首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active biomass retention is a technical challenge in anaerobic digester treating dilute animal manure that contains solids particles. A strategy was tested using fibers in the dairy manure as biomass carriers by controlling settling time. Settling time ranging from 0.5 to 60 min were applied to eight anaerobic sequencing batch reactors to investigate their effects on active biomass retention in anaerobic digestion of flushed dairy manure. Results revealed that there existed a critical settling time at 2 min at which only minimum amount of active biomass was retained, and as settling time increased or decreased from this threshold, more active biomass could be retained. Gravity settling and selection pressure theories were suggested to account for the results. A model integrating these two effects was developed and verified with the experimental data. Knowledge derived from this study may lead to innovative bacterial retention technology for cost-effective anaerobic digestion of dairy wastes.  相似文献   

2.
Production of nematode-based pesticides involves the recovery of a viable nematode life stage known as the infective juvenile (IJ) from fermentation broth. Waste components to be separated from the IJs include non-IJ life stages, dead nematodes, nematode debris, spent media, and the nematode's associated bacteria. This paper reports separation characteristics of liquid cultures and suspensions of the nematodes Phasmarhabditis hermaphrodita, Steinernema feltiae, and Heterorhabditis megidis measured at small scale. Separation characteristics were determined for dead-end filtration, gravity settling and flotation. Results were used to identify large-scale recovery procedures. Separation of culture liquid by dead-end filtration of the crude fermentation broth was not possible due to rapid blinding of filters. However, nematode-water suspensions prepared by gravity settling could be concentrated using this separation method. Settling tests indicated that IJs could be efficiently separated from culture liquid by centrifugation but not by gravity settling. Examination of the effects of nematode concentration indicated an optimum concentration for gravity settling that may entail modest dilution of the fermentation broth. Flocculation of insoluble spent media in suspensions of P. hermaphrodita prevented its separation from nematodes by gravity settling. However, attachment of air bubbles to spent media allowed removal by flotation. Finally, adjustment of continuous phase density using sucrose allowed separation of non-IJ life stages, dead nematodes, and discarded cuticles from the IJs by flotation. The efficiency of this separation decreased with increasing nematode-solute contact time.  相似文献   

3.
A generalized model for settling velocity of aerobic granular sludge   总被引:5,自引:0,他引:5  
Aerobic granulation is a novel biotechnology recently receiving intensive research attention. Aerobic granules developed in SBR can be as big as several millimeters, thus the traditional models describing the settling velocity of activated sludge are no long valid in aerobic granules culture. In this study, a new type of model was developed for the settling velocity of aerobic granules. This model shows that the settling velocity of aerobic granules is the function of SVI, mean size of granules and biomass concentration of granules. When the size of bioparticle is small enough, the proposed model reduces to the well-known Vesilind equation. Results indicated that the proposed model could satisfactorily fit experimental results obtained in the course of aerobic granulation under different conditions, while the Vesilind equation failed to or very poorly fit the experimental data. In addition, the proposed model can also be extended to anaerobic granules. The settling velocity is one of the most important parameters in both aerobic and anaerobic granulation, and successful biogranulation is highly related to the manipulation of settling velocity. It was demonstrated that the proposed model can sever as a useful tool for design and operation engineers to properly select the settling velocity for enhanced aerobic and anaerobic granulation.  相似文献   

4.
Five cattle slurry fractions with distinct characteristics were obtained using a combined separation process (screw press+chemically enhanced settling using polyacrylamide (PAM)). The purpose of the present study was to assess the effect of each fraction relatively to the untreated slurry (US) on the emissions of greenhouse gases (CH4, N2O) after grassland application and on the grass yield. Methane emissions occurred mainly in the first two days after application and were observed only in treatments with the US and liquid fractions. Significant N2O emissions were observed only in the US and liquid fractions treatments. A significant increase of the grass yield relatively to the US was observed in plots amended with the composted solid fraction and with the PAM-sup fraction resulting from the PAM sediment settling of the liquid fraction previously obtained by screw press separation, whereas in all other treatments, no significant differences were observed. Considering the overall separation process, the proposed scheme did not lead to an increase, relative to the US, of gas emissions after soil application of the fractions obtained except in the case of CH4 where a small increase was observed.  相似文献   

5.
6.
Partitioning in two-polymer aqueous phase systems is an established method for the separation, purification and characterization of biomaterials. Because of the relatively slow settling rates of these phases, a consequence of the slight difference in density between them, effort has been directed to speeding up phase separation by various means (e.g., the development of a thin-layer countercurrent distribution apparatus). This has resulted in the more rapid processing of materials. Unlike soluble materials, biological particulates (e.g., cells) generally partition between one of the bulk phases and the interface. The mechanism of cell partitioning involves cell-specific adsorption to droplets of one phase suspended in the other, subsequent to phase mixing, and the delivery of adsorbed cells to the bulk interface as the droplets settle. In this communication we show, using erythrocytes as a model, that speeding up phase separation is counterproductive when partitioning cells and results in reduced efficiency of their separation or subfractionation. The most likely reason for this result is that increasing the speed of phase settling removes the droplets of one phase suspended in the other more rapidly than cells can attach to them, thereby interfering with the mechanism whereby cells partition.  相似文献   

7.
A new approach to solid/liquid separation for biological precipitates is presented. The precipitate is seeded with small dense and/or magnetic particles to increase the density difference between precipitate and liquid or to make the precipitate amenable to magnetic separation. Experiments on seeding of ammonium sulphate precipitates of casein and separation of the seeded precipitate by gravity settling and batch centrifugation have shown that the approach holds promise. Seeded precipitates exhibit hindered settling under gravity with typical settling velocities of 0.6 cm/min for iron oxide seed and 2.4 cm/min for nickel seed. Calculations indicate that seeding of these precipitates causes a 23 fold increase in density difference between precipitate particle and supernatant liquid. The design of a magnetic seeding step for use in an enzyme isolation process is discussed.  相似文献   

8.
The effect of the tie-line location (phase volume ratio) on the kinetics of phase separation in batch PEG/salt aqueous two-phase systems (ATPS) has been investigated. PEG/sulphate systems with a stability ratio (sr) of 0.34 and 0.37 and relative tie-line lengths in the range 0.1 to 0.6 for a continuous top phase and in the range 0.03 to 0.15 for a continuous bottom phase were used in the batch studies. A continuous settler was designed with three different inlet geometries. Phase separation is much faster when the bottom phase is continuous and in this case the location on the tie-line and the presence or absence of Bacillus subtilis extract makes little difference. When the top phase is continuous the relative sizes of the phases (phase ratio, R, relative distance on tie-line, rd) has an important effect, the larger the top phase (larger R and rd) the slower the phase separation. The presence of Bacillus extract also makes the operation slower which is more marked at the largest values of R (and rd). At the largest volume ratios (R or rd) three different settling regions have been recognised, a region of coalescence, a region of drops moving to the interphase and a region where drops queue at the interphase to coalesce into the large phase. A modified correlation that takes into account the location on the tie-line and thus volume ratio (R) and relative distance (rd) has been proposed and successfully tested. The behavior of batch and continuous systems in the presence and absence of Bacillus subtilis extract in systems with continuous bottom phase was also studied. The settling velocity was lower in the continuous than in the batch systems, and in both cases the initial rate was lower in the presence of Bacillus extract.  相似文献   

9.

Background  

The incorporation of statistical models that account for experimental variability provides a necessary framework for the interpretation of microarray data. A robust experimental design coupled with an analysis of variance (ANOVA) incorporating a model that accounts for known sources of experimental variability can significantly improve the determination of differences in gene expression and estimations of their significance.  相似文献   

10.
Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models—acknowledging their status as living beings and as epistemological tools—necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper presents an account of how disease-specific animal models are established by drawing on the example of transgenic mice models for Alzheimer’s disease. We will introduce an account of validation that involves a three-fold process including (1) from human being to experimental organism; (2) from experimental organism to animal model; and (3) from animal model to human patient. This process draws upon clinical relevance as much as scientific practices and results in disease-specific, yet incomplete, animal models. The second part of this paper argues that the incompleteness of models can be described in terms of multi-level abstractions. We qualify this notion by pointing to different experimental techniques and targets of modelling, which give rise to a plurality of models for a specific disease.  相似文献   

11.
Micropipette aspiration (MA) has been widely used to measure the biomechanical properties of cells and biomaterials. To estimate material parameters from MA experimental data, analytical half-space models and inverse finite element (FE) analyses are typically used. The half-space model is easy to implement but cannot account for nonlinear material properties and complex geometrical boundary conditions that are inherent to MA. Inverse FE approaches can account for geometrical and material nonlinearities, but their implementation is resource-intensive and not widely available. Here, by making analogy between an analytical uniaxial tension model and a FE model of MA, we proposed an easily implementable and accurate method to estimate the material parameters of tissues tested by MA. We first adopted a strain invariant-based isotropic exponential constitutive model and implemented it in both the analytical uniaxial tension model and the FE model. The two models were fit to experimental data generated by MA of porcine aortic valve tissue (45 spots on four leaflets) to estimate material parameters. We found no significant differences between the effective moduli estimated by the two models ( $p > 0.39$ ), with the effective moduli estimated by the uniaxial tension model correlating significantly with those estimated by the FE model ( $p < 0.001; R^{2}= 0.96$ ) with a linear regression slope that was not different than unity ( $p = 0.38$ ). Thus, the analytical uniaxial tension model, which avoids solving resource-intensive numerical problems, is as accurate as the FE model in estimating the effective modulus of valve tissue tested by MA.  相似文献   

12.
The viscoelastic properties of cells are important in predicting cell deformation under mechanical loading and may reflect cell phenotype or pathological transition. Previous studies have demonstrated that viscoelastic parameters estimated by finite element (FE) analyses of micropipette aspiration (MA) data differ from those estimated by the analytical half-space model. However, it is unclear whether these differences are statistically significant, as previous studies have been based on average cell properties or parametric analyses that do not reflect the inherent experimental and biological variability of real experimental data. To determine whether cell material parameters estimated by the half-space model are significantly different from those predicted by the FE method, we implemented an inverse FE method to estimate the viscoelastic parameters of a population of primary porcine aortic valve interstitial cells tested by MA. We found that inherent differences between the analytical and inverse FE estimation methods resulted in statistically significant differences in individual cell properties. However, in cases with small pipette to cell radius ratios and short loading periods, model-dependent differences were masked by experimental and cell-to-cell variability. Analytical models that account for finite cell-size and loading rate further relaxed the experimental conditions for which accurate cell material parameter estimates could be obtained. These data provide practical guidelines for analysis of MA data that account for the wide range of conditions encountered in typical experiments.  相似文献   

13.
The development of a model for simulating the recoveries by pilot-scale disc-stack centrifugation of whole yeast cells, yeast cell debris and protein precipitates prepared by ammonium sulphate salting-out is presented. The model is based on the grade efficiency concept and incorporates the effects of hindered settling at high biomass concentrations and the breakage of shear-sensitive material within the centrifuge feed-zone to give an accurate prediction of solid/liquid separation. The simulations have been proven by comparison with data from pilot-scale verification trials. The trials have highlighted where improvements to the models were required to increase their accuracy. The value of verification trials in proving the validity of models is commented upon.  相似文献   

14.
An experimental study is performed to measure the terminal settling velocities of spherical particles in surfactant based shear thinning viscoelastic (VES) fluids. The measurements are made for particles settling in unbounded fluids and fluids between parallel walls. VES fluids over a wide range of rheological properties are prepared and rheologically characterized. The rheological characterization involves steady shear-viscosity and dynamic oscillatory-shear measurements to quantify the viscous and elastic properties respectively. The settling velocities under unbounded conditions are measured in beakers having diameters at least 25x the diameter of particles. For measuring settling velocities between parallel walls, two experimental cells with different wall spacing are constructed. Spherical particles of varying sizes are gently dropped in the fluids and allowed to settle. The process is recorded with a high resolution video camera and the trajectory of the particle is recorded using image analysis software. Terminal settling velocities are calculated from the data.The impact of elasticity on settling velocity in unbounded fluids is quantified by comparing the experimental settling velocity to the settling velocity calculated by the inelastic drag predictions of Renaud et al.1 Results show that elasticity of fluids can increase or decrease the settling velocity. The magnitude of reduction/increase is a function of the rheological properties of the fluids and properties of particles. Confining walls are observed to cause a retardation effect on settling and the retardation is measured in terms of wall factors.  相似文献   

15.
The kinetics of phase separation in aqueous two-phase systems have been investigated as a function of the physical properties of the system. Two distinct situations for the settling velocities were found, one in which the light, organic-rich (PEG) phase is continuous and the other in which the heavier, salt-rich (phosphate) phase is continuous. The settling rate of a particular system is a crucial parameter for equipment design, and it was studied as a function of measured viscosity and density of each of the phases as well as the interfacial tension between the phases. Interfacial tension increases with increasing tie line length. A correlation that describes the rate of phase separation was investigated. This correlation, which is a function of the system parameters mentioned above, described the behavior of the system successfully. Different values of the parameters in the correlation were fitted for bottom-phase-continuous and top-phase-continuous systems. These parameters showed that density and viscosity play a role in the rate of separation in both top continuous- and bottom continuous-phase regions but are more dominant in the continuous top-phase region. The composition of the two-phase system was characterized by the tie line length. The rate of separation increased with increasing tie line length in both cases but at a faster rate when the bottom (less viscous) phase was the continuous phase. These results show that working in a continuous bottom-phase region is advantageous to ensure fast separation.  相似文献   

16.
Liu YH  He YL  Yang SC  Li YZ 《Biotechnology letters》2006,28(20):1673-1678
Mean settling velocity of granular sludge in full-scale UASB (upflow anaerobic sludge blanket) and EGSB (expanded granular sludge bed) reactors was evaluated by settling column tests, and a settling velocity model based on the experimental results and available literature data was developed. It is concluded that the settling velocity should be calculated by the Allen formula, because the settling process of the granules is in the category of intermediate flow regime rather than in the laminar flow one. The comparison between calculated and measured values of the settling velocity shows an excellent agreement, with an average relative error of 4.04%. A simple but reliable mathematical method to determine the settling velocity is therefore proposed.  相似文献   

17.
The objective of the study was to identify the optimum time interval for effluent removal after temporarily stopping stirring in otherwise continuously stirred tank reactors. Influence of temperature (10 and 55 degrees C) and active biogas process on passive separation of digested manure, where no outside mechanical or chemical action was used, within the reactor was studied in three vertical settling columns (100 cm deep). Variations in solids and microbial distribution at top, middle and bottom layers of column were assessed over a 15 day settling period. Results showed that best solids separation was achieved when digested manure was allowed to settle at 55 degrees C with active biogas process (pre-incubated at 55 degrees C) compared to separation at 55 degrees C without active biogas process (autoclaved at 120 degrees C, for 20 min) or at 10 degrees C with active biogas process. Maximum solids separation was noticed 24h after settling in column incubated at 55 degrees C, with active biogas process. Microbiological analyses revealed that proportion of Archaea and Bacteria, absent in the autoclaved material, varied with incubation temperature, time and sampling depth. Short rod shaped bacteria dominated at 55 degrees C, while long rod shaped bacteria dominated at 10 degrees C. Methanosarcinaceae were seen more abundant in the surface layer at 55 degrees C while it was seen more common in the top and bottom layers at 10 degrees C. Thus, passive separation of digester contents within the reactor can be used effectively as an operating strategy to optimize biogas production by increasing the solids and biomass retention times. A minimum of 1-2h "non-stirring" period appears to be optimal time before effluent removal in plants where extraction is batch-wise 2-4 times a day.  相似文献   

18.
The present study determined the settling velocity and leaching rates of carbon and nitrogen from the faecal matter of Atlantic salmon (Salmo salar L.) fed two commercial diets, high energy (HE) and standard, in three separate experiments (December, March and May) which coincided with winter, spring and summer. Faecal settling velocities for individual samples were in the range of 3.7–9.2 cm s?1. There were significant differences (P < 0.05) in settling velocities among the three experiments, with lowest velocities measured in faecal samples collected in winter and highest velocities measured in samples collected in summer. There were no significant differences (P > 0.05) in faecal settling velocity among fish fed the different diet types. Faecal nutrient content in the different treatment groups prior to leaching was 269–318 mg g?1 for carbon and 28–37 mg g?1 for nitrogen. Both carbon and nitrogen contents were higher in faeces from fish fed the standard diet than in fish fed the HE diet (P < 0.05). Thus the use of HE diets resulted in a 12% reduction in faecal carbon content and an 8% reduction in faecal nitrogen when compared with standard diets. There were no consistent differences in faecal carbon among samples collected during the three experiments; however, significant differences in faecal nitrogen content were detected in samples collected on the three different occasions. Leaching of faecal carbon and faecal nitrogen ranged between 4–14% and 9–16% of the original amount, respectively, after 2.5‐min immersion in sea water, although there was no further significant (P > 0.05) leaching after this time. No significant difference in nutrient leaching rate was found in faeces of fish fed HE and standard diets, and no significant differences in leaching rates were apparent among samples collected at different times of the year. These values suggest there may be an overestimation by dispersion models of the amount of nutrients entering seabed sediments. The amount of nutrients leaching from faeces may also have an important role in nutrient flux in the water column.  相似文献   

19.
In a recent experimental study, Ouyang et al. (1998, Proc. Natl. Acad. Sci. U.S.A.95, 8660-8664) have shown that, in direct competition, cyanobacterial strains whose circadian clocks have free-running periods (FRPs) which match the period of an imposed light/dark (LD) cycle exclude strains whose FRPs are out of resonance with the LD cycle. These differences in competitive fitness are observed despite the lack of measurable differences in monoculture growth rates between the strains. Here we show that the experimental results are consistent with a mathematical model in which cells rhythmically produce a metabolic inhibitor to which they display a sensitivity modulated by their circadian rhythm. We argue that models in which there is a circadian modulation of nutrient uptake kinetics cannot account for the results of these experiments. We discuss possible experiments to further characterize this phenomenon. The experimental protocol we propose can be used to distinguish between mutual inhibition and substrate depletion as underlying causes of the competitive advantage of circadian resonance.  相似文献   

20.
Settling time has been considered as one of the most effective selection pressures for aerobic granulation in sequencing batch reactors (SBRs), i.e., poorly settleable bioparticles would be washed out from SBRs, and the heavy and good settling ones would be retained at a shorter setting time. However, its biological implication remains unclear. This study investigated the microbiological mechanisms of aerobic granulation at different settling times. It provided experimental evidence for the first time showing that a shorter settling time could enhance release of extracellular DNA through cell lysis, which in turn initiated microbial aggregation leading to increased biomass size and density, while AI-2-mediated quorum sensing was found not to be involved in initial aggregation. It was further shown that the AI-2-mediated quorum sensing system was activated to regulate the growth and maturation of aerobic granules when the biomass density reached a threshold of 1.025 g ml−1. It appears from this study that a short settling time of SBR would induce microbiological and physiological responses of bacteria which are required at different stages of aerobic granulation and provide new insights into biological mechanisms of settling time-triggered aerobic granulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号