首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Legume seed lectins specific for N-acetyl-alpha-D-galactosaminyl end groups from Amphicarpaea bracteata, lima bean, Griffonia simplicifolia, Dolichos biflorus, and soybean were compared with respect to binding of several spin-labeled derivatives of D-galactosamine by electron spin resonance and precipitin inhibition analysis. Spin-label II [methyl 2-[[(2,2,5,5-tetramethyl-1-oxopyrrolidin-3-yl) carbonyl]amino]-2-deoxy-alpha-D-galactopyranoside], spin-label III [1-(methyl 2-deoxy-alpha-D-galactopyranosid-2-yl)-3-(2,2,6, 6-tetramethyl-1-oxypiperidin-4-yl)-2-thiourea], and spin-label IV [1-[4-[[(methyl 2-deoxy-alpha-D-galactopyranosid-2-yl)amino]carbonyl]phenyl]-3-(2, 2,6-tetramethyl-1-oxypiperidin-4-yl)-2-thiourea] contain 2-N-(oxypiperidinyl) or 2-N-(oxypyrrolidinyl) substituents varying in length and polarity of the linker arm between the glycoside and nitroxide ring. Spin-labels II and III were found to bind very weakly to all the lectins tested (Kd greater than or equal to 1.0 mM). Spin-label IV, containing a planar, nonpolar 2-N-phenyl group, was bound very strongly (Kd = 0.1-0.4 mM) and was moderately immobilized (2T parallel = 48-56 G) by all lectins except that from D. biflorus. Notably, the affinity of spin-label IV to lima bean lectin was 18-fold greater than that for methyl N-acetyl-alpha-galactosaminide. These results suggest that when the bulky oxypiperidinyl moiety lies in a position close to the sugar ring, it interferes with binding; in the cases where a phenyl group spacer exists, the aromatic ring in some cases actually enhances binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The techniques of electron spin resonance (ESR) and fluorescence spectroscopy have been used to study the interaction of a spin-labeled analogue of adenine, N6-(2,2,6,6-tetramethyl-1-oxypiperidin-4-yl)adenine (I), with several plant lectins. While most adenine derivatives enhanced lectin-induced fluorescence of 1,8-anilinonaphthalenesulfonic acid by binding to a separate, adenine-specific site [Roberts, D.D., & Goldstein, I.J. (1982) J. Biol. Chem. 257, 11274-11277], the spin label I caused a decrease in this fluorescence with certain lectins. ESR showed the ligand to interact strongly with lectins from lima bean (Phaseolus lunatus), Dolichos biflorus, and Phaseolus vulgaris (PHA); however, no binding was observed with Griffonia simplicifolia isolectins A4 and B4, soybean agglutinin, or Amphicarpaea bracteata lectins. The spin label was highly immobilized by each of these proteins (2T magnitude of = 68 G). Apparent affinities of the spin label for the lectins decreased in the order lima bean lectin greater than PHA erythroagglutinin greater than PHA leukoagglutinin greater than D. biflorus. Spin-labeled adenine appeared to bind specifically to the adenine binding site of D. biflorus and PHA leukoagglutinin, as demonstrated by total abolition of the ESR spectrum of bound spin label by adenine. PHA erythroagglutinin and lima bean lectin bound the analogue with apparent dissociation constants of 5 X 10(-5) and 3.2 X 10(-5) M, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The Phaseolus vulgaris isolectins L4,L3E1, L2E2, L1E3, and E4 were isolated by affinity and ion exchange chromatography. Pure isolectins were radiolabeled by the chloramine-T method with Na125IO4 and their binding to human erythrocytes was studied. A normal erythrocyte has approximately 8 times 10(5) receptor sites for each isolectin; however, the association constants (Ka) of binding increased from 1.1 times 10(7) M-1 to 3.8 times 10(8) M-1, with increasing number of E subunits per tetrameric isolectin molecule. Isolectin to erythrocyte binding reached equilibrium rapidly and was reversed by fetuin. All isolectins competed with 125I-E4 for erythrocyte binding sites, with a constant (KI) similar to the Ka calculated for each respective radiolabeled isolectin. When isolectin binding at 0 degrees C, 4 degrees C, or 8 degrees C was compared to that at 25 degrees C, there was no reduction in the number of binding sites per cell, but the Ka of E4 was reduced to 3 times 10(7) M-1. Fixed erythrocytes displayed similar isolectin binding characteristics.  相似文献   

4.
《Free radical research》2013,47(9):1036-1043
Abstract

Electron spin resonance (ESR) oximetry technique was applied for analysis of catalase activity in the present study. Catalase activity was evaluated by measuring oxygen from the reaction between hydrogen peroxide (H2O2) and catalase-positive cells. It was demonstrated that the ESR spectra of spin-label probes, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO) and 4-maleimido-2,2,6,6-tetramethyl-1-piperidinyloxy (4-maleimido-TEMPO) in the presence of H2O2 were broadened with the concentrations of catalase. It was possible to make a calibration curve for catalase activity by peak widths of the spectra of each spin-label probe, which are broadened dependently on catalase concentrations. The broadened ESR spectra were also observed when the catalase-positive micro-organisms or the mammalian cells originally from circulating monocytes/macrophages were mixed with TEMPOL and H2O2. Meanwhile, catalase-negative micro-organisms caused no broadening change of ESR spectra. The present study indicates that it is possible to evaluate directly the catalase activity of various micro-organisms and mammalian cells by using an ESR oximetry technique.  相似文献   

5.
We have prepared two acridine spin labels, 6-chloro-9-[4-(2,2,6,6-tetramethyl-1-piperidinyloxy)amino]-2-methoxyacridine (I) and 9-[4-(2,2,6,6-tetramethyl-1-piperidinyloxy)amino]-acridine (II) and have used them to study the binding of lysine-rich histone (H1) to DNA using electron spin resonance (ESR). ESR spectra of I in the presence of DNA, polydA-polydT and polydG-polydC were characteristic of highly immobilized radicals with maximum hyperfine splitting (2T11) of 59G, 62.5G and 59G respectively. However, the 2T11 values for II in the same systems were 55.5G, 55.5G and 62.5G respectively. Addition of H1 at a low P/D released ionically bound I and II from DNA. In the presence of 0.1 M NaCl, which prevents ionic binding, H1 still caused a significant release of bound II but not I from DNA. At a high P/D (with or without NaCl) H1 caused no displacement of either I or II. Our findings suggest that H1 does not affect the intercalating sites and probably binds to one of the grooves of DNA, most probably the major groove, and specifically in the A-T-rich regions.  相似文献   

6.
Nitroxide spin-labeled α-d-glycopyranosides were synthesized in good yield and in a highly stereoselective manner by reaction of per-O-benzyl-α-d-glycopyranosyl bromides with 2,2,6,6-tetramethyl-4-piperidinol under the bromide ion-catalyzed conditions devised by Lemieux etal. After hydrogenolysis, the deblocked intermidiates were oxidized to give the desired, spin-labeled α-d-glycopyranosides. Nitroxide spin-labeled α-d-glycopyranosides, as well as a β-maltoside, were synthesized by standard methods. The synthesis is also described of 2-amino-2-deoxy-d-glucose and -d-galactose derivatives having a spin label at C-2, and of the spin-labeled compound 1-[4-(β-d-galactopyranosyloxy)phenyl]-3-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl)-2-thiourea.  相似文献   

7.
Acridine spin labels as probes for nucleic acids.   总被引:2,自引:0,他引:2  
B K Sinha  C F Chignell 《Life sciences》1975,17(12):1829-1836
Adridine spin labels, 4-[9-(6-chloro-2-methoxy)-acridylamino]- 2,2,6,6-tetramethyl-1-piperidinyloxy (I) and 4-(9-acridylamino)- 2,2,6,6-tetramethyl-1-piperidinyloxy (II), have been synthesized and their interaction with nucleic acids studied by means of electron spin resonance (ESR). The ESR spectra of labels I and II in the presence of calf thymus DNA were characteristic of highly immobilized nitroxide radicals with maximum hyperfine splittings (2Tˌˌ) of 58.7 and 55.5 G, respectively. The melting temperature (Tm) of DNA, determined in the presence of labels I and II by the ESR technique, were closely similar to those obtained by spectrophotometric methods. The ESR spectrum of label I bound to calf liver RNA and yeast RNA indicated that the nitroxide group of this label was highly mobile. These results suggest that spin labels I and II are suitable noncovalent probes for nucleic acids.  相似文献   

8.
The compound 2,2,6,6-tetramethyl-4-[β-N-ethyleneiminopropionyl] oxypiperidine-I-oxyl is used as a spin-label for RNA. The reaction, effected under rather mild conditions, results in 50–70 nucleotides per spin-label. The temperature dependence of the ESR spectra of spin-labeled RNA is used to estimate temperatures corresponding to the beginning of melting, Tcrit (“critical” points of the structure) and to calculate the effective activation energies of the rotational mobility of spin-labels, Δ Eeff.; the dependence of Tcrit. on the ionic strength of the solution is also determined.  相似文献   

9.
The structure of bovine liver glutamate dehydrogenase was examined with 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (TEMPO I) and 4-((4-(chloromercurio)benzoyl) amino)-2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO II). ESR spectra from TEMPO I show that enzyme structure in the vicinity of this spin label was not distorted during immobilization to a Sepharose support. Deactivation studies with pyridoxal 5'-phosphate indicate that immobilization did not expose additional binding sites to TEMPO I. Spectra from TEMPO II reveal that immobilization profoundly altered conformational change induced by alpha-ketoglutarate and suppressed that induced by GTP and NADPH. This structural investigation provides insight into the altered kinetic properties of Sepharose-immobilized glutamate dehydrogenase and suggests a fundamental difference between monomers and allosteric oligomers in their structural response to immobilization.  相似文献   

10.
Ingestion of red kidney bean phytohemagglutinin causes impaired growth and intestinal malabsorption, and facilitates bacterial colonization in the small intestine of weanling rats. We have studied interactions of the highly purified phytohemagglutinin erythroagglutinating (E4) and mitogenic (L4) isolectins with microvillous membrane vesicles prepared from rat small intestines. E4 and L4 were radioiodinated with 125I by the chloramine-T technique. E4 and L4 isolectins both bound to microvillous membrane vesicles. Binding was saturable and reversible. Each mg of membrane protein bound 744 +/- 86 micrograms E4 and 213 +/- 21 micrograms L4. The apparent Ka for E4 and L4 binding was 2.5 x 10(-6) and 13.0 x 10(-6) M-1, respectively. Binding of each 125I-labelled isolectin was abolished by 100-fold excess of unlabelled isolectin. In each case binding also was inhibited by appropriate oligosaccharide inhibitors, indicating that isolectin-microvillous membrane interactions were mediated by carbohydrate recognition. Patterns of saccharide inhibition of isolectin binding were different for E4 and L4. Competitive binding experiments demonstrated mutual noncompetitive inhibition of E4 and L4 binding consistent with steric hindrance. Therefore, E4 and L4 each bound to its own set of receptors. Based on the known saccharide specificities of E4 and L4, these data indicate that there are differences in expression of complex asparagine-linked biantennary and tri- or tetraantennary oligosaccharides at the microvillous surface. The data also provide the possibility that direct interactions of one or more phytohemagglutinin isolectins with intestinal mucosa in vivo may contribute to the antinutritional effects associated with ingestion of crude red kidney beans.  相似文献   

11.
Electron density maps based on 2·4 Å and 2·2 Å X-ray diffraction data for crystals of two isolectins of wheat germ agglutinin (designated isolectins 1 and 2) were compared in terms of side-chain identities. While the primary structure of wheat germ agglutinin is not available, a partial amino acid sequence for isolectin 2 has been deduced by inspection of the electron density map and through model building. The positions of the two histidines predicted from amino acid composition studies to be present in isolectin 2 but not in isolectin 1, were located by difference Fourier techniques and analysis of the heavy-atom binding properties of these two isolectins. Both histidines were found to reside in the B-domain of the multi-domain wheat germ agglutinin protomer (A, B, C, D). Histidine 57 lies in the contact region between the two subunits near the molecular dimer axis. The side-chain of histidine 64 forms part of the primary saccharide binding site at the interface where B and C-domains of opposite protomers make contact. In addition, this histidine serves as a major target for heavy-atom binding by platinum and mercury compounds.  相似文献   

12.
G Musci  K Koga  L J Berliner 《Biochemistry》1988,27(4):1260-1265
The unique methionine residue of bovine alpha-lactalbumin was modified by irreversible alkylation with the bromoacetamido nitroxide spin-label 4-(2-bromoacetamido)-2,2,6,6-tetramethylpiperidine-N-oxyl. The line shape of the electron spin resonance (ESR) spectrum was indicative of a fairly mobile spin-label and was sensitive to the calcium-induced conformational change. Paramagnetic broadening of the spin-label ESR lines by a Gd(III) ion substituted at the high-affinity calcium site of the protein yielded a distance between the spin-label and the metal-binding site of 8.0 +/- 1.0 A. The extent of the paramagnetic line broadening by the covalently attached nitroxide spin-label on the proton resonances of several amino acid residues of the protein at 500 MHz allowed estimation of intramolecular distances between the methionine-90 residue and several resolvable protons.  相似文献   

13.
L J Berliner  S S Wong 《Biochemistry》1975,14(22):4977-4982
The kinetically observed Mn(II) activation as well as inhibition has been clarified for bovine galactosyltransferase. An electron spin resonance (ESR) titration of MnCl2 with galactosyltransferase alone at pH 8.0 clearly shows the existence of at least two metal ion binding sites with microscopic dissociation constants of 0.84 +/- 0.1 and 9.0 +/- 1.0 mM, respectively. The second site corresponds with either published kinetic constant for Mn(II) of 8.5 mM (inhibition) or 3.40 mM (activation). The contribution of the binary complex Mn(II)-UDPGal is of lesser significance, as concluded by its ESR measured Kdiss of 14.5 +/- 1.1 mM at pH 8.0. A spin-labeled inhibitor analog of UDPgalactose, UDP-4-O-(2,2,6,6-tetramethyl-4-piperidinyl-1-oxy), or UDP-R, was synthesized as a competitive inhibitor for UDPGal. It was shown from inhibition kinetics to be almost as potent an inhibitor as UDPGlu. The Ki values at pH 8.0 in the N-acetyllactosamine and lactose reactions were 0.38 +/- 0.04 and 0.63 +/- 0.06 mM, respectively, as compared with 0.10 +/- 0.01 and 0.094 +/- 0.009 mM for UDPGlu. An ESR titration of UDP-R with galactosyltransferase at pH 8.0 yielded direct physical dissociation constants of 0.40 +/- 0.07 and 0.53 +/- 0.08 mM in the absence and presence of alpha-lactalbumin, respectively. No other substrates (glucose of N-acetylglucosamine) nor Mn(II) were present.  相似文献   

14.
Upon cleavage of the reactive thioester bonds (Cys-949-Glx-952) of tetrameric human alpha 2-macroglobulin (alpha 2M) by methylamine, one sulfhydryl group per alpha 2M subunit is exposed. These identical sulfhydryl group sites were labeled with the thiol-specific nitroxide spin-labels (1-oxy-2,2,5,5-tetramethyl-3-pyrrolin-3-yl)methyl methanethiosulfonate and (1-oxy-2,2,6,6-tetramethyl-4-piperidinyl)methyl methanethiosulfonate, a homologous series of maleimide spin-labels, and the thiol-specific fluorescent probe 2-[(4-maleimidophenyl)amino]naphthalene-6-sulfonic acid sodium salt (MANS). The ESR and fluorescence results showed that these sulfhydryl group sites were at the base of a narrow crevice that is greater than or equal to 8 A deep. Although the bound MANS fluorophore was slightly blue shifted with an enhanced quantum yield vs the free label in water, the environment of the sulfhydryl site appeared to be of a polar nature when compared with the emission maxima in several solvents of varying polarity. The Glx residue participating in the thioester linkage in the intact protein was labeled with 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl. The distance between the Glx and Cys moieties was estimated at greater than or equal to 10-25 A from double spin-labeling experiments.  相似文献   

15.
Five isolectins with marked specificity for alpha-linked galactose were purified from the wild jack (Artocarpus hirsuta) seeds by affinity chromatography on cross-linked guar gum. They were composed of a glycosylated subunit A (Mr = 16 kDa) and a nonglycosylated subunit B (Mr = 11 kDa) in noncovalent association. The isolectins which eluted as a single peak of Mr 45 kDa on gel filtration in Biogel P-100 and in a TSK G-3000 SW high pressure column, were resolved into five peaks on electrophoresis at pH 4.5. Sodium dodecyl sulphate polyacrylamide gel electrophoreogram of the major isolectin band suggested that the isolectins may be the five possible tetrameric combinations of A and B subunits. The combined isolectins bound only two molecules of 4-methyl umbelliferyl alpha-D-galactoside with a binding constant of 4.75 x 10(4) M-1. The pH optimum of sugar binding was 7.0. The isolectins specifically bound to human IgG and IgA but not to IgM.  相似文献   

16.
The equilibrium binding of ([125I]ceruloplasmin) ([125I]CP) to a specific receptor of human erythrocytes was investigated. It was shown that reaching the binding equilibrium is a slow process. A strong dependence of binding on Ca2+ concentration (from 0.1 to 1 mM) was revealed; the optimal values were achieved at millimolar concentrations of Ca2+.Mg2+ do not affect the binding of [125I]CP. Under conditions of optimal binding (0.01 M Tris-HCl buffer pH 7.4 containing 158 mM NaCl and 1 mM Ca2+, 4 degrees C), the values of constants for [125I]CP binding to intact erythrocytes (Kd = 1.0 nm) and to membrane fragments (Kd = 0.8 nM) as well as the number of binding sites (16.3 X 10(-15) mol per 40,000,000 erythrocytes) were determined. No ceruloplasmin transport across the erythrocyte membrane was observed. This finding and the similarity of Kd values for ceruloplasmin binding to membrane fragments and to intact erythrocytes indicate that the effect of ceruloplasmin on human erythrocytes is due to the protein molecule interaction with membrane receptors.  相似文献   

17.
Binding isotherms for the interaction of 5-doxyl stearic acid with bovine and human albumin are reported. The critical micelle concentration (CMC) and the limiting solubility of 5-doxyl stearic acid were determined using the electron spin resonance (ESR)-spin label method. The CMC and the limiting solubility of this spin-label stearic acid in saline-phosphate buffer are 3.5 x 10(-5) M and 2 x 10(-4) M, respectively. We found no ESR line width evidence for pre-association of the spin-label stearate below the CMC. Maximum binding of the spin-label stearate to both bovine and human albumin occurs before micelle formation. The binding isotherm for spin-label stearic acid interaction with bovine albumin is in agreement with data obtained by others using [1-(14)C]stearic acid. For human albumin, comparison is difficult since previous data obtained with [1-(14)C]stearic acid vary widely. Comparison of the ESR 2T(||) values (the splitting between low and high field extremes, a measure of the degree of immobilization of protein-bound spin-label stearate) for bovine and human albumin indicates a greater immobilization of the spin-label molecules bound to human albumin. The binding data indicate that complexes are formed with bound spin-label stearate/albumin ratios of at least 18. The computed equilibrium constants for both bovine and human albumin indicate that the first seven spin-label molecules are tightly bound, log K > 5.0. The species predicted to form in solution by these equilibrium constants are reported.  相似文献   

18.
A new spin-label, 4-(L-glutamo)-4'-[(1-oxy-2,2,5,5-tetramethyl-3L-pyrrolidinyl )amino]-3, 3'-dinitrodiphenyl sulfone, is shown to bind to one high-affinity binding site on bovine serum albumin (K = 5 X 10(4) M-1, n = 1). Analysis of the binding of the spin-label to the amino-terminal half (peptic fragment PB) and the carboxy-terminal half (peptic fragment PA) of BSA, and their complex (PA-PB), indicates that the spin-label binds to a long-chain fatty acid binding site located on PB. The usefulness of the novel specificity of the spin-label in characterizing this binding site is discussed.  相似文献   

19.
The spin-labeling method was used to study the Fab- and Fab-RF-fragments of IgM and IgM-RF, respectively. The spin-label 2,2,6,6-tetramethyl-4-dichloro-sym-triazinyl-aminopiperidine-1-oxyl was introduced into the peptide moiety of the proteins. The rotational correlation time t of the spin-label carrier was determined based on the temperature-viscosity dependence of the EPR spectra parameters of the spin-labeled proteins. The tau values for Fab- and Fab-RF-fragments were 21 +/- 2 and 12 +/- 1 ns, respectively. The data strongly suggest that the significantly lower tau value for the Fab-RF-fragment may be due to the local structural flexibility of the fragment, which in turn may explain the peculiarities of IgM-RF as an autoantibody.  相似文献   

20.
The synthesis is described of a spin-labeled analog of ATP, 2',3'-O-(1-oxy-2,2,6,6-tetramethyl-4-piperidylidene)adenosine 5'-triphosphate (SL-ATP). The spin-label moiety is attached by two bonds to the ribose ring as a spiroketal and hence has restricted conformational mobility relative to the ribose moiety of ATP. The synthesis proceeds via an acid-catalyzed addition of adenosine 5'-monophosphate to 1-acetoxy-4-methoxy-2,2,6,6-tetramethyl-1,2,5,6-tetrahydropyridine in acetonitrile. The spiroketal product is pyrophosphorylated, and alkaline hydrolysis with concomitant aerial oxidation gives the required product. The spin-labeled moiety probably takes up two rapidly interconverting conformations with respect to the ribose ring on the basis of the 1H NMR spectra of its precursors and related uridine derivatives [Alessi et al. (1991) J. Chem. Soc., Perkin Trans.1,2243-2247]. SL-ATP is a substrate for myosin and actomyosin with similar kinetic parameters to ATP during triphosphatase activity. SL-ATP supports muscle contraction and permits relaxation of permeabilized rabbit skeletal muscle fibers. SL-ADP is a substrate for yeast 3-phosphoglycerate kinase, thus permitting regeneration of SL-ATP from SL-ADP within muscle fibers. Electron paramagnetic resonance (EPR) studies of SL-ADP bound to myosin filaments and to myofibrils show a degree of nanosecond motion independent of that of the protein, which may be due to conformational flexibility of the ribose moiety of ATP bound to myosin's active site. This nanosecond motion is more restricted in myofibrils than in myosin filaments, suggesting that the binding of actin affects the ribose binding site in myosin. EPR studies on SL-ADP bound to rigor cross-bridges in muscle fiber bundles showed the nucleotide to be highly oriented with respect to the fiber axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号