首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Allergic sheep respond to inhaled Ascaris suum antigen with either acute and late bronchial obstructions (dual responders) or only acute bronchoconstriction (acute responders). In this study we tested the hypothesis that one factor which may distinguish between these two populations is the difference in sensitivity to a specific mediator of airway anaphylaxis, leukotriene (LT) D4 (a major component of slow reacting substance of anaphylaxis). We postulated that if the hypothesis was correct then dual responders should demonstrate increased airway responses to inhaled LTD4 and that this increased responsiveness should also be reflected by a more severe response to inhaled antigen. To test this we used animals from both groups with the same degree of non-specific airway responsiveness to carbachol and determined their airway responses to controlled inhalation challenges with synthetic LTD4 and Ascaris suum antigen. Airway responsiveness to carbachol was determined by measuring the change in specific lung resistance (SRL) to increasing concentrations of carbachol aerosol, and then identifying, by linear interpolation, the provocative carbachol concentration which produced a 150% increase (PC150) in SRL. Airway responses to LTD4, and antigen were determined by measuring the percentage change in SRL after a controlled inhalation challenge with either aerosol. Airway responsiveness to carbachol was not different between the two groups. There was, however, a difference (p less than 0.05) in the airway response to the same dose of LTD4 in the two groups. Dual responders showed a 297 +/- 72% increase in SRL as compared to a 90 +/- 13% increase in SRL in the acute responders. Dual responders also showed a greater immediate and more prolonged response to antigen than did acute responders. These results suggest that increased responsiveness to LTD4 may be one factor which may distinguish dual responders from acute responders.  相似文献   

2.
Some allergic sheep respond to inhalation of antigen with both immediate and late increases in airflow resistance (late response). The mechanism of the late response is unknown but recent evidence suggests that the initial generation of slow-reacting substance of anaphylaxis (SRS-A) immediately after antigen challenge is a necessary pre-requisite for the physiologic expression of this late response. Based on this evidence we hypothesized that airway challenge with leukotriene D4 (LTD4), an active component of SRS-A would produce acute and late airway responses in allergenic sheep similar to those observed with antigen. In five allergic sheep with documented early and late pulmonary responses to antigen, inhalation of leukotriene D4 aerosol (delivered dose {mean ±SE} 0.55±0.08 ug) resulted in significant early and late increases in specific lung resistance (SRL). In three allergic sheep which only demonstrated acute responses to antigen, LTD4 aerosol (delivered dose 0.59±0.09ug) only produced an acute increase in SRL. In the late responders pretreatment with aerosol cromolyn sodium (1 mg/kg) did not affect the acute response but blunted the late increase in SRL. Pretreatment with aerosol FPL-57231 (1% w/v solution) completely blocked both the acute and late responses. These data support the hypothesis that initial release of LTD4 in the airways of sensitive animals is important for the physiologic expression of the late response.  相似文献   

3.
Leukotriene (LT) D4 is a putative mediator of allergic asthma: inhaled LTD4 produces early and late increases in specific lung resistance (SRL) and slows tracheal mucus velocity (TMV) similat to inhaled antigen. In this study we examined the effects of an orally active LTD4/LTE4 antagonist, LY171883 [1-<2-Hydroxy-3-propyl-4-<4-(1H-Tetra-zol-5-yl) Butoxy>Phenyl>Ethanonel], on early and late changes in SRL and TMV following airway challenge with antigen in conscious allergic sheep. SRL and TMV were measured before and up to 8 h and 24 h after antigen challenge after either LY171883 (30 mg/kg, p.o. 2 h before challenge) or placebo pretreatment. After placebo pretreatment antigen challenge resulted in significant early (483% over baseline) and late (221% over baseline) increases in SRL (n=9). LY171883 pretreatment, however, significantly reduced the early increase in SRL (163% over baseline) and blocked the late response. LY171883 did not prevent the antigen-induced fall in TMV from 5–8 h post challenge (n=6), but TMV recovered more rapidly in the drug trial returning to baseline values by 24 h. These results suggest that the generation of LTD4, and its metabolite LTE4, during airway anaphylaxis contributes to the early increase in SRL and is important for eliciting the late increase in SRL as well as contributing to the fall in TMV.  相似文献   

4.
Inhaled heparin has been shown to inhibit allergic bronchoconstriction in sheep that develop only acute responses to antigen (acute responders) but was ineffective in sheep that develop both acute and late airway responses (LAR) (dual responders). Because the antiallergic activity of heparin is molecular-weight dependent, we hypothesized that heparin-derived oligosaccharides (<2, 500) with potential anti-inflammatory activity may attenuate the LAR in the dual-responder sheep. Specific lung resistance was measured in 24 dual-responder sheep before and serially for 8 h after challenge with Ascaris suum antigen for demonstration of early airway response (EAR) and LAR, without and after treatment with inhaled medium-, low-, and ultralow-molecular-weight (ULMW) heparins and "non-anticoagulant" fractions (NAF) of heparin. Airway responsiveness was estimated before and 24 h postantigen as the cumulative provocating dose of carbachol that increased specific lung resistance by 400%. Only ULMW heparins caused a dose-dependent inhibition of antigen-induced EAR and LAR and postantigen airway hyperresponsiveness (AHR), whereas low- and medium-molecular-weight heparins were ineffective. The effects of ULMW heparin and ULMW NAF-heparin were comparable and inhibited the LAR and AHR even when administered "after" the antigen challenge. The ULMW NAF-heparin failed to inhibit the bronchoconstrictor response to histamine, carbachol, and leukotriene D(4), excluding a direct effect on airway smooth muscle. In six sheep, segmental antigen challenge caused a marked increase in bronchoalveolar lavage histamine, which was not prevented by inhaled ULMW NAF-heparin. The results of this study in the dual-responder sheep demonstrate that 1) the antiallergic activity of inhaled "fractionated" heparins is molecular-weight dependent, 2) only ULMW heparins inhibit the antigen-induced EAR and LAR and postantigen AHR, and 3) the antiallergic activity is mediated by nonanticoagulant fractions and resides in the ULMW chains of <2,500.  相似文献   

5.
We compared the development of antigen-induced airway hyperresponsiveness (AHR) 24 h after challenge with Ascaris suum antigen in allergic sheep with acute (n = 7) and with dual (n = 7) airway responses and then attempted to modify this AHR. Cholinergic airway responsiveness was determined by measuring the carbachol dose required to increase specific lung resistance (sRL) 150% (i.e., PC150). Subsequently the sheep were challenged with antigen and sRL was measured at predetermined times to document the presence or absence of a late response. PC150 was redetermined 24 h later followed by bronchoalveolar lavage (BAL) to assess inflammation. Only dual responders developed AHR (PC150 decreased, P less than 0.05). There were no significant differences in BAL between the two groups. Six dual responders were then, on separate occasions (greater than or equal to 3 wk), pretreated with placebo, indomethacin (2 mg/kg iv), or a leukotriene antagonist, FPL-57231 (30 mg inhaled). Neither agent significantly affected the acute response to antigen. Only FPL pretreatment blocked the late response, but both agents blocked the antigen-induced AHR 24 h later. BAL at 24 h showed no significant differences. These results indicate that only dual responders develop AHR 24 h after antigen challenge. This AHR appears independent of the late increase in sRL or the severity of pulmonary inflammation. AHR appears to be sensitive to agents that interfere with the early release or actions of cyclooxygenase and lipoxygenase metabolites in dual responders.  相似文献   

6.

Background

Previous studies showed that heparin''s anti-allergic activity is molecular weight dependent and resides in oligosaccharide fractions of <2500 daltons.

Objective

To investigate the structural sequence of heparin''s anti-allergic domain, we used nitrous acid depolymerization of porcine heparin to prepare an oligosaccharide, and then fractionated it into disaccharide, tetrasaccharide, hexasaccharide, and octasaccharide fractions. The anti-allergic activity of each oligosaccharide fraction was tested in allergic sheep.

Methods

Allergic sheep without (acute responder) and with late airway responses (LAR; dual responder) were challenged with Ascaris suum antigen with and without inhaled oligosaccharide pretreatment and the effects on specific lung resistance and airway hyperresponsiveness (AHR) to carbachol determined. Additional inflammatory cell recruitment studies were performed in immunized ovalbumin-challenged BALB/C mice with and without treatment.

Results

The inhaled tetrasaccharide fraction was the minimal effective chain length to show anti-allergic activity. This fraction showed activity in both groups of sheep; it was also effective in inhibiting LAR and AHR, when administered after the antigen challenge. Tetrasaccharide failed to modify the bronchoconstrictor responses to airway smooth muscle agonists (histamine, carbachol and LTD4), and had no effect on antigen-induced histamine release in bronchoalveolar lavage fluid in sheep. In mice, inhaled tetrasaccharide also attenuated the ovalbumin-induced peribronchial inflammatory response and eosinophil influx in the bronchoalveolar lavage fluid. Chemical analysis identified the active structure to be a pentasulfated tetrasaccharide ([IdoU2S (1→4)GlcNS6S (1→4) IdoU2S (1→4) AMan-6S]) which lacked anti-coagulant activity.

Conclusions

These results demonstrate that heparin tetrasaccharide possesses potent anti-allergic and anti-inflammatory properties, and that the domains responsible for anti-allergic and anti-coagulant activity are distinctly different.  相似文献   

7.
Late-phase bronchial vascular responses in allergic sheep   总被引:1,自引:0,他引:1  
Sheep were classified on the basis of their airway response to Ascaris suum antigen aerosols as allergic or nonsensitive. Allergic sheep were classed as acute or dual responders. Acute responders had only an immediate increase in mean airflow resistance after antigen, whereas dual responders had an immediate and late-phase (6-8 h after antigen challenge) increase in mean airflow resistance; nonsensitive sheep had minimal airway responses to antigen (less than 30% increase from base line). The sheep were anesthetized 2 wk later and, after a left thoracotomy, were challenged with antigen to determine bronchial vascular responses; bronchial artery blood flow was measured with an electromagnetic flow probe. Airway responses to antigen aerosol challenge were similar in the anesthetized and conscious animals. The mean fall in bronchial vascular resistance (BVR) immediately after antigen challenge was similar in acute and dual responders (41 +/- 7 and 47 +/- 9% of base line, respectively). In dual responders, late-phase airway responses were preceded by a significant increase from base line in Qbr and a fall in bronchovascular resistance (BVR). The mean fall in BVR 6-8 h after antigen challenge in documented dual responders was significantly different from bronchial vascular responses in acute responders (59 +/- 3 vs. 89 +/- 10%, respectively). Sheep without airway responses to A. suum had no significant changes in bronchial hemodynamics or airways mechanics. Late-phase-associated changes in BVR are a specific response to antigen challenge and may be a sensitive index of mediators being released.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Leukotriene D4 (5 μg/ml) aerosol constricts airways of dogs with nonspecific airway hyperreactivity but not of mongrel dogs which lack nonspecific airway hyperreactivity. RL increased 200 + 25% and Cdyn decreased to 77 ± 5% of the pre-challenge value. LTD4 (10 μg/ml) produced no further increase. Atropine (0.2 mg/kg) prevented the increase in RL and decrease in Cdyn, suggesting that part of the effect of LTD4 on airways is neurally mediated.  相似文献   

9.
In view of the likely production of monohydroxyeicosatetraenoic acid (HETE's) in bronchial asthma, the role of these lipoxygenase products in the development of a classical clinical element of airway disease, namely airway hyperreactivity, has been investigated. Tracheas removed from guinea-pigs actively sensitized to ovalbumin produced, upon antigenic challenge (0.01 μg/ml), a 17-fold increase (0.97 ± 0.34 ng/ml to 16.73 ± 1.58 ng/ml) in the amount of 5-hydroxyeicosatetraenoic acid (5-HETE) as measured by radioimmunoassay of the tissue-bath fluid, indicating that this tissue is capable of producing 5-HETE. While 5-HETE alone, at concentrations equal to or greater than those found during the above antigenic response (0.001 to 1.0 μM), failed to produce intrinsic contractions of normal, nonsensitized guinea-pig trachea, a 30 min pretreatment with 5-HETE (1.0 μM) enhanced subsequent LTD4-induced contractions. Pretreatment with either 12- or 15-HETE, at similar concentrations and conditions, failed to potentiate LTD4 concentration-response curves. The effect of 5-HETE was time-dependent, since pretreatment for either 15 or 60 min had little or no effect on subsequent LTD4 responses. Also, the 5-HETE-induced enhancement seemed specific fot LTD4, since contractions to LTC4 (in the presence of l-serine borate), acetylcholine, histamine, PGD2 or U-46619 were unaffected by 5-HETE. Therefore, 5-HETE may have a role in the development of airway hyperreactivity by interacting with released LTD4 to exacerbate airway smooth muscle contraction in asthma.  相似文献   

10.
The relationship between airway responsiveness to inhaled antigen and histamine, immunologic release of lung histamine, immunologic responsiveness of skin, and specific immunoglobulin E (IgE) antibodies were examined in 11 inbred allergic dogs immunized with extracts of ragweed and grass and 5 nonimmunized control dogs from the same colony. Airway responsiveness to antigen and histamine was characterized by the doses that increased the airflow resistance of the total respiratory system to twice the control values (ED200). Highly significant correlations were found between airway responsiveness and cutaneous responsiveness to antigen and other immunologic characteristics (e.g., IgE and histamine released from lung by inhaled antigen) in all dogs. In ragweed-sensitized dogs, there was an inverse correlation between immunologic responsiveness (reflected by the cutaneous response to antigen and histamine released from lung by inhaled antigen) and nonimmunologic responsiveness of airways (histamine ED200: r = 0.73, P less than 0.05 and r = 0.75, P less than 0.01, respectively). Antigen ED200 was also correlated with histamine release from lung after antigen inhalation (r = 0.74; P less than 0.01). We conclude that airway reactions to inhaled antigen in allergic dogs are dependent not only on immunologic factors but also on the degree of nonimmunologic airway responsiveness to histamine and that these factors are correlated inversely.  相似文献   

11.
Recent experiments indicate that prostaglandin E2 potentiates the vasodilatory properties of leukotrienes in the skin microcirculation. The present experiments were undertaken to study the effect of leukotriene D4 and prostaglandin E2 on renal hemodynamics and urinary electrolytes in the dog. Experiments were performed in three groups of anesthetized Mongrel dogs: the first group was studied under hydropenia, whereas the two remaining groups were studied during water diuresis with (Group 3) or without indomethacin (Group 2). LTD4 (100ng/min) and PGE2 (3ug/min) were infused in the left renal artery to minimize systemic effects of these compounds. LTD4 alone failed to influence urinary sodium excretion in all 3 groups. In Group 1, urinary sodium increased from 77 ± 6 to 393 ± 74uEq/min during PGE2, and further increased to 511 ± 52uEq/min during LTD4 + PGE2. No change occured in the contralateral right kidney. In this group, glomerular filtration as well as renal plasma flow were not statistically influenced. In Group 2, the same phenomenon was observed for urinary sodium. The combined infusion of LTD4 + PGE2 increased urinary sodium without significant changes in glomerular filtration and renal plasma flow. Finally, in Group 3, indomethacin was shown to reduce the natriuretic effects of LTD4 and PGE2: during PGE2 alone, urinary sodium increased from 90 ± 14 to 260 ± 66uEq/min, and only rose from 80 ± 10 to 175 ± 19uEq/min during the combined infusion of LTD4 and PGE2. In groups 2 and 3, free water clearance was utilized as an index of sodium chloride reabsorption in the thick ascending limb: this parameter increased from 2.35 ± 0.25 to 4.70 ± 0.30ml/min, while urinary volume was increasing from 3.55 ± 0.25 to 10.05 ± 0.65ml/min, during LTD4 + PGE2. Indomethacin, administered in Group 3, (3mg/kg/hr) again abolished the effect of combined PGE2 + LTD4. These results indicate a potentiating effect of leukotriene D4 on the PGE2-induced natriuresis in the anesthetized dog. These phenomena occured in the absence of significant changes in renal hemodynamics, therefore suggesting a direct tubular effect of these arachidonic acid metabolites. Finally, the water diuresis experiments suggest a proximal site of action of PGE2 and LTD4.  相似文献   

12.
Antigen sensitization was induced in six Basenji-Greyhound (BG) dogs by weekly aerosol exposure to Ascaris suum. The effects on airway responsiveness to inhaled methacholine were studied before and at least 2 wk following Ascaris sensitization. All dogs developed detectable serum levels of Ascaris-specific immunoglobulin E (IgE), and five out of six dogs developed airway responsiveness to antigen over the 4- to 6-mo period. This was accompanied by a decrease rather than an increase in airway responsiveness to inhaled methacholine. When dogs were challenged with methacholine 30 min after Ascaris antigen aerosol challenge, however, dogs reactive to Ascaris became hyperresponsive to methacholine. The magnitude of the response to antigen correlated (r = 0.85) inversely with the dose of methacholine increasing pulmonary resistance 200%. These data show that in BG dogs airway responsiveness to methacholine is increased by acute antigen exposure but that sensitization of previously unsensitized dogs does not increase nonspecific airway responsiveness.  相似文献   

13.
The actions of leukotriene (LT) C4 and D4 on the systemic arterial pressure and the insufflation pressure in guinea pigs and rabbits were examined. In guinea pigs, 0.3 – 3 nmole/kg of LTC4 and 0.1 – 1.0 nmole/kg of LTD4 administrated from left jugular vein caused dose-dependent increase of the airway resistance measured by the Konzett-Rössler method and a triphasic blood pressure response; an initial hypotension, a secondary hypertension and a third long-lasting hypotension. All of the hypertensive phase and 100 – 150% of the increase of the airway resistance by LTC4 and LTD4 were inhibited by a selective thromboxane synthetase inhibitor, OKY-1581 (10 mg/kg, i.v.) and only the hypertension was observed. Indomethacin (10 mg/kg, i.p.) also inhibited not only the airway resistance increase, but also the prolonged hypotension by LTC4 and shortened the duration of the hypotension by LTD4. It is suggested that thromboxane might be involved in bronchoconstriction and hypertensive effects by LTC4 and LTD4 and that hypotensive prostaglandin might be involved in the hypotensive phase after LTC4 and LTD4. In rabbits, the increse of the airway resistance by LTC4 and LTD4 (upto 100 nmole/kg, i.v.) was negligible and only the hypotension was observed.  相似文献   

14.
Robert D. Krell 《Life sciences》1976,19(11):1777-1782
Rhesus monkeys with a naturally occurring cutaneous hypersensitivity to ascaris antigen were compared to nonhypersensitive animals for airway responsiveness to bronchoconstrictive pharmacologic agents. The hypersensitive animals demonstrated a marked hyperreactivity of the airways to aerosols of histamine and prostaglandin F with an apparently lesser degree of hyperreactivity to carbachol. Cutaneously hypersensitive monkeys demonstrate an abnormality of the airway apparently similar to that shown clinically in asthmatics.  相似文献   

15.
Although the bronchoconstriction induced by leukotriene D4 (LTD4) has been reported to be partly mediated by thromboxane A2 (TXA2) in the guinea-pig airway, it is not known which part of the airway is susceptible to TXA2. In order to determine the role of TXA2 in the central and peripheral airways, we compared the effect of a TXA2 antagonist on tracheal strips to its effect on parenchymal strips of guinea-pigs. Tracheal and parenchymal strips were mounted in a 3.5 ml organ bath filled with Krebs-Henseleit solution aerated with 95% O2, 5% CO2 and kept at 37°C. After equilibration for 60 min in Krebs solution, the strip was contracted by exposure to 10−5 M of acetylcholine (ACh). Sixty minutes after ACh was eliminated, the concentration-response curve to LTD4 (10−9 M–10−7 M) was obtained, and the LTD4-induced contractions were expressed as the percent of the contraction evoked by 10−5 M of ACh. We measured the contractile response to LTD4 in the presence or absence of the TXA2 antagonist, BAY u3405 (10−8 M–10−6 M). In the tracheal strips, BAY u3405 had no effect on the LTD4-induced contraction. However, in parenchymal strips, BAY u3405 significantly suppressed the contractile response to LTD4. These results suggest that in the central airway LTD4 contracts smooth muscle directly, but that in the peripheral airway LTD4 induces smooth muscle contraction both directly and indirectly, via TXA2.  相似文献   

16.
We have examined the effects of a PAF receptor antagonist, WEB 2170, on several indices of acute and chronic airway inflammation and associated changes in lung function in a primate model of allergic asthma. A single oral administration WEB 2170 provided dose related inhibition of the release of leukotriene C(4) (LTC(4)) and prostaglandin D(2) (PGD(2)) recovered and quantified in bronchoalveolar lavage (BAL) fluid obtained during the acute phase response to inhaled antigen. In addition, oral WEB 2170 treatment in dual responder primates blocked the acute influx of neutrophils into the airways as well as the associated late-phase airway obstruction occurring 6 h after antigen inhalation. In contrast, a multiple dosing regime with WEB 2170 (once a day for 7 consecutive days) failed to reduce the chronic airway inflammation (eosinophilic) and associated airway hyperresponsiveness to inhaled methacholine that is characteristic of dual responder monkeys. Thus, we conclude that the generation of PAF following antigen inhalation contributes to the development of lipid mediators, acute airway inflammation and associated late-phase airway obstruction in dual responder primates; however, PAF does not play a significant role in the maintenance of chronic airway inflammation and associated airway hyperresponsiveness in this primate model.  相似文献   

17.

Background

Repeated exposure to inhaled allergen can cause airway inflammation, remodeling and dysfunction that manifests as the symptoms of allergic asthma. We have investigated the role of the cytokine interleukin-13 (IL-13) in the generation and persistence of airway cellular inflammation, bronchial remodeling and deterioration in airway function in a model of allergic asthma caused by chronic exposure to the aeroallergen House Dust Mite (HDM).

Methodology/Principal Findings

Mice were exposed to HDM via the intranasal route for 4 consecutive days per week for up to 8 consecutive weeks. Mice were treated either prophylactically or therapeutically with a potent neutralising anti-IL-13 monoclonal antibody (mAb) administered subcutaneously (s.c.). Airway cellular inflammation was assessed by flow cytometry, peribronchial collagen deposition by histocytochemistry and airway hyperreactivity (AHR) by invasive measurement of lung resistance (RL) and dynamic compliance (Cdyn). Both prophylactic and therapeutic treatment with an anti-IL-13 mAb significantly inhibited (P<0.05) the generation and maintenance of chronic HDM-induced airway cellular inflammation, peribronchial collagen deposition, epithelial goblet cell upregulation. AHR to inhaled methacholine was reversed by prophylactic but not therapeutic treatment with anti-IL-13 mAb. Both prophylactic and therapeutic treatment with anti-IL-13 mAb significantly reversed (P<0.05) the increase in baseline RL and the decrease in baseline Cdyn caused by chronic exposure to inhaled HDM.

Conclusions/Significance

These data demonstrate that in a model of allergic lung disease driven by chronic exposure to a clinically relevant aeroallergen, IL-13 plays a significant role in the generation and persistence of airway inflammation, remodeling and dysfunction.  相似文献   

18.
The purpose of this study was to determine whether excessive airway secretions could serve as a barrier function against inhaled particulate matter. To increase airway secretions, six conscious sheep were treated with pilocarpine (0.8 mg/kg i.v.). Pilocarpine increased pulmonary resistance (RL) and total aerosol deposition within five breaths (AD5) as determined by the rebreathing of an inert monodisperse aerosol. When RL had returned to baseline, AD5 remained elevated [21 +/- 2% (SE), P < 0.05] and tracheal secretions were increased (237 +/- 77%, P < 0.05) above the values before pilocarpine administration. A carbachol aerosol dose-response curve was carried out at this time and compared with a control carbachol dose-response curve by calculating the dose of carbachol required to increase RL by 400% (PD400). Mean PD400 was increased postpilocarpine by 53 +/- 18 (P < 0.05) and 85 +/- 25% (P < 0.05) when normalized for increased aerosol deposition. Thus, pilocarpine decreased airway responsiveness to inhaled carbachol despite increasing aerosol deposition. The pilocarpine-induced airway hyporesponsiveness to inhaled carbachol is consistent with the hypothesis that excessive secretions have a protective role in the airways.  相似文献   

19.
Lipoxygenase metabolites have proposed as potential chemical mediators of the bronchial hyperractivity which characterizes asthma (2,6). In addition to the possibility that leukotrienes (LTs) sensitize airways smooth muscle to the contractile actions of other mediators such as histamine (1–3), a number of studies have provided evidence for LT-induced enhancement of bronchoconstriction by a vagal dependent mechanism (4–6). In the present study the effects of exposure of the airway to LTC4 on subsequent responsiveness to histamine have been investigated in both and experiments. LTC4, in a concentration eliciting threshold contractile responses of the isolated trachea (1.7 nM), had no effect on either the EC50 or maximal contractile response to histamine. At a concentration eliciting an approximately EC50 contractile response, LTC4 (10 nM) shifted the histamine concentration-response curve rightwards altering the maximum response. In anaesthetized, mechanically ventilated guinea pigs LTC4 (0.1–0.4 nMole/kg, i.v.) injected 20 s beforehand, failed to alter histamine (9–36 nMole/kg, i.v.)-induced bronchoconstriction whereas, under the same conditions, LTD4 (0.05–0.2 nMole/kg, i.v.) dose-dependently enhanced histamine-induced bronchoconstriction. On the other hand, LTC4 or LTD4 (16 uM, 30 s) aerosols potentiated histamine (9.36 nMole/kg, i.v.) in a concentration-dependent manner (Table). Both LTC4 and LTD4 aerosols enahance airway reactivity to histamine whereas only LTD4 has this action when administered intravenously. Neither LTC4 nor LTD4 (6) enhances the contractile effects of histamine on isolated airways smooth muscle. It is concluded that the broncho-constriction enhancing action of these leukotrienes may be indirectly mediated.  相似文献   

20.
The effects of leukotriene D4 (LTD4) on pulmonary mechanics were investigated in anesthetized, paralyzed cats under conditions of controlled ventilation. Intravenous injections of LTD4 in doses of 3, 10, and 30 μg caused significant increases in transpulmonary pressure (PTP) and lung resistance (RL) while decreasing dynamic compliance (Cdyn). LTD4 also increased systemic arterial pressure (PA0). The changes in PTP, RL, and Cdyn in response to LTD4 were blocked by sodium meclofenamate, a cyclooxygenase inhibitor. However, there was no significant change in the increase in PA0 following cyclooxygenase blockade. U 46619, a thromboxane mimic, was 30 to 100 times more potent than LTD4 in increasing PTP, RL and decreasing Cdyn in the cat. These data show that LTD4 has significant smooth muscle constrictor activity in central airways as well as peripheral portions of the feline lung. In addition, these data suggest that in the cat the actions of intravenously administered LTD4 on lung mechanics are mediated by release of cyclooxygenase products while the systemic pressor effects are not dependent upon the integrity of the cyclooxygenase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号