results support the hypothesis that UK-396082 is able to reduce TAFI activity, normalising plasmin activity and preventing excess ECM accumulation suggesting that TAFI inhibition may have potential as an anti-scarring strategy in CKD.  相似文献   

14.
A suitable inhibitor of activated thrombin activatable fibrinolysis inhibitor (TAFIa) has the potential to be a novel treatment for thrombosis. The TAFIa inhibitor UK-396082 (1) was used as a starting point to seek more potent analogues. With knowledge of encouraging human pharmacokinetics and toleration for the clinical candidate (1), the programme continued to seek structure–activity relationships (SAR) that could positively impact on both potency and half-life, and therefore the projected dose of any future nominated clinical agent. A series of oxygenated analogues based on compound 1 were prepared to evaluate changes in pharmacology, selectivity and pharmacokinetics.  相似文献   

15.
Thrombin-activable fibrinolysis inhibitor (TAFI) is distinct from pancreatic procarboxypeptidase B in several ways. The enzymatic activity of TAFIa is unstable and decays with a half-life of a few minutes. During this study, we observed that (i) the isoelectric point (pI) of TAFI shifts dramatically from pH 5 toward pH 8 upon activation and (ii) TAFIa is significantly less soluble than TAFI. The structural bases for these observations were investigated by characterizing all post-translational modifications, including attached glycans and disulfide connectivity. The analyses revealed that all five potential N-glycosylation sites were utilized including Asn22, Asn51, Asn63, Asn86 (located in the activation peptide), and Asn219 (located in the catalytic domain). Asn219 was also found in an unglycosylated variant. Four of the glycans, Asn51, Asn63, Asn86, and Asn219 displayed microheterogeneity, while the glycan attached to Asn22 appeared to be homogeneous. In addition, bisecting GlcNAc attached to the trimannose core was detected, suggesting an origin other than the liver. Monosaccharide composition and LC-MS/MS analyses did not produce evidence for O glycosylation. TAFI contains eight cysteine residues, of which two, Cys69 and Cys383, are not involved in disulfides and contain free sulfhydryl groups. The remaining six cystines form disulfides, including Cys156-Cys169, Cys228-Cys252, and Cys243-Cys257. This pattern is homologous to pancreatic procarboxypeptidase B, and it is therefore unlikely that permutations in the cysteine connectivity are responsible for the enzymatic instability. LC-MS/MS analyses covering more than 90% of the TAFI amino acid sequence revealed no additional modifications. When these results are taken together, they suggest that the inherent instability of TAFIa is not caused by post-translational modifications. However, after activation, TAFIa loses 80% of the attached glycans, generating a large shift in pI and a propensity to precipitate. These changes are likely to significantly affect the properties of TAFIa as compared to TAFI.  相似文献   

16.
Mature thrombin-activable fibrinolysis inhibitor (TAFIa) is a highly unstable metallocarboxypeptidase that stabilizes blood clots by clipping C-terminal lysine residues from partially degraded fibrin. In accordance with its in vitro antifibrinolytic activity, animal studies have reported that inhibition of mature TAFI aids in the prevention of thrombosis. The level of TAFI activity is stringently regulated through (i) controlled proteolytic truncation of the zymogen (TAFI), generating the mature enzyme, TAFIa, and (ii) the short half-life of TAFIa. TAFI itself exhibits an intrinsic enzymatic activity, which is likely required to provide a baseline level of antifibrinolytic activity. The novel crystal structure presented here reveals that the active site of TAFI is accessible, providing the structural explanation for the its intrinsic activity. It also supports the notion that an "instability region" exists, in agreement with site-directed mutagenesis studies. Sulfate ions, bound to this region, point toward a potential heparin-binding site and could explain how heparin stabilizes TAFIa.  相似文献   

17.
ABSTRACT: BACKGROUND: The purpose of this study was to investigate plasma levels of thrombin activatable fibrinolysis inhibitor (TAFI) and TAFI's relationship with coagulation markers (prothrombin fragment 1 + 2) in gastric cancer patients. METHODS: Thirty-three patients with gastric adenocarcinoma and 29 healthy control subjects were prospectively enrolled in the study. Patients who had a history of secondary malignancy, thrombosis related disease, oral contraceptive use, diabetes mellitus, chronic renal failure or similar chronic metabolic disease were excluded from the study. A fasting blood sample was drawn from patients to determine the plasma levels of TAFI and Prothrombin Fragment 1 + 2 (F 1 + 2). In addition, data on patient age, sex, body mass index (BMI) and stage of disease were recorded. The same parameters, except stage of disease, were also recorded for the control group. Subsequently, we assessed the difference in the levels of TAFI and F 1 + 2 between the patient and control groups. Moreover, we investigated the relation of TAFI and F 1 + 2 levels with age, sex, BMI and stage of disease in the gastric cancer group. RESULTS: There were no statistical differences in any demographic variables (age, gender and BMI) between the groups (Table 1). The mean plasma TAFI levels of the gastric cancer group (69.4 [PLUS-MINUS SIGN] 33.1) and control group (73.3 [PLUS-MINUS SIGN] 27.5) were statistically similar (P = 0.62). The mean plasma F 1 + 2 level in the gastric cancer group was significantly higher than for those in the control group (549.7 [PLUS-MINUS SIGN] 325.3 vs 151.9 [PLUS-MINUS SIGN] 67.1, respectively; P < 0.001). In the gastric cancer group, none of the demographic variables (age, gender and BMI) were correlated with either TAFI or F 1 + 2 levels. Also, no significant associations were found between the stage of the cancer and either TAFI or F 1 + 2 levels. CONCLUSION: In our study, TAFI levels of gastric cancer patients were similar to healthy subjects. The results of our study suggest that TAFI does not play a role in pathogenesis of the hypercoagulable state in gastric cancer patients.  相似文献   

18.
CPR-Total (TAFI and activated TAFI) levels in plasma/serum of hemophiliacs   总被引:4,自引:0,他引:4  
Arginine carboxypeptidase (CPR) is a single-chain plasma protein generated during coagulation from a precursor (proCPR). proCPR is the same molecule as thrombin activable fibrinolysis inhibitor (TAFI), which retards fibrin clot lysis in vitro and most likely modulates fibrinolysis in vivo. In this study, the amount of CPR-total, which includes proCPR (TAFI) and CPR (activated TAFI), in hemophiliac patients was evaluated using a newly developed enzyme linked immunosorbent assay (ELISA). The amount of CPR-total in plasma or serum of most of the hemophiliac patients was in the range of healthy individuals. There was no significant difference in hemophiliac patients with or without HIV-1 infection. However, two out of the 74 hemophiliac patients showed a significantly high level. The upregulation of CPR-total might contribute to compensate for inefficient coagulation in some hemophiliac individuals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号