首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During heavy-intensity exercise, the mechanisms responsible for the continued slow decline in phosphocreatine concentration ([PCr]) (PCr slow component) have not been established. In this study, we tested the hypothesis that a reduced intracellular acidosis would result in a greater oxidative flux and, consequently, a reduced magnitude of the PCr slow component. Subjects (n = 10) performed isotonic wrist flexion in a control trial and in an induced alkalosis (Alk) trial (0.3g/kg oral dose of NaHCO3, 90 min before testing). Wrist flexion, at a contraction rate of 0.5 Hz, was performed for 9 min at moderate- (75% of onset of acidosis; intracellular pH threshold) and heavy-intensity (125% intracellular pH threshold) exercise. 31P-magnetic resonance spectroscopy was used to measure intracellular [H+], [PCr], [Pi], and [ATP]. The initial recovery data were used to estimate the rate of ATP synthesis and oxidative flux at the end of heavy-intensity exercise. In repeated trials, venous blood sampling was used to measure plasma [H+], [HCO3-], and [Lac-]. Throughout rest and exercise, plasma [H+] was lower (P < 0.05) and [HCO3-] was elevated (P < 0.05) in Alk compared with control. During the final 3 min of heavy-intensity exercise, Alk caused a lower (P < 0.05) intracellular [H+] [246 (SD 117) vs. 291 nmol/l (SD 129)], a greater (P < 0.05) [PCr] [12.7 (SD 7.0) vs. 9.9 mmol/l (SD 6.0)], and a reduced accumulation of [ADP] [0.065 (SD 0.031) vs. 0.098 mmol/l (SD 0.059)]. Oxidative flux was similar (P > 0.05) in the conditions at the end of heavy-intensity exercise. In conclusion, our results are consistent with a reduced intracellular acidosis, causing a decrease in the magnitude of the PCr slow component. The decreased PCr slow component in Alk did not appear to be due to an elevated oxidative flux.  相似文献   

2.
Gastrocnemius muscle phosphocreatine ([PCr]) and hydrogen ion ([H(+)]) were measured using (31)P-magnetic resonance spectroscopy during repeated bouts of 10-s heavy-intensity (HI) exercise and 5-s rest compared with continuous (CONT) HI exercise. Recreationally active male subjects (n = 7; 28 yr ± 9 yr) performed on separate occasions 12 min of isotonic plantar flexion (0.75 Hz) CONT and intermittent (INT; 10-s exercise, 5-s rest) exercise. The HI power output in both CONT and INT was set at 50% of the difference between the power output associated with the onset of intracellular acidosis and peak exercise determined from a prior incremental plantar flexion protocol. Intracellular concentrations of [PCr] and [H(+)] were calculated at 4 s and 9 s of the work period and at 4 s of the rest period in INT and during CONT exercise. [PCr] and [H(+)] (mean ± SE) were greater at 4 s of the rest periods vs. 9 s of exercise over the course of the INT exercise bout: [PCr] (20.7 mM ± 0.6 vs. 18.7 mM ± 0.5; P < 0.01); [H(+)] (370 nM ± 13.50 vs. 284 nM ± 13.6; P < 0.05). Average [H(+)] was similar for CONT vs. INT. We therefore suggest that there is a glycolytic contribution to ATP recovery during the very short rest period (<5 s) of INT and that the greater average power output of CONT did not manifest in greater [H(+)] and greater glycolytic contribution compared with INT exercise.  相似文献   

3.
Metabolic alkalosis induced by sodium bicarbonate (NaHCO(3)) ingestion has been shown to enhance performance during brief high-intensity exercise. The mechanisms associated with this increase in performance may include increased muscle phosphocreatine (PCr) breakdown, muscle glycogen utilization, and plasma lactate (Lac(-)(pl)) accumulation. Together, these changes would imply a shift toward a greater contribution of anaerobic energy production, but this statement has been subject to debate. In the present study, subjects (n = 6) performed a progressive wrist flexion exercise to volitional fatigue (0.5 Hz, 14-21 min) in a control condition (Con) and after an oral dose of NaHCO(3) (Alk: 0.3 g/kg; 1.5 h before testing) to evaluate muscle metabolism over a complete range of exercise intensities. Phosphorus-31 magnetic resonance spectroscopy was used to continuously monitor intracellular pH, [PCr], [P(i)], and [ATP] (brackets denote concentration). Blood samples drawn from a deep arm vein were analyzed with a blood gas-electrolyte analyzer to measure plasma pH, Pco(2), and [Lac(-)](pl), and plasma [HCO(3)(-)] was calculated from pH and Pco(2). NaHCO(3) ingestion resulted in an increased (P < 0.05) plasma pH and [HCO(3)(-)] throughout rest and exercise. Time to fatigue and peak power output were increased (P < 0.05) by approximately 12% in Alk. During exercise, a delayed (P < 0.05) onset of intracellular acidosis (1.17 +/- 0.26 vs. 1.28 +/- 0.22 W, Con vs. Alk) and a delayed (P < 0.05) onset of rapid increases in the [P(i)]-to-[PCr] ratio (1.21 +/- 0.30 vs. 1.30 +/- 0.30 W) were observed in Alk. No differences in total [H(+)], [P(i)], or [Lac(-)](pl) accumulation were detected. In conclusion, NaHCO(3) ingestion was shown to increase plasma pH at rest, which resulted in a delayed onset of intracellular acidification during incremental exercise. Conversely, NaHCO(3) was not associated with increased [Lac(-)](pl) accumulation or PCr breakdown.  相似文献   

4.
The effect of prior exercise on pulmonary O(2) uptake (Vo(2)(p)), leg blood flow (LBF), and muscle deoxygenation at the onset of heavy-intensity alternate-leg knee-extension (KE) exercise was examined. Seven subjects [27 (5) yr; mean (SD)] performed step transitions (n = 3; 8 min) from passive KE following no warm-up (HVY 1) and heavy-intensity (Delta50%, 8 min; HVY 2) KE exercise. Vo(2)(p) was measured breath-by-breath; LBF was measured by Doppler ultrasound at the femoral artery; and oxy (O(2)Hb)-, deoxy (HHb)-, and total (Hb(tot)) hemoglobin/myoglobin of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS; Hamamatsu NIRO-300). Phase 2 Vo(2)(p), LBF, and HHb data were fit with a monoexponential model. The time delay (TD) from exercise onset to an increase in HHb was also determined and an HHb effective time constant (HHb - MRT = TD + tau) was calculated. Prior heavy-intensity exercise resulted in a speeding (P < 0.05) of phase 2 Vo(2)(p) kinetics [HVY 1: 42 s (6); HVY 2: 37 s (8)], with no change in the phase 2 amplitude [HVY 1: 1.43 l/min (0.21); HVY 2: 1.48 l/min (0.21)] or amplitude of the Vo(2)(p) slow component [HVY 1: 0.18 l/min (0.08); HVY 2: 0.18 l/min (0.09)]. O(2)Hb and Hb(tot) were elevated throughout the on-transient following prior heavy-intensity exercise. The tauLBF [HVY 1: 39 s (7); HVY 2: 47 s (21); P = 0.48] and HHb-MRT [HVY 1: 23 s (4); HVY 2: 21 s (7); P = 0.63] were unaffected by prior exercise. However, the increase in HHb [HVY 1: 21 microM (10); HVY 2: 25 microM (10); P < 0.001] and the HHb-to-Vo(2)(p) ratio [(HHb/Vo(2)(p)) HVY 1: 14 microM x l(-1) x min(-1) (6); HVY 2: 17 microM x l(-1) x min(-1) (5); P < 0.05] were greater following prior heavy-intensity exercise. These results suggest that the speeding of phase 2 tauVo(2)(p) was the result of both elevated local O(2) availability and greater O(2) extraction evidenced by the greater HHb amplitude and HHb/Vo(2)(p) ratio following prior heavy-intensity exercise.  相似文献   

5.
The effects of prior heavy-intensity exercise on O(2) uptake (Vo(2)) kinetics of a second heavy exercise may be due to vasodilation (associated with metabolic acidosis) and improved muscle blood flow. This study examined the effect of prior heavy-intensity exercise on femoral artery blood flow (Qleg) and its relationship with Vo(2) kinetics. Five young subjects completed five to eight repeats of two 6-min bouts of heavy-intensity one-legged, knee-extension exercise separated by 6 min of loadless exercise. Vo(2) was measured breath by breath. Pulsed-wave Doppler ultrasound was used to measure Qleg. Vo(2) and blood flow velocity data were fit using a monoexponential model to identify phase II and phase III time periods and estimate the response amplitudes and time constants (tau). Phase II Vo(2) kinetics was speeded on the second heavy-intensity exercise [mean tau (SD), 29 (10) s to 24 (10) s, P < 0.05] with no change in the phase II (or phase III) amplitude. Qleg was elevated before the second exercise [1.55 (0.34) l/min to 1.90 (0.25) l/min, P < 0.05], but the amplitude and time course [tau, 25 (13) s to 35 (13) s] were not changed, such that throughout the transient the Qleg (and DeltaQleg/DeltaVo(2)) did not differ from the prior heavy exercise. Thus Vo(2) kinetics were accelerated on the second exercise, but the faster kinetics were not associated with changes in Qleg. Thus limb blood flow appears not to limit Vo(2) kinetics during single-leg heavy-intensity exercise nor to be the mechanism of the altered Vo(2) response after heavy-intensity prior exercise.  相似文献   

6.
Traditional control theories of muscle O2 consumption are based on an "inertial" feedback system operating through features of the ATP splitting (e.g., [ADP] feedback, where brackets denote concentration). More recently, however, it has been suggested that feedforward mechanisms (with respect to ATP utilization) may play an important role by controlling the rate of substrate provision to the electron transport chain. This has been achieved by activation of the pyruvate dehydrogenase complex via dichloroacetate (DCA) infusion before exercise. To investigate these suggestions, six men performed repeated, high-intensity, constant-load quadriceps exercise in the bore of an magnetic resonance spectrometer with each of prior DCA or saline control intravenous infusions. O2 uptake (Vo2) was measured breath by breath (by use of a turbine and mass spectrometer) simultaneously with intramuscular phosphocreatine (PCr) concentration ([PCr]), [Pi], [ATP], and pH (by 31P-MRS) and arterialized-venous blood sampling. DCA had no effect on the time constant (tau) of either Vo2 increase or PCr breakdown [tauVo2 45.5 +/- 7.9 vs. 44.3 +/- 8.2 s (means +/- SD; control vs. DCA); tauPCr 44.8 +/- 6.6 vs. 46.4 +/- 7.5 s; with 95% confidence intervals averaging < +/-2 s]. DCA, however, resulted in significant (P < 0.05) reductions in 1). end-exercise [lactate] (-1.0 +/- 0.9 mM), intramuscular acidification (pH, +0.08 +/- 0.06 units), and [Pi] (-1.7 +/- 2.1 mM); 2). the amplitude of the fundamental components for [PCr] (-1.9 +/- 1.6 mM) and Vo2 (-0.1 +/- 0.07 l/min, or 8%); and 3). the amplitude of the Vo2 slow component. Thus, although the DCA infusion lessened the buildup of potential fatigue metabolites and reduced both the aerobic and anaerobic components of the energy transfer during exercise, it did not enhance either tauVo2 or tau[PCr], suggesting that feedback, rather than feedforward, control mechanisms dominate during high-intensity exercise.  相似文献   

7.
We tested the hypothesis that the asymptote of the hyperbolic relationship between work rate and time to exhaustion during muscular exercise, the "critical power" (CP), represents the highest constant work rate that can be sustained without a progressive loss of homeostasis [as assessed using (31)P magnetic resonance spectroscopy (MRS) measurements of muscle metabolites]. Six healthy male subjects initially completed single-leg knee-extension exercise at three to four different constant work rates to the limit of tolerance (range 3-18 min) for estimation of the CP (mean +/- SD, 20 +/- 2 W). Subsequently, the subjects exercised at work rates 10% below CP (CP) for as long as possible, while the metabolic responses in the contracting quadriceps muscle, i.e., phosphorylcreatine concentration ([PCr]), P(i) concentration ([P(i)]), and pH, were estimated using (31)P-MRS. All subjects completed 20 min of CP exercise was 14.7 +/- 7.1 min. During CP exercise, however, [PCr] continued to fall to the point of exhaustion and [P(i)] and pH changed precipitously to values that are typically observed at the termination of high-intensity exhaustive exercise (end-exercise values = 26 +/- 16% of baseline [PCr], 564 +/- 167% of baseline [P(i)], and pH 6.87 +/- 0.10, all P < 0.05 vs. 相似文献   

8.
We used 31P-magnetic resonance spectroscopy to test the hypothesis that exercise-induced muscle damage (EIMD) alters the muscle metabolic response to dynamic exercise, and that this contributes to the observed reduction in exercise tolerance following EIMD in humans. Ten healthy, physically active men performed incremental knee extensor exercise inside the bore of a whole body 1.5-T superconducting magnet before (pre) and 48 h after (post) performing 100 squats with a load corresponding to 70% of body mass. There were significant changes in all markers of muscle damage [perceived muscle soreness, creatine kinase activity (434% increase at 24 h), and isokinetic peak torque (16% decrease at 24 h)] following eccentric exercise. Muscle phosphocreatine concentration ([PCr]) and pH values during incremental exercise were not different pre- and post-EIMD (P > 0.05). However, resting inorganic phosphate concentration ([P(i)]; pre: 4.7 ± 0.8; post: 6.7 ± 1.7 mM; P < 0.01) and, consequently, [P(i)]/[PCr] values (pre: 0.12 ± 0.02; post: 0.18 ± 0.05; P < 0.01) were significantly elevated following EIMD. These mean differences were maintained during incremental exercise (P < 0.05). Time to exhaustion was significantly reduced following EIMD (519 ± 56 and 459 ± 63 s, pre- and post-EIMD, respectively, P < 0.001). End-exercise pH (pre: 6.75 ± 0.04; post: 6.83 ± 0.04; P < 0.05) and [PCr] (pre: 7.2 ± 1.7; post: 14.5 ± 2.1 mM; P < 0.01) were higher, but end-exercise [P(i)] was not significantly different (pre: 19.7 ± 1.9; post: 21.1 ± 2.6 mM, P > 0.05) following EIMD. The results indicate that alterations in phosphate metabolism, specifically the elevated [P(i)] at rest and throughout exercise, may contribute to the reduced exercise tolerance observed following EIMD.  相似文献   

9.
We hypothesized that the metabolic acidosis resulting from the performance of multiple-sprint exercise would enhance muscle perfusion and result in a speeding of pulmonary oxygen uptake (VO2)kinetics during subsequent perimaximal-intensity constant work rate exercise, if O2 availability represented a limitation to VO2 kinetics in the control (i.e., no prior exercise) condition. On two occasions, seven healthy subjects completed two bouts of exhaustive cycle exercise at a work rate corresponding to approximately 105% of the predetermined Vo2 peak, separated by 3 x 30-s maximal sprint cycling and 15-min recovery (MAX1 and MAX2). Blood lactate concentration (means +/- SD: MAX1: 1.3 +/- 0.4 mM vs. MAX2: 7.7 +/- 0.9 mM; P < 0.01) was significantly greater immediately before, and heart rate was significantly greater both before and during, perimaximal exercise when it was preceded by multiple-sprint exercise. Near-infrared spectroscopy also indicated that muscle blood volume and oxygenation were enhanced when perimaximal exercise was preceded by multiple-sprint exercise. However, the time constant describing the primary component (i.e., phase II) increase in VO2 was not significantly different between the two conditions (MAX1: 33.8 +/- 5.5 s vs. MAX2: 33.2 +/- 7.7 s). Rather, the asymptotic "gain" of the primary Vo2 response was significantly increased by the performance of prior sprint exercise (MAX1: 8.1 +/- 0.9 ml.min(-1).W(-1) vs. MAX2: 9.0 +/- 0.7 ml.min(-1).W(-1); P < 0.05), such that VO2 was projecting to a higher "steady-state" amplitude with the same time constant. These data suggest that priming exercise, which apparently increases muscle O2 availability, does not influence the time constant of the primary-component VO2 response but does increase the amplitude to which VO2 may rise following the onset of perimaximal-intensity cycle exercise.  相似文献   

10.
The effects of controlled voluntary hyperventilation (Hyp) on phosphocreatine (PCr) kinetics and muscle deoxygenation were examined during moderate-intensity plantar flexion exercise. Male subjects (n = 7) performed trials consisting of 20-min rest, 6-min exercise, and 10-min recovery in control [Con; end-tidal Pco(2) (Pet(CO(2))) approximately 33 mmHg] and Hyp (Pet(CO(2)) approximately 17 mmHg) conditions. Phosphorus-31 magnetic resonance and near-infrared spectroscopy were used simultaneously to monitor intramuscular acid-base status, high-energy phosphates, and muscle oxygenation. Resting intracellular hydrogen ion concentration ([H(+)](i)) was lower (P < 0.05) in Hyp [90 nM (SD 3)] than Con [96 nM (SD 4)]; however, at end exercise, [H(+)](i) was greater (P < 0.05) in Hyp [128 nM (SD 19)] than Con [120 nM (SD 17)]. At rest, [PCr] was not different between Con [36 mM (SD 2)] and Hyp [36 mM (SD 1)]. The time constant (tau) of PCr breakdown during transition from rest to exercise was greater (P < 0.05) in Hyp [39 s (SD 22)] than Con [32 s (SD 22)], and the PCr amplitude was greater (P < 0.05) in Hyp [26% (SD 4)] than Con [22% (SD 6)]. The deoxyhemoglobin and/or deoxymyoglobin (HHb) tau was similar between Hyp [13 s (SD 8)] and Con [10 s (SD 3)]; however, the amplitude was increased (P < 0.05) in Hyp [40 arbitrary units (au) (SD 23)] compared with Con [26 au (SD 17)]. In conclusion, our results indicate that Hyp-induced hypocapnia enhanced substrate-level phosphorylation during moderate-intensity exercise. In addition, the increased amplitude of the HHb response suggests a reduced local muscle perfusion in Hyp compared with Con.  相似文献   

11.
To differentiate the effects of high energy phosphates, pH, and [H2PO4-] on skeletal muscle fatigue, intracellular acidosis during handgrip exercise was attenuated by prolonged submaximal exercise. Healthy human subjects (n = 6) performed 5-min bouts of maximal rhythmic handgrip (RHG) before (CONTROL) and after prolonged (60-min) handgrip exercise (ATTEN-EX) designed to attenuate lactic acidosis in active muscle by partially depleting muscle glycogen. Concentrations of free intracellular phosphocreatine ([PCr]), adenosine triphosphate ([ATP]), and orthophosphate ([P(i)]) and pH were measured by 31P nuclear magnetic resonance spectroscopy and used to calculate adenosine diphosphate [ADP], [H2PO4-], and [HPO4(2-)]. Handgrip force output was measured with a dynamometer, and fatigue was determined by loss of maximal contractile force. After ATTEN-EX, the normal exercise-induced muscle acidosis was reduced. At peak CONTROL RHG, pH fell to 6.3 +/- 0.1 (SE) and muscle fatigue was correlated with [PCr] (r = 0.83), [P(i)] (r = 0.82), and [H2PO4-] (r = 0.81); [ADP] was 22.0 +/- 5.7 mumol/kg. At peak RHG after ATTEN-EX, pH was 6.9 +/- 0.1 and [ADP] was 116.1 +/- 18.2 mumol/kg, although [PCr] and [P(i)] were not different from CONTROL RHG (P greater than 0.05). After ATTEN-EX, fatigue correlated most closely with [ADP] (r = 0.84). The data indicate that skeletal muscle fatigue 1) is multifactorial, 2) can occur without decreased pH or increased [H2PO4-], and 3) is correlated with [ADP] after exercise-induced glycogen depletion.  相似文献   

12.
The mechanism(s) underlying the attenuation of the slow component of pulmonary O2 uptake (Vo2) by prior heavy-intensity exercise is (are) poorly understood but may be ascribed to either an intramuscular-metabolic or a circulatory modification resulting from "priming" exercise. We investigated the effects of altering the circulatory dynamics by delayed vagal withdrawal to the circulation induced by the cold face stimulation (CFS) on the Vo2 kinetics during repeated bouts of heavy-intensity cycling exercise. Five healthy subjects (aged 21-43 yr) volunteered to participate in this study and initially performed two consecutive 6-min leg cycling exercise bouts (work rate: 50% of the difference between lactate threshold and maximal Vo2) separated by 6-min baseline rest without CFS as a control (N1 and N2). CFS was then applied separately, by gel-filled cold compresses to the face for 2-min spanning the rest-exercise transition, to each of the first bout (CFS1) or second bout (CFS2) of repeated heavy-intensity exercise. In the control protocol, Vo2 responses in N2 showed a facilitated adaptation compared with those in N1, mainly attributable to the reduction of slow component. CFS application successfully slowed and delayed the heart rate (HR) kinetics (P < 0.05) on transition to exercise [HR time constant; N1: 55.6 +/- 16.0 (SD) vs. CFS1: 69.0 +/- 12.8 s and N2: 55.5 +/- 11.8 vs. CFS2: 64.0 +/- 17.5 s]; however, it did not affect the "primary" Vo2 kinetics [Vo2 time constant; N1: 23.7 +/- 7.9 (SD) vs. CFS1: 20.9 +/- 3.8 s, and N2: 23.3 +/- 10.3 vs. CFS2: 17.4 +/- 6.3 s]. In conclusion, increased vagal withdrawal delayed and slowed the circulatory response but did not alter the Vo2 kinetics at the onset of supra-lactate threshold cycling exercise. As the facilitation of Vo2 subsequent to prior heavy leg cycling exercise is not attenuated by slowing the central circulation, it seems unlikely that this facilitation is exclusively determined by a blood flow-related mechanism.  相似文献   

13.
The purpose was to examine the adaptation of pulmonary O(2) uptake (Vo(2p)) and deoxygenation of the vastus lateralis muscle at the onset of heavy-intensity, constant-load cycling exercise in young (Y; 24 +/- 4 yr; mean +/- SD; n = 5) and older (O; 68 +/- 3 yr; n = 6) adults. Subjects performed repeated transitions on 4 separate days from 20 W to a work rate corresponding to heavy-intensity exercise. Vo(2p) was measured breath by breath. The concentration changes in oxyhemoglobin, deoxyhemoglobin (HHb), and total hemoglobin/myoglobin were determined by near-infrared spectroscopy (Hamamatsu NIRO-300). Vo(2p) data were filtered, interpolated to 1 s, and averaged to 5-s bins. HHb-near-infrared spectroscopy data were filtered and averaged to 5-s bins. A monoexponential model was used to fit Vo(2p) [phase 2, time constant (tau) of Vo(2p)] and HHb [following the time delay (TD) from exercise onset to the start of an increase in HHb] data. The tauVo(2p) was slower (P < 0.001) in O (49 +/- 8 s) than Y (29 +/- 4 s). The HHb TD was similar in O (8 +/- 3 s) and Y (7 +/- 1 s); however, the tau HHb following TD was faster (P < 0.05) in O (8 +/- 2 s) than Y (14 +/- 2 s). The slower Vo(2p) kinetics and faster muscle deoxygenation in O compared with Y during heavy-intensity exercise imply that the kinetics of muscle perfusion are slowed relatively more than those of Vo(2p) in O. This suggests that the slowed Vo(2p) kinetics in O may be a consequence of a slower adaptation of local muscle blood flow relative to that in Y.  相似文献   

14.
We hypothesized that a period of endurance training would result in a speeding of muscle phosphocreatine concentration ([PCr]) kinetics over the fundamental phase of the response and a reduction in the amplitude of the [PCr] slow component during high-intensity exercise. Six male subjects (age 26 +/- 5 yr) completed 5 wk of single-legged knee-extension exercise training with the alternate leg serving as a control. Before and after the intervention period, the subjects completed incremental and high-intensity step exercise tests of 6-min duration with both legs separately inside the bore of a whole-body magnetic resonance spectrometer. The time-to-exhaustion during incremental exercise was not changed in the control leg [preintervention group (PRE): 19.4 +/- 2.3 min vs. postintervention group (POST): 19.4 +/- 1.9 min] but was significantly increased in the trained leg (PRE: 19.6 +/- 1.6 min vs. POST: 22.0 +/- 2.2 min; P < 0.05). During step exercise, there were no significant changes in the control leg, but end-exercise pH and [PCr] were higher after vs. before training. The time constant for the [PCr] kinetics over the fundamental exponential region of the response was not significantly altered in either the control leg (PRE: 40 +/- 13 s vs. POST: 43 +/- 10 s) or the trained leg (PRE: 38 +/- 8 s vs. POST: 40 +/- 12 s). However, the amplitude of the [PCr] slow component was significantly reduced in the trained leg (PRE: 15 +/- 7 vs. POST: 7 +/- 7% change in [PCr]; P < 0.05) with there being no change in the control leg (PRE: 13 +/- 8 vs. POST: 12 +/- 10% change in [PCr]). The attenuation of the [PCr] slow component might be mechanistically linked with enhanced exercise tolerance following endurance training.  相似文献   

15.
This study examined the effect of heavy-intensity warm-up exercise on O(2) uptake (VO(2)) kinetics at the onset of moderate-intensity (80% ventilation threshold), constant-work rate exercise in eight older (65 +/- 2 yr) and seven younger adults (26 +/- 1 yr). Step increases in work rate from loadless cycling to moderate exercise (Mod(1)), heavy exercise, and moderate exercise (Mod(2)) were performed. Each exercise bout was 6 min in duration and separated by 6 min of loadless cycling. VO(2) kinetics were modeled from the onset of exercise by use of a two-component exponential model. Heart rate (HR) kinetics were modeled from the onset of exercise using a single exponential model. During Mod(1), the time constant (tau) for the predominant rise in VO(2) (tau VO(2)) was slower (P < 0.05) in the older adults (50 +/- 10 s) than in young adults (19 +/- 5 s). The older adults demonstrated a speeding (P < 0.05) of VO(2) kinetics when moderate-intensity exercise (Mod(2)) was preceded by high-intensity warm-up exercise (tau VO(2), 27 +/- 3 s), whereas young adults showed no speeding of VO(2) kinetics (tau VO(2), 17 +/- 3 s). In the older and younger adults, baseline HR preceding Mod(2) was elevated compared with Mod(1), but the tau for HR kinetics was slowed (P < 0.05) in Mod(2) only for the older adults. Prior heavy-intensity exercise in old, but not young, adults speeded VO(2) kinetics during Mod(2). Despite slowed HR kinetics in Mod(2) in the older adults, an elevated baseline HR before the onset of Mod(2) may have led to sufficient muscle perfusion and O(2) delivery. These results suggest that, when muscle blood flow and O(2) delivery are adequate, muscle O(2) consumption in both old and young adults is limited by intracellular processes within the exercising muscle.  相似文献   

16.
The purpose of this study was to use 31P-magnetic resonance spectroscopy to examine the relationships among muscle PCr hydrolysis, intracellular H+ concentration accumulation, and muscle performance during incremental exercise during the inspiration of gas mixtures containing different fractions of inspired O2 (FIO2). We hypothesized that lower FIO2 would result in a greater disruption of intracellular homeostasis at submaximal workloads and thereby initiate an earlier onset of fatigue. Six subjects performed plantar flexion exercise on three separate occasions with the only variable altered for each exercise bout being the FIO2 (either 0.1, 0.21, or 1.00 O2 in balance N2). Work rate was increased (1-W increments starting at 0 W) every 2 min until exhaustion. Time to exhaustion (and thereby workload achieved) was significantly (P < 0.05) greater as FIO2 was increased. Muscle phosphocreatine (PCr) concentration, Pi concentration, and pH at exhaustion were not significantly different among the three FIO2 conditions. However, muscle PCr concentration and pH were significantly reduced at identical submaximal workloads (and thereby equivalent rates of respiration) above 4-5 W during the lowest FIO2 condition compared with the other two FIO2 conditions. These results demonstrate that exhaustion during all FIO2 occurred when a particular intracellular environment was achieved and suggest that during the lowest FIO2 condition, the greater PCr hydrolysis and intracellular acidosis at submaximal workloads may have contributed to the significantly earlier time to exhaustion.  相似文献   

17.
The responses to sublingual nifedipine (20 mg) and placebo were compared in normal subjects during two studies on cycle ergometer [progressive exercise and constant work-load exercise at approximately 60% of maximal O2 consumption (VO2max)]. The use of nifedipine did not modify maximal power, ventilation (VE), VO2, and heart rate (HR) at the end of the multistage progressive exercise (30-W increments every 3 min). Over the 45 min of the constant-load exercise and the ensuing 30-min recovery we observed with nifedipine compared with placebo 1) no differences in VO2, VE, respiratory exchange ratio, and systolic arterial blood pressure; 2) a higher HR (P less than 0.001) and lower diastolic arterial blood pressure (P less than 0.01); 3) a greater and more prolonged rise in norepinephrine (P less than 0.01) and growth hormone (P less than 0.001); 4) no significant differences in epinephrine and insulin and a lesser increase in glucagon during recovery (P less than 0.01); and 5) a lesser fall in blood glucose (P less than 0.01) and greater increase in acetoacetate (P less than 0.001), beta-hydroxybutyrate (P less than 0.05), and blood lactate (P less than 0.001). Our data do not support the hypothesis that nifedipine reduces hormonal secretions in vivo and are best explained by an enhanced secretion of catecholamines compensating for the primary vasodilator effect of nifedipine.  相似文献   

18.
Sympathetic nervous system restraint of skeletal muscle blood flow during dynamic exercise has been well documented. However, whether sympathetic restraint of muscle blood flow persists and is constant throughout prolonged exercise has not been established. We hypothesized that both alpha1- and alpha2-adrenergic receptors would restrain skeletal muscle blood flow throughout prolonged constant-load exercise and that the restraint would increase as a function of exercise duration. Mongrel dogs were instrumented chronically with transit-time flow probes on the external iliac arteries and an indwelling catheter in a branch of the femoral artery. Flow-adjusted doses of selective alpha1- (prazosin) and alpha2-adrenergic receptor (rauwolscine) antagonists were infused after 5, 30, and 50 min of treadmill exercise at 3 and 6 miles/h. During mild-intensity exercise (3 miles/h), prazosin infusion resulted in a greater (P < 0.05) increase in vascular conductance (VC) after 5 [42% (SD 6)], compared with 30 [28% (SD 6)] and 50 [28% (SD 8)] min of running. In contrast, prazosin resulted in a similar increase in VC after 5 [29% (SD 10)], 30 [24% (SD 9)], and 50 [22% (SD 9)] min of moderate-intensity (6 miles/h) exercise. Rauwolscine infusion resulted in a greater (P < 0.05) increase in VC after 5 [39% (SD 14)] compared with 30 [26% (SD 9)] and 50 [22% (SD 4)] min of exercise at 3 miles/h. Rauwolscine infusion produced a similar increase in VC after 5 [19% (SD 3)], 30 [15% (SD 6)], and 50 [16% (SD 2)] min of exercise at 6 miles/h. These results suggest that the ability of alpha1- and alpha2-adrenergic receptors to produce vasoconstriction and restrain blood flow to active muscles may be influenced by both the intensity and duration of exercise.  相似文献   

19.
During the onset of exercise in hypoxia, the increased lactate accumulation is associated with a delayed activation of pyruvate dehydrogenase (PDH; Parolin ML, Spreit LL, Hultman E, Hollidge-Horvat MG, Jones NL, and Heigenhauser GJF. Am J Physiol Endocrinol Metab 278: E522-E534, 2000). The present study investigated whether activation of PDH with dichloroacetate (DCA) before exercise would reduce lactate accumulation during exercise in acute hypoxia by increasing oxidative phosphorylation. Six subjects cycled on two occasions for 15 min at 55% of their normoxic maximal oxygen uptake after a saline (control) or DCA infusion while breathing 11% O(2). Muscle biopsies of the vastus lateralis were taken at rest and after 1 and 15 min of exercise. DCA increased PDH activity at rest and at 1 min of exercise, resulting in increased acetyl-CoA concentration and acetylcarnitine concentration at rest and at 1 min. In the first minute of exercise, there was a trend toward a lower phosphocreatine (PCr) breakdown with DCA compared with control. Glycogenolysis was lower with DCA, resulting in reduced lactate concentration ([lactate]), despite similar phosphorylase a mole fractions and posttransformational regulators. During the subsequent 14 min of exercise, PDH activity was similar, whereas PCr breakdown and muscle [lactate] were reduced with DCA. Glycogenolysis was lower with DCA, despite similar mole fractions of phosphorylase a, and was due to reduced posttransformational regulators. The results from the present study support the hypothesis that lactate production is due in part to metabolic inertia and cannot solely be explained by an oxygen limitation, even under conditions of acute hypoxia.  相似文献   

20.
To investigate the role of the carotid bodies in exercise hyperpnea and acid-base control, normal and carotid body-resected subjects (CBR) were studied during constant-load and incremental exercise. There was no significant difference in the first-breath ventilatory responses to exercise between the groups; some subjects in each reproducibly exhibited abrupt responses. The subsequent change in Ve toward steady state was slower in the CBR group. The steady-state ventilatory responses were the same in both groups at work rates below the anaerobic threshold (AT). However, above the AT, the hyperpnea was less marked in the CBR group. Ve and acid-base measurements revealed that the CBR group failed to hyperventilate in response to the metabolic acidosis of either constant-load or incremental exercise. We conclude that the carotid bodies 1) are not responsible for the initial exercise hyperpnea, 2) do affect the time course of Ve to its steady state, and 3) are responsible for the respiratory compensation for the metabolic acidosis of exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号