首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human breast cancer primary cultures are useful tools for the study of several aspects of cancer biology, including the effects of chemotherapy and acute gene expression in response to different hormonal/chemotherapy treatments. The present study reports the conditions for primary culture of breast cancer samples from untreated patients and the most effective collagenization method to dissociate human samples consisting in an overnight incubation with 1 mg/ml types II or IV collagenase and further incubation in DMEM:F12 (1:1) medium supplemented with glutamine, bovine insulin, penicillin-streptomycin, HEPES, estradiol, cortisol (F), tri-iodothyronine (T(3)), transferrine (TR), and 10% fetal calf serum (FCS). These conditions proved to be appropriate for both primary culture and the development of stable cell lines. Of the seven cell lines obtained, three fast growing and estrogen receptor (ER)+/progesterone receptor (PgR)+/EGF receptor (EGFR)+ have been characterized. The cells are able to grow both in soft agar and in nude mice, and express cytokeratins, all parameters characteristic of malignant epithelial cell lines. The cells also exhibit an increased proliferation rate in the presence of estradiol, progesterone, and EGF, suggesting the presence of the corresponding receptors. The mRNA expression of type alpha- and beta-ER as well as EGFR, was confirmed by RT-PCR. In conclusion, the novel cell lines described, arose from primary tumors and are sensitive to estradiol, progesterone, and EGF. This not only expands the repertoire of breast cancer cells available as potentially useful tools for examining most parameters in breast cancer "in vitro", but also provides unique new models to explore the complex regulation by steroids as well as growth factors in such cells.  相似文献   

2.
We previously demonstrated that antiestrogen 4-hydroxytamoxifen (OH-Tam) blocks the mitogenic activity of growth factors in breast cancer. We now investigate this mechanism by evaluating how OH-Tam affects growth factor binding and receptor tyrosine kinase activity. We show here that OH-Tam has an opposite effect on epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) binding in estrogen receptor (ER) positive cells. A decrease in IGF-1 binding sites may explain the reduced IGF-I mitogenic effect, whereas an increase in high affinity EGF binding associated with a decrease in in vitro receptor autophosphorylation rather favors the possibility of an alteration in EGF receptor tyrosine kinase activity. We conclude that OH-Tam may prevent growth factor action in ER+ cells both by modulating the concentration of growth factor binding sites and by altering growth factor receptor functionality.  相似文献   

3.
At least one member of the TGF-beta family, TGF-beta 1, has been previously shown to inhibit the anchorage-independent growth of some human breast cancer cell lines (Knabbe et al., 1987; Arteaga et al., 1988). Members of the TGF-beta family might, therefore, provide new strategies for breast cancer therapy. We have studied the inhibitory effects of TGF-beta 1 and TGF-beta 2 on the anchorage-independent growth of the oestrogen receptor-negative cell lines MDA-MB-231, SK-BR-3, Hs578T, MDA-MB-468, and MDA-MB-468-S4 (an MDA-MB-468 clone not growth inhibited by EGF) and the estrogen receptor-positive cell lines MCF7, ZR-75-1, T-47D. TGF-beta 1 and TGF-beta 2 caused a 75-90% growth inhibition of MDA-MB-231, SK-BR-3, Hs578T, and MDA-MB-468 cells and a 50% growth inhibition of ZR-75-1 and early passage (less than 100) MCF7 cells. T-47D cells responded to TGF-beta only in serum-free conditions in the presence of IGF-1 or EGF. The growth of MDA-MB-468-S4 cells and late passage (greater than 500) MCF7 cells was not inhibited by TGF-beta 1 or TGF-beta 2. TGF-beta-sensitive MCF7 and MDA-MB-231 cells did not respond to Muellerian inhibiting substance (MIS), a TGF-beta-related polypeptide. TGF-beta 1 or TGF-beta 2 were mutually competitive for receptor binding with a similar affinity (Kd 25-130 pM, 1,000-13,000 sites per cell). To determine the time course of the TGF-beta effect, an anchorage-dependent growth assay was carried out using MDA-MB-231 cells. Growth inhibition occurred at 6 days, and cell-cycle changes were seen 12 hr after the addition of TGF-beta. Cells accumulated in the G1 phase and were thus inhibited from entering the S-phase. These data indicate that TGF-beta is a potent growth inhibitor in most breast cancer cell lines and provide a basis for studying TGF-beta effects in vivo.  相似文献   

4.
We examined the expression of the estrogen and epidermal growth factor (EGF) receptors in a drug-resistant subline of MCF-7 cells in order to study potential alterations in hormone dependence or in the growth factor pathway that could be related to the development of drug resistance in human breast cancer. The drug-resistant subline was derived from MCF-7 cells by selection with Adriamycin in the presence of the P-giycoprotein antagonist, verapamil, to prevent acquisition of the classical multidrug resistance phenotype. The Adriamycin-resistant cells retain estrogen-binding, estrogen-responsive monolayer growth, and estrogen-dependent tumorigenesis. Estrogen-binding studies demonstrate 1.4 × 106 sites per cell with unaltered affinity when compared to parental MCF-7 cells, which have 2.7 × 105 sites per cell. An increase in expression of EGF receptor, eight to 12-fold, occurred early in the selection for drug resistance, and appears to be unrelated to verapamil exposure, since cells maintained in Adriamycin without verapamil also have increased EGF receptor expression. Partially drug-sensitive revertants carried a verapamil, but out of Adriamycin, demonstrate a decline in EGF receptor expression. We postulate that activation of growth factor pathways in drug-resistant cells may enhance mechanisms of drug resistance, or provide mitogenic stimuli for cells to recover after damage by drug exposure. © 1993 Wiley-Liss, Inc.  相似文献   

5.
6.
The response of malignant and nonmalignant human breast cell lines to the growth inhibitory effects of monoclonal antibodies against the epidermal growth factor (EGF) receptor was studied. A series of human breast cell lines, which express EGF receptor, were used: MDA-468, MDA-231, and Hs578T human breast cancer cells and the transformed human mammary epithelial cell lines 184A1N4 and 184A1N4-T that have been benzo[a]pyrene immortalized and further transformed with SV40T, respectively. Four antibodies of two different classes were tested: 225 immunoglobulin G (IgG), 108.4 IgG, 96 immunoglobulin M (IgM), and 42 IgM. All four antibodies inhibited the anchorage-dependent and -independent, EGF-stimulated growth of 184A1N4 and 184A1N4-T cells, respectively, and this growth inhibition could be reversed by the addition of increasing concentrations of EGF. In contrast, the antibodies inhibited the anchorage-dependent and -independent growth of MDA-468 cells in the absence of exogenous EGF suggesting that the antibodies were acting to block access of an endogenously produced ligand to the EGF receptor. In the presence of antibody and increasing concentrations of EGF, MDA-468 cell growth was first stimulated then inhibited as the EGF concentration increased, thus, uncovering the growth stimulatory potential of low concentrations of EGF in these cells. Data is presented that indicates MDA-468 cells secrete a transforming growth factor with autocrine growth stimulatory capabilities. The growth of MDA-231 and Hs578T cells, which contain activated ras oncogenes, was not inhibited by the antibodies and the growth of these cell lines was not stimulated by EGF. Of the cell lines studied only MDA-468 cells appear to possess an autocrine growth stimulatory capacity.  相似文献   

7.
Progression of breast cancer is associated with remodeling of the extracellular matrix, often involving a switch from estrogen dependence to a dependence on EGF receptor (EGFR)/HER-2 and is accompanied by increased expression of the main binding protein for insulin-like growth factors (IGFBP-3). We have examined the effects of IGFBP-3 on EGF responses of breast epithelial cells in the context of changes in the extracellular matrix. On plastic and laminin with MCF-10A normal breast epithelial cells, EGF and IGFBP-3 each increased cell growth and together produced a synergistic response, whereas with T47D breast cancer cells IGFBP-3 alone had no effect, but the ability of EGF to increase cell proliferation was markedly inhibited in the presence of IGFBP-3. In contrast on fibronectin with MCF-10A cells, IGFBP-3 alone inhibited cell growth and blocked EGF-induced proliferation. With the cancer cells, IGFBP-3 alone had no effect but enhanced the EGF-induced increase in cell growth. The insulin-like growth factor-independent effects of IGFBP-3 alone on cell proliferation were completely abrogated in the presence of an EGFR, tyrosine kinase inhibitor, Iressa. Although IGFBP-3 did not affect EGFR phosphorylation [Tyr1068], it was found to modulate receptor internalization and was associated with activation of Rho and subsequent changes in MAPK phosphorylation. The levels of fibronectin and IGFBP-3 within breast tumors may determine their dependence on EGFR and their response to therapies targeting this receptor.  相似文献   

8.
Extranuclear estrogen receptors may mediate rapid effects of estradiol that communicate with nuclear receptors and contribute to proliferation of human cancers bearing these signaling proteins. To assess these growth-promoting pathways, we undertook controlled homogenization and fractionation of NIH-H23 non-small cell lung cancer cells. As many breast tumors, NIH-H23 cells express estrogen receptors (ER), with the bulk of specific estradiol binding in nuclear fractions. However, as in breast cells, a significant portion of specific, high-affinity estradiol-17beta binding-sites are also enriched in plasma membranes of lung tumor cells. These estrogen binding-sites co-purify with plasma membrane-marker enzymes and are not significantly contaminated by cytosol or nuclei. On further purification of membrane caveolae from lung tumor cells, proteins recognized by monoclonal antibodies to nuclear ER-alpha and to ER-beta were identified in close association with EGF receptor in caveolae. In parallel studies, ER-alpha and ER-beta are also detected in nuclear and extranuclear sites in archival human breast and lung tumor samples and are noted to occur in clusters at the cell membrane by using confocal microscopy to visualize fluorescent-labeled monoclonal antibodies to ER-alpha. Data on site-directed mutagenesis of cysteine-447 in ER-alpha suggest that association of ER forms with membrane sites may depend on acylation of cysteine by palmitate. Estrogen-induced growth of MCF-7 breast cancer and NIH-H23 lung cancer cells in vitro correlated closely with acute hormonal activation of mitogen-activated protein kinase signaling and was significantly reduced by treatment with Faslodex, a pure anti-estrogen. Further, combination of Faslodex with selected growth factor receptor inhibitors elicited a more pronounced inhibiton of tumor cell growth. Thus, extranuclear forms of ER play a role in promoting downstream signaling for hormone-mediated proliferation and survival of breast, as well as lung, cancers and offer a new target for anti-tumor therapy.  相似文献   

9.
A3 adenosine receptor agonists have been reported to influence cell death and survival. Here we report the effects of an A3 adenosine receptor agonist, IB-MECA, on the cell growth of human breast cancer cell lines, MCF-7 (estrogen receptor positive) and MDA-MB468 (estrogen receptor negative). Therefore, this study was aimed to investigate the expression and possible action of A3 receptor in the human breast cancer cell lines. IB-MECA, at 1-100 microM, resulted in a significant cell growth inhibition (P < 0.05) which reached the maximum at 48 h, in the cell lines. In both cell lines, agonist-induced effects were antagonized by pretreatment with a selective A3 adenosine receptor antagonist, MRS1220. Using RT-PCR method, further confirmation was provided by the presence of mRNA of A3 receptor in the cells. In addition, IB-MECA was able to inhibit forskolin-stimulated cAMP levels, which indicate the functional form of A3 receptor on the cell surface of these breast cancer cell lines. These results suggest that the inhibitory effect of IB-MECA on the growth of human breast cancer cell lines is mediated through activation of A3 adenosine receptor.  相似文献   

10.
We have studied the estrogenic regulation and the potential autocrine role of transforming growth factor alpha (TGF alpha) in the human breast cancer cell line MCF-7. A biologically active apparent mol wt 30 k TGF alpha was identified by gel filtration chromatography in medium conditioned by MCF-7 breast cancer cells. We previously reported induction of TGF alpha levels in medium by 17 beta-estradiol. We now report correlated increases in TGF alpha mRNA, by Northern and slot blot analysis, after estrogen treatment of MCF-7 cells in vitro. In vivo experiments confirmed these data: estrogen withdrawal from MCF-7 tumor-bearing nude mice resulted in a decline in tumor size and TGF alpha mRNA levels. To explore the functional significance of TGF alpha in MCF-7 cells, anti-TGF alpha antibody was added to MCF-7 soft agar cloning assays. Inhibition of MCF-7 growth resulted, supporting an autocrine role for TGF alpha. Further experiments using an anti-EGF receptor antibody expanded this data, demonstrating inhibition of estrogen-stimulated monolayer MCF-7 cell growth. Examining the generality of TGF alpha expression, 4.8 kilobase TGF alpha mRNAs were seen in three other human breast cancer cell lines, MDA-MB-231, ZR 75B, and T47D. Expression of TGF alpha mRNA was detected in 70% of estrogen receptor positive and negative primary human breast tumors from 40 patients when examined by slot blot and Northern analysis. Thus, we have demonstrated broad expression of TGF alpha in human breast cancer, its hormonal regulation in an estrogen-responsive cell line, and its possible functional significance in MCF-7 cell growth.  相似文献   

11.
12.
Human breast tumorigenesis is promoted by the estrogen receptor pathway, and nuclear receptor coactivators are thought to participate in this process. Here we studied whether one of these coactivators, AIB1 (amplified in breast cancer 1), was rate-limiting for hormone-dependent growth of human MCF-7 breast cancer cells. We developed MCF-7 breast cancer cell lines in which the expression of AIB1 can be modulated by regulatable ribozymes directed against AIB1 mRNA. We found that depletion of endogenous AIB1 levels reduced steroid hormone signaling via the estrogen receptor alpha or progesterone receptor beta on transiently transfected reporter templates. Down-regulation of AIB1 levels in MCF-7 cells did not affect estrogen-stimulated cell cycle progression but reduced estrogen-mediated inhibition of apoptosis and cell growth. Finally, upon reduction of endogenous AIB1 expression, estrogen-dependent colony formation in soft agar and tumor growth of MCF-7 cells in nude mice was decreased. From these findings we conclude that, despite the presence of different estrogen receptor coactivators in breast cancer cells, AIB1 exerts a rate-limiting role for hormone-dependent human breast tumor growth.  相似文献   

13.
The epidermal growth factor receptor (EGF-R) plays an important role in the growth and progression of estrogen receptor-negative human breast cancers. EGF binds with high affinity to the EGF-R and activates a variety of second messenger pathways that affect cellular proliferation. However, the underlying mechanisms involved in the regulation of EGF-R expression in breast cancer cells are yet to be described. Here we show that the EGF-induced upregulation of EGF-R mRNA in two human breast cancer cell lines that overexpress EGF-R (MDA-MB-468 and BT-20) is accompanied by stabilization (>2-fold) of EGF-R mRNA. Transient transfections using a luciferase reporter identified a novel EGF-regulated approximately 260-nucleotide (nt) cis-acting element in the 3' untranslated region (3'-UTR) of EGF-R mRNA. This cis element contains two distinct AU-rich sequences (~75 nt), EGF-R1A with two AUUUA pentamers and EGF-R2A with two AUUUUUA extended pentamers. Each independently regulated the mRNA stability of the heterologous reporter. Analysis of mutants of the EGF-R2A AU-rich sequence demonstrated a role for the 3' extended pentamer in regulating basal turnover. RNA gel shift analysis identified cytoplasmic proteins (~55 to 80 kDa) from breast cancer cells that bound specifically to the EGF-R1A and EGF-R2A cis-acting elements and whose binding activity was rapidly downregulated by EGF and phorbol esters. RNA gel shift analysis of EGF-R2A mutants identified a role for the 3' extended AU pentamer, but not the 5' extended pentamer, in binding proteins. These EGF-R mRNA-binding proteins were present in multiple human breast and prostate cancer cell lines. In summary, these data demonstrate a central role for mRNA stabilization in the control of EGF-R gene expression in breast cancer cells. EGF-R mRNA contains a novel complex AU-rich 260-nt cis-acting destabilizing element in the 3'-UTR that is bound by specific and EGF-regulated trans-acting factors. Furthermore, the 3' extended AU pentamer of EGF-R2A plays a central role in regulating EGF-R mRNA stability and the binding of specific RNA-binding proteins. These findings suggest that regulated RNA-protein interactions involving this novel cis-acting element will be a major determinant of EGF-R mRNA stability.  相似文献   

14.
15.
There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.  相似文献   

16.
A 24 hr incubation of T-47D human breast cancer cells with R5020, a synthetic progestin, resulted in a 200-250% increase in the specific binding of human growth hormone (hGH) and epidermal growth factor (EGF) by these cells. This effect was specific for progestins in that similar responses were observed with progesterone, medroxyprogesterone acetate and ORG 2058 but no significant increases in hGH or EGF binding were observed in cells incubated with testosterone, estradiol or hydrocortisone. Increased binding was due to an increase in the concentration of receptors (hGH, control = 6,490 +/- 500, progestin treated = 13,180 +/- 3,270 sites/cell; EGF, control = 33,380 +/- 7,410, progestin treated = 67,460 +/- 20,330 sites/cell) while the affinity constants for the hormone-receptor interactions were unchanged by progestin treatment. The specific binding of insulin, calcitonin, transferrin and concanavalin A was unaffected by these treatments. It is concluded that expression of hGH and EGF receptors in this breast cancer cell line is regulated by progestins.  相似文献   

17.
Aromatase expression and its localization in human breast cancer   总被引:3,自引:0,他引:3  
Aromatization or in situ estrogen production by aromatase has been considered to play an important role in the development of human breast carcinoma. In the human breast, aromatase overexpression is observed in the stromal or interstitial cells of the carcinoma, especially at the sites of frank invasion and/or adipose tissue. Transplantation experiments in the nude mouse employing MCF-7 and/or SF-TY human fibroblast cell lines revealed that aromatase activity and expression were much higher in the tumour with MCF-7 and SF-TY than that with MCF-7 alone. Aromatase overexpression in human breast carcinoma tissue is considered to occur as a result of carcinomastromal cell interactions, i.e. paracrine communication between stromal and carcinoma cells. Aromatase overexpression is correlated with the malignant phenotype in the human breast, but not with stage, age, clinical stages, clinical course, or proliferative activity of breast carcinoma. Aromatase overexpression may be correlated with development, rather than the biological behaviour of breast malignancy. Aromatase overexpression is not necessarily correlated with expression of 17β-hydroxysteroid dehydrogenase type 1, which converts estrone to estradiol and estrogen receptor. Different mechanisms may be involved in the regulation of expression of these two important estrogen-metabolizing enzymes and estrogen receptor in human breast cancer. Aromatase overexpression in intratumoral stromal cells was much more frequently detected in male breast cancer than in female counterparts, which confers a growth advantage on cancer cells in a male hormonal environment with low serum estrogen levels.  相似文献   

18.
Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.  相似文献   

19.
20.
The invasiveness of breast cancer cells was shown to be associated with the suppressed ability to develop apoptosis. The role of cell death DNases/endonucleases has not been previously examined in relation with the invasiveness of breast cancer cells. We have compared the activity of the endonucleases in seven human breast cancer cell lines different in the level of invasiveness and differentiation. The invasiveness of cell lines was confirmed by an in vitro Matrigel-based assay. The total endonuclease activity in the differentiated non-invasive (WDNI) cell lines was higher than that in the poorly differentiated invasive (PDI) cells. The expression of EndoG strongly correlated with the degree of estrogen receptor expression and showed an inverse correlation with vimentin and matrix metalloproteinase-13. The EndoG-positive WDNI cells were more sensitive to etoposide- or camptothecin-induced cell death than EndoG-negative PDI cells. Silencing of EndoG caused inhibited of SK-BR-3 WDNI cell death induced by etoposide. Human ductal carcinomas in situ expressed high levels of EndoG, while invasive medullar and ductal carcinomas had significantly decreased expression of EndoG. This correlated with decreased apoptosis as measured by TUNEL assay. Our findings suggest that the presence of EndoG in non-invasive breast cancer cells determines their sensitivity to apoptosis, which may be taken into consideration for developing the chemotherapeutic strategy for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号