共查询到20条相似文献,搜索用时 8 毫秒
1.
Cultured NIH 3T3 fibroblasts were employed to investigate the changes in the phospholipid metabolism induced by Ha-ras transformation. All phospholipid fractions were reduced in ras-transformed fibroblasts except phosphatidylethanolamine (PE). The incorporation of labeled choline and ethanolamine into phosphatidylcholine (PC), PE and their corresponding metabolites were elevated in a similar manner in the transformed cells. The enhanced uptake of choline and ethanolamine correlated with the activation of choline kinase and ethanolamine kinase. Similarly, the uptake of arachidonic, oleic and palmitic acids by PC and PE was higher in ras-cells. Acyl-CoA synthetases, which esterify fatty acid before their incorporation into lysophospholipids, were also activated. However, both CTP:phosphocholine-cytidylyltransferase and CTP:phosphoethanolamine-chytidyltransferase were inhibited in the transformed cells. This fact, taken together with the observed activation of choline- and ethanolamine kinases, led to accumulation of phosphocholine and phosphoethanolamine, which have been presumed to participate in the processes of tumor development. PC biosynthesis seemed to be carried out through the CDP-choline pathway, which was stimulated in the oncogenic cells, whereas PE was more likely, a product of phosphatidylserine decarboxylation rather than the CDP-ethanolamine pathway. 相似文献
2.
Josef Ecker Gerhard Liebisch Max Scherer Gerd Schmitz 《Journal of lipid research》2010,51(9):2686-2694
Conjugated linoleic acids (CLA) are dietary fatty acids. Whereas cis-9,trans-11-(c9,t11)-CLA can be found in meat and dairy products, trans-9,trans-11-(t9,t11)-CLA is a constituent of vegetable oils. Previous studies showed that these two isomers activate different nuclear receptors and, thus, expression of genes related to lipid metabolism. Here we show that these CLA isomers are differentially elongated and desaturated in primary monocyte-derived macrophages isolated from healthy volunteers by using gas chromatography-mass spectrometry (GC-MS). We further demonstrate that c9,t11-CLA incorporates in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species and activates de novo glycerophospholipid synthesis by quantitative electrospray ionization-tandem mass spectrometry (ESI-MS/MS). c9,t11-CLA leads to strong shifts of the species profiles to PC 18:2/18:2 and PE 18:2/18:2, which are due to de novo synthesis and fatty acid remodeling. In contrast, t9,t11-CLA is preferentially bound to neutral lipids, including triglycerides and cholesterol esters. Taken together our results show that c9,t11-CLA and t9,t11-CLA have differential effects on PC and PE metabolism. Moreover, these data demonstrate that the structure of fatty acids not only determines their incorporation into lipid classes but also modulates the kinetics of lipid metabolism, particularly PC synthesis. 相似文献
3.
Nirmala K. Menon Robert E. Williams Kathy Kampf Anthony T. Campagnoni 《Neurochemical research》1990,15(8):777-783
The interactions of phosphatidylcholine (PC) to regions of the myelin basic protein (MBP) was examined. In solid phase binding assays the nature of the binding of unilamellar vesicles of14C-labeled phosphatidylcholine to bovine 18.5 kDa MBP, its N- and C-terminal peptide fragments, photooxidized 18.5 kDa MBP and the mouse 14 kDa protein, with an internal deletion of residues 117–157, was studied. The data were analyzed by computer-generated Scatchard plots in which non-specific binding was eliminated. Non-cooperative, low affinity binding of PC vesicles to MBP was observed, and this binding found to be sensitive to pH and ionic changes. At an ionic strength of 0.1 and pH 7.4, the binding of PC to the 14 kDa mouse MBP exhibited a Kd similar to that obtained with both the N-terminal and photooxidized 18.5 kDa bovine MBP. The studies indicated that the sites of PC interaction with MBP are located in the N-terminal region of the protein. The C-terminal region appeared to modulate the strength of the interaction slightly. Under similar conditions, lysozyme did not bind PC liposomes, and histone bound them nonspecifically. 相似文献
4.
Mahtab Tavasoli Sarah Lahire Taryn Reid Maren Brodovsky Christopher R. McMaster 《The Journal of biological chemistry》2020,295(51):17877
The two branches of the Kennedy pathways (CDP-choline and CDP-ethanolamine) are the predominant pathways responsible for the synthesis of the most abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine, respectively, in mammalian membranes. Recently, hereditary diseases associated with single gene mutations in the Kennedy pathways have been identified. Interestingly, genetic diseases within the same pathway vary greatly, ranging from muscular dystrophy to spastic paraplegia to a childhood blinding disorder to bone deformations. Indeed, different point mutations in the same gene (PCYT1; CCTα) result in at least three distinct diseases. In this review, we will summarize and review the genetic diseases associated with mutations in genes of the Kennedy pathway for phospholipid synthesis. These single-gene disorders provide insight, indeed direct genotype-phenotype relationships, into the biological functions of specific enzymes of the Kennedy pathway. We discuss potential mechanisms of how mutations within the same pathway can cause disparate disease. 相似文献
5.
Lysosomal phospholipase A2 (LPLA2) is an acidic phospholipase that is highly expressed in alveolar macrophages and that may play a role in the catabolism of pulmonary surfactant. The primary structure found in LCAT is conserved in LPLA2, including three amino acid residues potentially required for catalytic activity and four cysteine residues. LPLA2 activity was measured in COS-7 cells transfected with c-myc-conjugated mouse LPLA2 (mLPLA2) or mutated LPLA2. Single alanine substitutions in the catalytic triad resulted in the elimination of LPLA2 activity. Four cysteine residues (C65, C89, C330, and C371), conserved between LPLA2 and LCAT, were replaced with alanine. Quadruple mutations at C65, C89, C330, and C371, double mutations at C65 and C89, and a single mutation at C65 or C89 resulted in the elimination of activity. Double mutations at C330 and C371 and a single mutation at C330 or C371 resulted in a partial reduction of activity. Thus, the presence of a disulfide bond between C330 and C371 is not required for LPLA2 activity. We propose that one disulfide bond between C65 and C89 and free cysteine residues at C330 and C371 and the triad, serine-198, aspartic acid-360, and histidine-392, are required for the full expression of mLPLA2 activity. 相似文献
6.
Cold acclimation is a well‐known strategy for enhancing cold tolerance in ectotherms including insects. Nevertheless, information on the physiological mechanisms underpinning this phenomenon is still limited. Biological membrane integrity is critical for insects to perform at low temperatures, and an advantage is conferred on those insects that can adjust the composition of their membrane phospholipids. Such changes contribute to homeoviscous adaptation, a process that allows membranes to maintain a liquid–crystalline (fluid) state at low temperatures. Here we investigated phospholipids in the flesh fly Sarcophaga similis acclimated to various temperatures. Significant differences were observed in the composition of their fatty acyl chains: flies acclimated to low temperatures showed a higher proportion of palmitic and oleic acids at the expense of palmitoleic acid. Other fatty acids (stearic, linoleic, linolenic, arachidonic, eicosapentaenoic acids) were not significantly changed. The degree of unsaturation decreased in cold‐acclimated flies, but the difference was quite small. The weighted average chain length and number of double bonds were unchanged among flies acclimated to different temperatures. As temperatures decreased, the percentage of phosphatidylethanolamine increased to twice that of phosphatidylcholine. We discuss the role of these phospholipid changes in cold acclimation. 相似文献
7.
Daisuke Hishikawa Tomomi Hashidate Takao Shimizu Hideo Shindou 《Journal of lipid research》2014,55(5):799-807
Cellular membranes are composed of numerous kinds of glycerophospholipids with different combinations of polar heads at the sn-3 position and acyl moieties at the sn-1 and sn-2 positions, respectively. The glycerophospholipid compositions of different cell types, organelles, and inner/outer plasma membrane leaflets are quite diverse. The acyl moieties of glycerophospholipids synthesized in the de novo pathway are subsequently remodeled by the action of phospholipases and lysophospholipid acyltransferases. This remodeling cycle contributes to the generation of membrane glycerophospholipid diversity and the production of lipid mediators such as fatty acid derivatives and lysophospholipids. Furthermore, specific glycerophospholipid transporters are also important to organize a unique glycerophospholipid composition in each organelle. Recent progress in this field contributes to understanding how and why membrane glycerophospholipid diversity is organized and maintained. 相似文献
8.
Turnover of myelin lipids in aging brain 总被引:1,自引:0,他引:1
Turnover rates of myelin membrane components in mouse brains were determined by a method using stable isotope-labeling and mass spectrometry. The half-replacement times based on incorporation rates of newly synthesized molecules for young adult mice were 359 days for cholesterol, 20 days for phosphatidylcholine, 25 days for phosphatidylethanolamine, 94 days for cerebroside and 102 days for ganglioside GM1. The turnover rates of half-lives of myelin components were calculated from the decay curves of initially labeled molecules, and they were about the same as the half-replacement times. Individual components were thus revealed to be metabolized at different rates, and their turnover rates were differently affected by aging. As was observed with phospholipids, myelin pools appeared to be compartmentalized into rapidly and slowly exchanging pools. The turnover rates of cerebroside and GM1 decreased between the young and adult periods and slightly increased in senescence. The latter phenomenon may indicate an enhanced myelin turnover in senescence. The present study reveals the dynamic aspects of myelin membrane turnover during the life span of mouse. 相似文献
9.
Filipin is an antibiotic polyene widely used as a histochemical marker for cholesterol. We previously reported cholesterol/filipin-positive staining in brain of β-galactosidase (β-gal) knockout ((-/-)) mice (GM1 gangliosidosis). The content and distribution of cholesterol and gangliosides was analyzed in plasma membrane (PM) and microsomal (MS) fractions from whole-brain tissue of 15 week-old control (β-gal(+/-)) and GM1 gangliosidosis (β-gal(-/-)) mice. Total ganglioside content (μg sialic acid/mg protein) was 3-fold and 7-fold greater in the PM and MS fractions, respectively, in βgal(-/-) mice than in βgal(+/-) mice. GM1 content was 30-fold and 50-fold greater in the PM and MS fractions, respectively. In contrast, unesterified cholesterol content (μg/mg protein) was similar in the PM and the MS fractions of the βgal(-/-) and βgal(+/-) mice. Filipin is known to bind to various sterol derivatives and phospholipids on thin-layer chromatograms. Biochemical evidence is presented showing that filipin also binds to GM1 with an affinity similar to that for cholesterol, with a corresponding fluorescent reaction. Our data suggest that the GM1 storage seen in the β-gal(-/-) mouse contributes to the filipin ultraviolet fluorescence observed in GM1 gangliosidosis brain. The data indicate that in addition to cholesterol, filipin can also be useful for detecting GM1. 相似文献
10.
11.
Indole-3-acetic acid (IAA) was found to stimulate stem elongation but inhibit the incorporation of [14C]choline into phosphatidylcholine within 1 h 相似文献
12.
CDP-ethanolamine:diacylglycerol ethanolaminephosphotransferase (EPT) catalyzes the transfer of phosphoethanolamine from CDP-ethanolamine to diacylglycerol to produce phosphatidylethanolamine (PE). To date, the dual specificity of choline/ethanolaminephosphotransferase (CEPT) has been recognized as the total activity responsible for the synthesis of PE via the CDP-ethanolamine pathway in human. We report here the identification and characterization of another human cDNA that encodes CDP-ethanolamine-specific human EPT (hEPT1). Through homology search, we found that human selenoprotein I contained the CDP-alcohol phosphatidyltransferase signature, a common motif conserved in phospholipid synthases. Bacterial expression of the cDNA in Escherichia coli demonstrated that the product specifically used CDP-ethanolamine as the phosphobase donor to produce PE with the activation by both Mn(2+) and Mg(2+). RT-PCR and Northern blot analysis revealed that hEPT1 was ubiquitously expressed in multiple tissues, but in brain it was highly expressed in cerebellum. Here, we propose that in addition to previously identified CEPT, hEPT1 is involved in the biosynthesis of PE via the Kennedy pathway. 相似文献
13.
Abstract The increased content of negatively-charged phospholipids in membranes of Vibrio costicola grown at high salinities is mediated by increased phospholipid synthesis of phosphatidylglycerol relative to phosphatidylethanolamine. This phenomenon provides a system for investigating the factors involved in triggering and controlling haloadaptation in this moderately halophilic bacterium. We review recent experiments, which show that when subjected to sudden increases in external salinity, V. costicola senses both the absolute NaCl concentration and the magnitude of the salt shift. We show that the latter is sensed at least in part via osmotic pressure effects, since shift-up into sucrose-containing media triggers comparable changes in growth and in phospholipid composition and synthesis. 相似文献
14.
Hugues Ahiboh Allico J Djaman Félix H Yapi Angèle Edjeme-Aké Marie-Laure Hauhouot-Attoungbré Eric D Yayo 《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):911-917
In the eukaryotic cell, phospholipids can be biosynthesized by two pathways, one from choline and the other one from ethanolamine. The functional effectiveness of each pathway depends on the type of the cell. Thiazolium designed-drugs have shown, under in vivo conditions, antiplasmodial and antimalarial activities with inhibition of the phospholipids biosynthesis. This study aimed to discover the pathways involved in the biosynthesis of phospholipids in Plasmodium and deduce the biochemical steps inhibited by T4, a bis-thiazolium bromide drug. We compared the uptake of radiolabeled precursors and their selective incorporation in the phospholipids of cultured Plasmodium-infected and -uninfected erythrocytes which revealed that phosphatidylcholine of Plasmodium is synthesized both from choline and ethanolamine (4.7 vs 1.9 nmol/1010 cells.h?1). T4 has no effect on the biosynthesis of phosphatidylethanolamine but T4 inhibited, in a selective way, the in vitro uptake of choline. However no enzymes in the biosynthesis of phospholipids seem to be inhibited by T4 but rather an inhibition of choline entry into the parasite. 相似文献
15.
《Journal of lipid research》2018,59(7):1132-1147
16.
Equilibrium measurements of the binding of central nervous system myelin basic protein to sodium dodecyl sulphate, sodium deoxycholate and lysophosphatidylcholine have been obtained by gel permeation chromatography and dialysis. This protein associates with large amounts of each of these surfactants: the apparent saturation weight ratios (surfactant/protein) being for dodecyl sulphate at ionic strengths 0.30 and 0.10, respectively, for deoxycholate (at 0.12 ionic strength) and for lysophosphatidylcholine. Binding to the ionic surfactants increases markedly close to their critical micelle concentrations. Sedimentation analysis shows that at 0.30 ionic strength in excess dodecyl sulphate the protein is monomeric. It becomes dimeric when the binding ratio falls below 1 at a free detergent concentration of approximately 0.25 mM: below this concentration much of the protein and detergent forms an insoluble complex. The amount of dodecyl sulphate bound at high concentrations and at both above-mentioned ionic strengths corresponds closely to that expected for interaction of a single polypeptide with two micelles. Variability of deoxycholate micelle size on interaction with other molecules precludes a similar analysis for this surfactant. Association was observed only with single micelles of lysophosphatidylcholine. The results provide strong evidence for dual lipid-binding sites on basic protein and indicate that lipid bilayer cross-linking by this protein may be effected by single molecules. 相似文献
17.
18.
This study was undertaken to characterize the enzymatic properties of the particulate guanylyl cyclase previously shown to
be present at a high level of activity in purified rat brain myelin. Significant activation was achieved by both Lubrol-PX
and Triton X-100, the latters being somewhat more effective. A pH optimum of 7.8 was observed, compared to 7.4 for microsomes.
Employing 1.2 mM GTP with 1% Triton X-100, linearity of response was observed up to 60 min and approximately 1.2 mg of myelin
protein. Kinetic analysis revealed Km values of 0.258 mM and 0.486mM for myelin and microsomes, respectively, similar values being obtained by Lineweaver-Burke
analysis or Direct Linear Plot. Vmax values were 20 and 266 pmol/mg protein/min for myelin and microsomes, respectively. Washing of the myelin with 0.5 M NaCl
or 0.1% Na taurocholate did not remove a significant amount of guanylyl cyclase activity, indicating the enzyme to be intrinsic
to the myelin sheath.
Special issue dedicated to Dr. Marion E. Smith. 相似文献
19.
Improved X-ray diffraction data from dry nerve myelin are presented. In addition to the spacings of approx. 150 Å, 60 Å, 44 Å and 34.6 Å, which have been previously reported, we identify a 14 Å series. The data suggests that the hydrocarbon chains in the single bilayer () is ordered, whereas in the double bilayer () and in the fluid phase () it is disordered. It is shown that cholesterol () exists as a bilayer, and the 14 Å series is probably another cholesterol phase. 相似文献
20.
Rat brain slices were incubated with [3H]palmitic acid and [14C]glycine to label the lipid and protein moieties, respectively, of myelin proteolipid protein (PLP). The effects of monensin on posttranslational processing of proteins were examined by measuring the appearance of [14C]glycine- and [3H]palmitate-labeled proteins in myelin and myelin-like fractions. At 0.01 and 0.10 microM, monensin did not appreciably affect total lipid or protein synthesis; higher concentrations caused increased inhibition. Monensin at 0.10 microM markedly decreased the appearance of [14C]glycine-labeled PLP in myelin, but had little effect on the 14C basic proteins or the incorporation of [3H]palmitic acid into total or myelin PLP. The same relative effect was apparent at higher monensin concentrations. In the myelin-like fraction, monensin at 0.10 microM also depressed entry of [14C]glycine into protein comigrating with PLP, and again had no effect on incorporation of [3H]palmitic acid. In addition, monensin increased the [3H]palmitate label associated with two high-molecular-weight proteins in the myelin-like fraction with no concomitant increase in [14C]glycine label. 相似文献