首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shelp, B. J. 1987. The composition of phloem exudate and xylemsap from broccoli (Brassica oleracea var. italica) suppliedwith NH+4, NO3 or NH4NO3.—J. exp. Bot. 38: 1619–1636. The detailed composition of xylem sap and exudate from stemincisions of attached inflorescences of broccoli (Brassica oleraceavar. italica) was compared in plants supplied with NH+4, NO3or NH4NO3. A phloem origin for the exudate was suggested fromthe high levels of sugars (71–133 mg cm-3), amino acids(8·1-26·7 mg cm3) and K. (2·3–3·8mg cm3), the low levels of NO3 and Ca, the high C: N (w/w) ratios(8·3–33), and the alkaline pH (7·2–7·3).In contrast, the xylem sap was mildly acidic (pH 5·6–6·0),and possessed lower levels of all organic and inorganic solutesbut NO3 and Ca, and lower ratios of K: Ca, Mg: Ca and C: N (0·6–4·4). Glutamine was the predominant o-phthalaldehyde-reactive aminocompound in both transport fluids with the next most abundantamino acids dependent on sap type and N-form. Together witharginine, -aminobutyric acid, which was found only in the xylemstream, was enhanced by NH+4compared to NO3 -nutrition suggestingthat glutamate metabolism was stimulated in the roots. Underlimiting N the amino acid concentrations in the transport fluidswere greater with NH+4 than with NO3. NO3 reduction occurredin both the root and shoot with the latter site predominatingover the entire N range (0-300 mol m3). Even though the compositionof nitrogenous solutes in the xylem was dependent on cultivarand N source, the composition of the phloem streams supplyingthe developing inflorescence was relatively unaffected. The data on the element composition of organs and phloem sapare interpreted to suggest that, in spite of the restrictedmobility of some elements such as B and Mn, a significant proportionof their total supply to developing sinks is carried in thephloem stream. Key words: Transport fluid composition, plant nutrition, phloem mobility.  相似文献   

2.
Hansen, A. P. and Pate, J. S. 1987. Evaluation of the 15N naturalabundance method and xylem sap analysis for assessing N2 fixationof understorey legumes in jarrah (Eucalyptus marginata Donnex Sm.) forest in S.W. Australia.—J. exp. Bot 38: 1446–1458. Nodulated seedlings of Acacia pulchella, A. alata and A. extensawere grown in glasshouse sand culture under a range of levels(0–16 mol m3) of nitrate, supplied as 15NO3, or as unenrichedlaboratory grade nitrate (15N value 5·5%o). Nitrate at8·0 mol m 3 or above was highly inhibitory to growthof all species. Using 15N dilution analysis of the 15N enrichedcultures to measure symbiotic dependency, it was shown that15N values of the parallel unenriched cultures increased innear linear fashion from close to zero in fully symbiotic plantsto values close to that of the supplied NO3 in plants experiencingnitrate levels (4·0 mol m3 or above) inhibiting N2 fixationby over 90%. Xylem sap analyses (0·4 mol m3 NO3 treatments)showed asparagine as the major nitrogenous solute, relativelylittle spill-over of free nitrate, and no evidence of majorshifts in balance of amino compounds with increasing dependenceon nitrate. This essentially invalidated use of the techniqueas a field assay for N2 fixation by the species. 15N values for total N of soil sampled at 64 widely distributedsites in jarrah forest ranged from – 2·15 to +5·4(mean +2·1). Comparable values for soil mineral N (NH+4and NO3) were +0·3 to + 14·2 (mean +5·1).15N values of the total plant N of the legumes and of non-N2-fixingreference species were also highly variable between sites, withlittle evidence of reference plant N accurately reflecting the15N abundance of soil nitrogen, or of visibly well nodulatedlegume components showing consistently lower 15N values thantheir companion reference plants. At one site it was possibleto compare 15N values of first season seedling legumes withpreviously published estimates of their progressive N2 fixationusing C2H2 reduction assays. It was concluded that heterogeneity in 15N discrimination ofsoil within the ecosystem precluded effective use of the 15Nnatural abundance technique for assessing legume N2 fixation. Key words: Acacia spp., 15N natural abundance,, xylem sap analysis,, nitrogen fixation.  相似文献   

3.
Smith, J. R. 1987. Potassium transport across the membranesof Chara. II. 42K fluxes and the electrical current as a functionof membrane voltage.—J. exp. Bot. 38: 752–777. The current required to clamp the trans-membrane voltage ofinternodal cells of Chara australis at different levels wasmeasured simultaneously with either the 42K influx or efflux.Examination of the voltage-dependence of the ratio of the electricalcurrent to the unidirectional tracer fluxes yielded no evidenceof any amplification of the electrical driving force on theK+ ions. There was thus no evidence for the interaction of K+ions with themselves or any other species during their passageacross the membrane. These measurements allow the determinationof , the fraction of the electrical current carried by K+ ions.When the external [K+] = 10 mol m–3, the average valueof was 0?85 for Vm > –125 mV and 07?5 for Vm <–150 mV. When the external [K+] = 0?1 mol m–3, was 0?6 for Vm < –80 mV and 0?1 for Vm > –250mV. It was also found that the conductance associated with K+transport was inhibited by hyperpolarization. Key words: Potassium, conductance, flux-ratio  相似文献   

4.
The use of the anti-ozonant ethylenediurea (EDU) to assess croplosses due to atmospheric ozone (O3), is controversial becauseof incomplete knowledge on the optimal dosage, the extent ofprotection provided and potential effects on plant performanceof EDU per se. In a greenhouse experiment, radish (Raphanussativus L.) cv. ‘Cherry Belle’ plants were treatedwith EDU as a soil drench (150 mg11, 60 ml plant1) at threestages of development: early, maximum and late hypocotyl thickening.Two days later the plants were exposed to O3, mimicking an ambientpattern (70 nl 11 O3, 7 h d1, 5 d, and up to 120 nl 11 O3 on2 d), or remained in filtered air. Assessment of leaf injury showed complete protection from ozone-inducedleaf damage at all stages of growth due to EDU. EDU did causeslight leaf margin necrosis and hyponastic leaf deformationirrespective of the atmospheric treatment, but biomass and relativegrowth rate (RGR) of the shoot and leaf number duration werenot altered and leaf area duration was increased when comparedto control plants. EDU did not affect dry weight accumulationnor RGR of the hypocotyl. Ozone-induced reductions in growthof below-ground organs (hypocotyl and root), which were mostprominent in the intermediate and early stage of growth, werelargely suppressed by the EDU-treatment. Decreases of hypocotylbiomass due to O3 were transient and significant increases inRGR of the hypocotyl during the post-exposure period indicateda substantial capability of compensation during the period ofrecovery. Key words: Radish (Raphanus sativus), ozone, anti-ozonant, ethylenediurea (EDU), development, phytotoxicity  相似文献   

5.
Shelp, B. J. 1987. Plant characteristics and nutrient compositionand mobility of broccoli (Brassica oleracea var. italica) suppliedwith NH+4, NO3 or NH4NO3.—J. exp. Bot. 38: 1603–1618. The effects of varying NH+4, NO3 or NH4NO3 concentration onthe final plant characteristics, element composition, and accumulationof NO3-N, NH+4-N and organic-N were evaluated in broccoli (Brassicaoleracea var. italicacv. Futura and Premium Crop) plants culturedin vermiculite under greenhouse conditions supplemented withlight. NH+4-grown plants were stunted and exhibited signs ofmarginal necrosis on the old leaves, accompanied by an accumulationof NH4. The tissue levels of N, P, Mn, Cu, Zn and B were generallyincreased by NH+4 versus NO3 nutrition whereas the reverse wastrue for Ca; Mg and K were only slightly affected, if at all.These results are attributed to: changes in element availabilityresulting from reduced rhizosphere pH due to NH+4uptake ratherthan NO 3uptake; competition of Ca uptake by NH+4; and dilutionof N by increased vegetative growth with NO3-nutrition. Theelement concentrations of N, P or K were similar in all tissueswhereas Ca, B and Mn were markedly less in the florets and youngleaves compared to mature leaves; this supports literature indicatingthat the former elements are phloem-mobile whereas the latterare not. Assuming that the nutrient supply for mature leavesis delivered principally via the xylem stream, the data suggestthat nutrients for developing leaves and florets are suppliedpredominantly in the phloem. If so, under our experimental conditions.Zn and Cu were also readily mobile in the phloem whereas Mgmovement was restricted. NH4+ versus NO4+ J nutrition alteredthe distribution of these elements. The two broccoli cultivarstested under the greenhouse environment differed in NH+4 toleranceand in the distribution of K and Cu suggesting there was a geneticbasis for cultivar variation in mineral acquisition and redistribution. Key words: Plant nutrition, phloem mobility, elemental composition.  相似文献   

6.
This work aimed to study the impacts of acquisition and assimilationof various nitrogen sources, i.e. NO3, NH4+ or NH4NO3,in combination with gaseous NH3 on plant growth and acid-basebalance in higher plants. Plants of C3 Triticum aestivum L.and C4 Zea mays L. grown with shoots in ambient air in hydroponicculture solutions with 2 mol m–3 of nitrogen source asNO3, NH4+ or NH4NO3 for 21 d and 18 d, respectively,had their shoots exposed either to 320 µg m–3 NH3or to ambient air for 7 d. Variations in plant growth (leaves,stubble and roots), and OH and H+ extrusions as wellas the relative increases in nitrogen, carbon and carboxylatewere determined. These data were computed as H+/N, H+/C, (C-A)/N,and (C-A)/C to analyse influences of different nitrogen sourceson acid-base balance in C3 Triticum aestivum and C4 Zea maysplants. Root growth in dry weight gain was significantly reduced bytreatment with 320 µg m–3 NH3 in Triticum aestivumand Zea mays growing with different N-forms, whereas leaf growthwas not significantly affected by NH3. In comparison with C3Triticum aestivum, non-fumigated C4 Zea mays had low ratiosof OH/N in NO3–3-grown plants and of H+/N in NH4+- and NH 4NO3-grown plants. Utilization of NH3 from the atmospherereduced both the OHN ratios in NO3 -grown plantsand the H+/N ratio in NH4+ - and NH4NO3 -grown plants of bothspecies. Furthermore, Zea mays had higher ratios of (C-A)/Nin NH4+ - and NH4NO3-grown plants than Triticum aestivum. Thismeans that C4 Zea mays had synthesized more organic anion perunit increase in organic N than C3 Triticum aestivum plants.Within both species, different nitrogen sources altered theratios of (C-A)/N in the order: NH4NO3>NH4+>NO3.Fumigation with NH3 increased organic acid synthesis in NO3- and NH4+ - grown plants of Triticum aestivum, whereas it decreasedorganic acid synthesis in Zea mays plants under the same conditions.Furthermore, these differences in acid-base regulation betweenC3 Triticum aestivum and C4 Zea mays plants growing with differentnitrogen sources are discussed. Key words: Acid-base balance, ammonia, ammonium, nitrate, ammonium nitrate, C3 Triticum aestivum L., C4 Zea mays L.  相似文献   

7.
The effects of -hydroxy-2-pyridinemethanesulphonic acid (-HPMS)upon net photosynthesis (Pn, the CO2 compensation point (),post-lower illumination burst of CO2 (PLIB) and post-lower temperatureburst of CO2 (PLTB) in detached rye (Secale cereale L.) leaveswere investigated. At low concentrations ( 0.5 mol m–3),-HPMS initially stimulated Pn and decreased the magnitude ofboth PLIB and PLTB. The decreased at all concentrations of-HPMS (0.05–5.0 mol m–3. The effects of -HPMS onPn and were time-dependent and, after a few minutes, the Pnwas inhibited while values increased considerably. At a higherconcentration (5.0 mol m –3), the transient effects of-HPMS were shorter () or not observed at all (Pn. Both PLIBand PLTB, when expressed in relation to Pn, increased at higherlevels of this compound. Similar data with respect to the effectsof -HPMS on PLIB and PLTB were found for leaves of dandelion(Taraxacum officinale L.). The results suggest that -HPMS may stimulate Pn by inhibitingphotorespiration, as originally suggested by Zelitch (1966),but only at low concentrations and over a short time span. Thedecrease of PLIB and PLTB values at low -HPMS levels is consistentwith these processes being a residual activity of the glycolatepathway. Key words: CO2 compensation point, -hydroxy-2-pyridinemethanesulphonic acid, photorespiration, photosynthesis  相似文献   

8.
The daily cycle of the transpiration rate, stomatal conductance,water potential, and the concentration of the main osmoticumidentified in ash leaves, malate and mannitol, were monitoredin a field on the Isere river plain. On sunny days, the stomatalconductance tends to remain close to its maximun value allowinga high transpiration rate and diurnal variations in leaf waterpotential, w, which may fall as low as –2 MPa at solarnoon. These variations of w are closely correlated with changesin malate, mannitol and the concentration of the well-knownosmoticum K+, which agree with the involvement of an osmoticadjustment to counteract the evaporative demand during daylighthours. How malate, mannitol and K+ contribute to the osmoticadjustment was analysed subsequently by comparing the solutepotential s, evaluated by the Boyle-Van't Hoff relation, tothe osmotic potential measured by thermocouple psychrometry.These experiments have led us to suspect some errors in themeasurement of , presumably due to experimental artefacts andthe ability of Ca 2+ , present in high levels in leaves, toform chelates with malate once the cells have been decompartmentedby freezing and thawing. Since significant changes of Ca2+ alsooccurred during the diurnal variations of w, the possible mechanismsby which Ca2+ may be implicated in controlling the water statusof the tree are discussed. Key words: Fraxinus excelsior L, osmotic adjustment, thermocouple psychrometry, malate, calcium  相似文献   

9.
The effects of transpiration rate on the vertical gradientsof leaf and stem xylem water potential ( and ) were examinedusing hydroponic sunflower plants. Transpiration was variedby stepwise alterations of environmental conditions. The gradientsof and were relatively small (2.3 and 0.8 x 105 Pa m–1)when transpiration rates approached zero, but increased sharplyto 5.4 and 2.3 x 105 Pa m–1 as transpiration increased.However, the gradients were independent of transpiration ratesabove 0.4 g dm–2 h–1 owing to variability of theplant resistance. The gradients of I were usually less thanhalf those of I. 1 in individual leaves remained constant over a wide range oftranspiration rates (0.4—2.4 g dm–2 h–1) andeach leaf possessed a characteristic plateau value related toits elevation. I responded similarly but was approximately 2.0x 105 Pa higher than I at the same elevation. Identical resultswere obtained regardless of the procedure employed to vary transpiration. The drop in water potential between stem and leaf implies thatthe leaf resistance is appreciable. This was confirmed usingrapidly transpiring excised leaves freely supplied with water.I increased by 2.0–2.5 x 105 Pa following removal of theroot resistance but remained 2 x 105 Pa lower than similar excisedleaves in darkness. Furthermore, I in excised leaves remainedconstant over a wide range of transporting rates, demonstratingthat the leaf resistance is also variable. The results are discussed in relation to previous reports.  相似文献   

10.
Du Cloux, H. C, André, M., Daguenet, A. and Massinuno,J. 1987. Wheat response to CO2 enrichment: Growth and CO2 exchangesat two plant densities.—J. exp. Bot. 38: 1421–1431. The vegetative growth of wheat (Triticum aestivum L., var. Capitole)was followed for almost 40 d after germination in controlledconditions. Four different treatments were carried out by combiningtwo air concentrations of CO2, either normal (330 mm3 dm 3)or doubled (660 mm3 dm 3) with two plant densities, either 200plants m 2 or 40 plants m 2. Throughout the experiment the CO2gas exchanges of each canopy were measured 24 h d1. These provideda continuous growth curve for each treatment, which were comparedwith dry weights. After a small stimulation at the start (first13 d), no further effect of CO2 enrichment was observed on relativegrowth rate (RGR). However, RGR was stimulated throughout theexperiment when plotted as a function of biomass. The finalstimulation ol dry weight at 660 mm3 dm 3 CO2 was a factor of1·45 at high density and 1·50 at low density,contrary to other studies, no diminution of this CO2 effecton dry weight was observed over time. Nevertheless, at low density,a transient additional enhancement of biomass (up to 1·70)was obtained at a leaf area index (LAI) below 1. This effectwas attributed to a different build up of the gain of carbonin the case of an isolated plant or a closed canopy. In theformer, the stimulation of leaf area and the net assimilationrate are both involved; in the latter the enhancement becomesindependent of the effect on leaf area because the canopy photosynthesisper unit ground area as a function of LAI reaches a plateau. Key words: Triticum aestuum, L. var. Capitole, Vegetative growth, Canopy  相似文献   

11.
Aspects of the water relations of spring wheat (Triticum aestivumL.) are described for cultivars Highbury (low ABA) and TW269/9(high ABA), and low and high ABA accumulating F6selections derivedfrom a cross between them. In a pot experiment, pressure-volume (P-V) curves were constructedfor main stem leaf four (MSL4) of well-watered plants of Highburyand TW269/9. Estimates of solute potential (2) from these curveswere similar for the two cultivars, but varied with the timeof sampling and the time allowed for hydration in dim light. In a field experiment with four low and four high ABA F6lines,P-V curves for flag leaves from both droughted and irrigatedplants gave at both zero turgor (p) and zero water potential(1) which differed with degree of stress, sampling time andgenotype. 1was strongly dependent on the initialL of the leafand was reduced on average by c. 0.4 MPa per MPa decline ininitial L.5, was lower (more negative) by c. 0.1-MPa in theafternoon than in the morning. Overall, was also 0.1 MPa lowerin low ABA lines than in high ABA lines. In another field experiment, flag leaves of five low and fivehigh ABA F6lines were sampled over a 4 week period from droughtedplots and L and 5, measured (the latter by osmometry with expressedsap). For these leaves 5, at zero p or zero L was consistentlylower by 0.3–0.5 MPa than estimates of 5, from the P-Vcurves with flag leaves. However, data for the low ABA lineswere again lower (by c. 0.1 MPa) than those for high ABA lines. The consequences of these differences in 1 are discussed inrelation to the stimulation of ABA accumulation in low and highABA selections. Key words: Water potential, Solute potential, P-V curves, Wheat (Triticum aestivum), Drought stress  相似文献   

12.
The Meaning of Matric Potential   总被引:6,自引:1,他引:5  
The commonly used equation, = P - + , which describes thepartitioning of plant water potential, , into components ofhydrostatic pressure, P, osmotic pressure, , and matric potential,, is misleading. The term , which is supposed to show the influenceof a solid phase on , is zero if a consistent definition ofpressure is used in the standard thermodynamic derivation. However,it can be usefully defined by = + D, where D is the osmoticpressure of the equilibrium dialysate of the system. The practicaland theoretical significance of this definition is discussed.  相似文献   

13.
Changes in components of leaf water potential during soil waterdeficits influence many physiological processes. Research resultsfocusing on these changes during desiccation of peanut (Arachishypogeae L.) leaves are apparently not available. The presentstudy was conducted to examine the relationships of leaf waterl, solute s and turgor p potentials, and percent relative watercontent (RWC) of peanut leaves during desiccation of detachedleaves and also during naturally occurring soil moisture deficitsin the field. The relationship of p to l and RWC was evaluated by calculatingp from differences in l and s determined by thermocouple psychrometryand by constructing pressure-volume (P-V) curves from the land RWC measurements. Turgor potentials of ‘Early Bunch’and ‘Florunner’ leaves decreased to zero at l of–1.2 to –1.3 MPa and RWC of 87%. There were no cultivardifferences in the l at which p became zero. P-V curves indicatedthat the error of measuring s after freezing due to dilutionof the cellular constituents was small but resulted in artefactualnegative p values. Random measurements on two dates of l, s, and calculation ofp from well-watered and water-stressed field plots consistingof several genotypes indicated that zero p occurred at l of–1.6 MPa. It was concluded that the relationships of p,l, s, and RWC of peanut leaves were similar to leaves of othercrops and that these relationships conferred no unique droughtresistance mechanism to peanut.  相似文献   

14.
Larqué-Saavedra, A., Rodriguez, M. T., Trejo, C. andNava, T. 1985. Abscisic acid accumulation and water relationsof four cultivars of Phaseolus vulgaris L. under drought.—J.exp. Bot 36: 1787–1792. Plants of four cultivars of Phaseolus vulgaris L. differingin drought resistance were grown in pots under greenhouse conditionsand prior to flowering water was withheld from the pots untilthe mid-day transpiration rate reached values below 1.0 µgH2O cm–2 s–1 (designated the ‘drought’stage). At this point leaves were harvested on 3 or 4 occasionsover 24 h to determine the abscisic acid (ABA) concentration,total water potential (), solute potential (1) and turgor potential(p). Results showed that values of , 1, and p differed between cultivarswhen they reached the ‘drought’ stage. The stomatalsensitivity to changes in and p, was as follows: Michoacán12A3 > Negro 150 Cacahuate 72 > Flor de Mayo. These datacorrelated well with the pattern of drought resistance reportedfor the cultivars. ABA accumulation at the ‘drought’ stage differedbetween cultivars at each sampling time, but overall differencesin ABA level between cultivars were not significant. ABA levelsdid not, therefore, correlate with the drought resistance propertiesreported for the cultivars. Results are discussed in relationto and hour of the day when bean samples were taken for ABAanalysis. Key words: Phaseolus vulgaris L., drought resistance, abscisic acid  相似文献   

15.
Pereira, J. S., Tenhunen, J. D. and Lange, O. L. 1987. Stomatalcontrol of photosynthesis of Eucalyptus globulus Labill. treesunder field conditions in Portugal.—J. exp. Bot. 38: 1678–1688. Stomatal behaviour of adult leaves of Eucalyptus globulus treeswas studied under field conditions in Portugal. In the absenceof severe plant water stress stomata were open when the summedtotal of photosynthetically active photon flux density incidenton both leaf surfaces was above 100 µmol m2s1 and leafconductance to water vapour reached 245 mmol m 2 s1 on a total(both epidermes) leaf area basis. The stomata of both leaf epidermesresponded similarly to changes in solar radiation and waterstress. Water stress resulted in decreasing daily maxima inleaf conductance as predawn leaf water potential decreased.Maximal leaf conductance decreased to less than 50 mmol m 2s 1 when predawn leaf water potential decreased below —1·0MPa. At similar values of predawn leaf water potential stomatawere more closed as the leaf to air water vapour partial pressuredifference increased. The effect of increasing air dryness onstomata was greatest at high predawn leaf water potential. Dailymaxima in photosynthetic rates and in leaf conductance werelinearly related to one another in spring and summer. Both decreasedwith increase in leaf water stress. In autumn and winter, increasesin leaf conductance occurring under natural conditions duringthe course of the day were not necessarily accompanied by increasesin net photosynthesis. Stomata were more closed in the afternoonthan in the morning at the same rates of net photosynthesis,temperature or leaf to air water vapour partial pressure difference. Key words: Eucalyptus globulus,, photosynthesis, stomata, water stress.  相似文献   

16.
Seed germination rates (GR =inverse of time to germination)are sensitive to genetic, environmental, and physiological factors.We have compared the GR of tomato (Lycopersicon esculentum Mill.)seeds of cultivar T5 to those of rapidly germinating L. esculentumgenotypes PI 341988 and PI 120256 over a range of water potential(). The influence of seed priming treatments and removal ofthe endosperm/testa cap enclosing the radicle tip on germinationat reduced were also assessed. Germination time-courses atdifferent 's were analysed according to a model that identifieda base, or minimum, allowing germination of a specific percentage(g) of the seed population (b(g)), and a ‘hydrotime constant’(H) indicating the rate of progress toward germination per MPa.h.The distribution of b(g) determined by probit analysis was characterizedby a mean base (b) and the standard deviation in b among seeds(b). The three derived parameters, b, b) and H, were sufficientto predict the time-courses of germination of intact seeds atany . A normalized time-scale for comparing germination responsesto reduced is introduced. The time to germination at any (tg())can be normalized to be equivalent to that observed in water(tg(0)) according to the equation tg(0)=[l–(/b(g))]tg().PI 341988 seeds were more tolerant of reduced and had a morerapid GR than T5 seeds due to both a lower b and a smaller H.The rapid germination of PI 120256, on the other hand, couldbe attributed entirely to a smaller H. Seed priming (6 d in–1.2 MPa polyethylene glycol 8000 solution at 20 ?C followedby drying) increased GR at all >b(g), but did not lower theminimum allowing germination; i.e. priming reduced H withoutlowering b. Removing the endosperm/testa cap (cut seeds) markedlyincreased GR and lowered the mean required to inhibit germinationby 0.7 to 0.9 MPa. However, this resulted primarily from downwardadjustment in b during the incubation of cut seeds at low inthe test solutions. The difference in b between intact and cutseeds incubated at high was much less (0.l MPa), indicatingthat at the time of radicle protrusion, the endosperm had weakenedto the point where it constituted only a small mechanical barrier.In the intact seed, endosperm weakening and the downward adjustmentin embryo b ceased at < –0.6 MPa, while the reductionin H associated with priming proceeded down to at least –1.2MPa. Based on these data and on the pressure required to pushthe embryos from the seeds at various times after imbibition,it appears that the primary effect of priming was to shortenthe time required for final endosperm weakening to occur. However,as priming increased GR even in cut seeds, priming effects onthe embryo may control the rate of endosperm weakening. Key words: tomato, Lycopersicon esculentum Mill., water potential, germination rate, seed priming, genetic variation  相似文献   

17.
An equation is derived expressing average turgor pressure ofa leaf (p) as a function of relative water content (RWC). Basedon this derivation, the relationships of the bulk elastic modulus(v) and both RWC and p, are formulated and discussed. The bulkelastic modulus (v) becomes zero for p = 0, that is at the turgorloss point for the leaf. At full water saturation the valueof ev is proportional to the water saturation turgor potentialp(max). The factor relating P and v (structure coefficient ,Burstrom, Uhrstr?m and Olausson, 1970) changes only very littlefor values of p, which are not too close to zero. An exampleis given for the calculation from experimental data of the turgorpressure function, the structure coefficient function, and thev function. Key words: Cell wall, Turgor pressure, Bulk elastic modulus  相似文献   

18.
In recent years alternative ways have been proposed to transformmeasurements of leaf water potential, , and relative water content,R*, in order to derive values of osmotic pressure at full turgidityin leaves and shoots, o(when 0). Two types of transformationsare usually considered: 1/ versus R* and versus 1/R*, and linearregression is used to fit the data in the region where turgoris thought to be zero. It appears that when o is estimated bylinear extrapolation of 1/Psi; versus R* then apoplastic watermight not influence the accuracy of o but when the versus \/R*transformation is used apoplastic water causes an underestimateof o. We examine the accuracy of the estimate of o obtainedfrom the two transformations when there are random errors in, systematic errors in , and when the osmotic solutions arenon-ideal. The 1/ versus R* transformation generally producesthe best estimate of 0 by linear extrapolation.  相似文献   

19.
The euryhaline charophyte Lamprothamnium papulosum (Wallr.)J. Gr. was adapted to media with decreasing salinities rangingfrom 550 to 0 mosmol kg–1. Vegetative plants grown inmedia with osmotic pressures (0) in the range of 550 to 130mosmol kg–1 maintained a constant turgor pressure () at309 + 7 mosmol kg–1. The ions K+, Na+ and Cl–, werethe predominant solutes in the vacuole. Changes in their concentrationsaccount for the variation in internal osmotic pressure (1) with,0. The divalent ions Mg2+, Ca2+ and were also present in significant amounts, but their concentrationsdid not alter with changes in, 0. In cells subjected to hypo-osmotic shock the regulation of was incomplete. The turgor pressure increased from 302 to 383mosmol kg–1. The first rapid response to the sudden decreasein 0 was a loss of K+ and Cl. In contrast to the decreasein ionic concentrations an accumulation of sucrose occurredwhich could account for the increase of . The increase in sucroseconcentration started 24 to 48 h after the downshock and reachedits highest value after 3 to 4 weeks. The sucrose concentrationin the vacuole was up to 320 mol m–3. During this timethe ionic content continued to decrease but did not counterbalancethe sucrose concentration sufficiently to regain the original. High sucrose levels accompanied by an enhanced were also observedduring the period of fructification (sexual reproduction: formationof antheridia and oogonia) in Lamprothamnium kept under conditionsof constant salinity. It is concluded that high sucrose content and elevated arecharacteristic of sexual reproduction in this charophyte. Lamprothamniumis able to tolerate different during various developmentalstages (e.g. vegetative and reproductive phases). Key words: Lamprothamnium papulosum, sucrose, turgor pressure  相似文献   

20.
By analysing the relationship between inverse water potential(–1), and relative water content (RWC) measured on leavesof roses (Rosa hybrida cv. Sonia), grown soilless, it was foundthat a non-linear (NL) model was better suited than a linearmodel to reproduce values observed in the non-turgid region.To explain this apparent curvature, it is assumed that a reductionof the non-osmotic water fraction (Ap) takes place when decreases.Osmotic potentials () measured on fresh and frozen leaf discstend to support this hypothesis. A method for exploiting PVcurves, which takes into account the variation of Ap, is described.It delivers values for the turgor pressure (p), the relativeosmotic water content, and the mean bulk volumetric elasticitycoefficient, lower than those given by the linear model. Onthe other hand, it gives higher estimates for Ap and for . Whenapplying the traditional model to obtain estimates for waterrelations characteristics of rose leaves, and comparing resultsfrom two distinct salinity treatments (electrical conductivitiesof 1·8 mS cm–1 and 3·8 mS cm–1, respectively),one deduces a significant reduction of at turgor-loss in thehigh salinity treatment. The NL method is, in addition, ablesimultaneously to reveal a reduction of and a significant increasein p at RWC=100% this proves that soilless–grown roseplants are able to osmoregulate when subjected to a constantand relatively high degree of salinity. Key words: Apoplastic water, non-linear regression, pressure-volume curves, tissue-water relations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号