首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Bafilomycin A1, a potent selective inhibitor of vacuolar H+-ATPase, inhibited the growth of a variety of cultured cells dose-dependently, including golden hamster embryo and NIH-3T3 fibroblasts, whether or not they were transformed, and PC12 and HeLa cells. The concentration of bafilomycin A1 for 50% inhibition of cell growth ranged from 10 to 50 nM. The dose response was nearly parallel with that of the bafilomycin A1-induced lysosomal pH increase. The degree of pH increase for growth inhibition produced by bafilomycin A1 was similar to that produced by NH4Cl in which little difference was recognized in effect among cell types.  相似文献   

2.
We investigated the mechanism of apoptosis induced by bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPase. Bafilomycin A(1) significantly inhibited the growth of MKN-1 human gastric cancer cells. Bafilomycin A(1) induced apoptosis as demonstrated by DNA ladder formation and the TUNEL method. We designed a flow cytometric assay to detect the alteration in lysosomal pH using a fluorescent probe, fluorescein isothiocyanate-conjugated dextran. This assay revealed that bafilomycin A(1) dramatically increased lysosomal pH. However, bafilomycin A(1) induced neither significant decrease in mitochondrial transmembrane potential nor the release of mitochondrial cytochrome c into the cytoplasm. Western blotting showed that cathepsin D, but not cathepsin L, was released into the cytoplasm. The activity of caspase-3 was significantly increased by bafilomycin A(1). However, cathepsin D did not directly cleave procaspase-3. These findings suggest that bafilomycin A(1)-induced apoptosis in MKN-1 cells is mediated by other proteases released after lysosomal dysfunction followed by activation of caspase-3 in a cytochrome c-independent manner. The present study showed that flow cytometric analysis of lysosomal pH can be useful to evaluate lysosomal protease-mediated apoptosis.  相似文献   

3.
H Tamura  S Ohkuma 《FEBS letters》1991,294(1-2):51-55
Bafilomycin A1, a selective inhibitor of vacuolar H(+)-ATPase, induced neurite outgrowth of PC12 cells dose- and time-dependently: more than 50% of the cells extended neurite-like spikes after 24 h treatment with 100 nM bafilomycin A1. Its dose-response ran roughly parallel to that of a bafilomycin A1-induced lysosomal pH increase. It was inhibited by LiCl, an inhibitor of the phosphorylation of microtubule-associated proteins and, like nerve growth factor (NGF)-induced neurite outgrowth, it was also inhibited by cycloheximide and actinomycin D. But, unlike the NGF-effect, it was not associated with rapid induction of c-fos.  相似文献   

4.
Mutations in the human P gene result in oculocutaneous albinism type 2, the most common form of albinism. Mouse melan-p1 melanocytes, cultured from mice null at the homologous pink-eyed dilution (p) locus, exhibit defective melanin production. A variety of compounds including tyrosine, NH4Cl, bafilomycin A1, concanamycin, monensin, and nigericin are capable of restoring melanin synthesis in these cells. In the current study, we investigated the subcellular effects of bafilomycin A1 and monensin treatment of melan-p1 cells. Both agents play two roles in the processing of tyrosinase (Tyr) in melan-p1 cells. First, combined glycosidase digestion and immunoblotting analysis showed that these agents reduce levels of Tyr retained in the endoplasmic reticulum (ER) and facilitate the release of Tyr from the ER to the Golgi. Secondly, treatment with these compounds resulted in the stabilization of Tyr. Surprisingly, induction of melanin synthesis corresponds more closely with diminution of ER-retained Tyr, rather than the absolute amount of Tyr. Our results suggest that bafilomycin A1 and monensin induce melanin synthesis in melan-p1 cells mainly by facilitating Tyr processing from the ER to the Golgi by increasing the pH in either the ER or the ER-Golgi intermediate compartment.  相似文献   

5.
The functional viability of cells can be evaluated using a number of different assay determinants. One common assay involves exposing cells to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which is converted intracellularly to a colored formazan precipitate and often used to assess amyloid peptide-induced cytotoxic effects. The MTT assay was employed to evaluate the role of endosomal uptake and lysosomal acidification in amyloid peptide-treated differentiated PC12 cell cultures using selective vacuolar-type (V-type) ATPase inhibitors. The macrolides bafilomycin A1 (BAF) and concanamycin A (CON) block lysosomal acidification through selective inhibition of the V-type ATPase. Treating nerve growth factor-differentiated PC12 cells with nanomolar concentrations of BAF or CON provides complete protection against the effects of beta-amyloid peptides Abeta(1-42), Abeta(1-40), and Abeta(25-35) and of amylin on MTT dye conversion. These macrolides do not inhibit peptide aggregation, act as antioxidants, or inhibit Abeta uptake by cells. Measurements of lysosomal acidification reveal that the concentrations of BAF and CON effective in reversing Abeta-mediated MTT dye conversion also reverse lysosomal pH. These results suggest that lysosomal acidification is necessary for Abeta effects on MTT dye conversion.  相似文献   

6.
It is known that the proper function of the vacuolar H(+)-ATPase is inhibited by bafilomycin A(1). In transfected cells the E5 protein interacts with the 16 kDa subunit of the vacuolar H(+)-ATPase. Thereby the pH gradient in endocytic structures is impaired. The present study demonstrates for the first time that the inhibition of the vacuolar H(+)-ATPase in NIH3T3 cells with bafilomycin A(1) or by transfection of cells with the HPV-16 E5 oncogene leads to a changed morphology and a reduced motility as shown by computer-assisted video recordings and image analysis. Bafilomycin A(1) potentiates the effect of the E5 protein on cell motility and this cooperative effect indicates that the E5 protein and bafilomycin A(1) either target the vacuolar H(+)-ATPase differently or that the E5 protein has additional targets in transfected cells. Our data therefore show that proper function of the vacuolar H(+)-ATPase is needed for normal cell locomotion.  相似文献   

7.
The effects of NH(4)Cl addition on batch hybridoma cell growth at different external pH values (pH(e)) were investigated in a bioreactor at constant pH and dissolved oxygen concentration. In agreement with measurements in flasks, changes in pH(e) over the range 6.8-7.6 had minor effects on growth. Addition of 3 mM NH(4)Cl had little effect on cell growth while 10 mM NH(4)Cl caused a substantial growth inhibition, Measurements of the effects of pH(e) and NH(4)Cl concentration on cell metabolism gave similar results for cells grown in flasks in an incubator and in the bioreactor. As pH(e) decreases, the integral cell yield on glucose increases. There is a correlation between the effects of pH(e) on glycolysis and previous measurements of its effects on intracellular pH (pH(i)). Increases in NH(4)Cl concentration were previously determined to decrease pH(i) and are shown here to decrease the integral cell yield on glucose. At all pH(e) values in the absence of NH(4)Cl, glutamine is depleted at the time the maximum cell density is reached. Both pH(e) decreases and NH(4)Cl concentration increases lead to decreases in the integral cell yield on glutamine. Changes in pH(e) and in the NH(4)Cl concentration that cause growth inhibition have no effect on the specific antibody production rate for cells grown in flasks in an incubator or in the bioreactor. Changes in the NH(4)Cl concentration have no effect on the quality of the antibody produced, to a first level of characterization.  相似文献   

8.
We previously demonstrated that apolipoprotein E4 (apoE4) potentiates lysosomal leakage and apoptosis induced by amyloid beta (Abeta) peptide in cultured Neuro-2a cells and hypothesized that the low pH of lysosomes accentuates the conversion of apoE4 to a molten globule, inducing reactive intermediates capable of destabilizing cellular membranes. Here we report that neutralizing lysosomal pH with bafilomycin or NH4Cl abolished the apoE4 potentiation of Abeta-induced lysosomal leakage and apoptosis in Neuro-2a cells. Consistent with these results, apoE4 at acidic pH bound more avidly to phospholipid vesicles and disrupted them to a greater extent than at pH 7.4. Comparison of "Arctic" mutant Abeta, which forms multimers, and GM6 mutant Abeta, which remains primarily monomeric, showed that aggregation is essential for apoE4 to potentiate Abeta-induced lysosomal leakage and apoptosis. Both apoE4 and Abeta1-42 had to be internalized to exert these effects. Blocking the low density lipoprotein receptor-related protein with small interfering RNA abolished the enhanced effects of apoE4 and Abeta on lysosomes and apoptosis. In cultured Neuro-2a cells, Abeta1-42 increased lysosome formation to a greater extent in apoE3- or apoE4-transfected cells than in Neo-transfected cells, as shown by immunostaining for lysosome-associated membrane protein 1. Similarly, in transgenic mice expressing apoE and amyloid precursor protein, hippocampal neurons displayed increased numbers of lysosomes. Thus, apoE4 and Abeta1-42 may work in concert in neurons to increase lysosome formation while increasing the susceptibility of lysosomal membranes to disruption, release of lysosomal enzymes into the cytosol, and neuronal degeneration.  相似文献   

9.
The effect of inhibiting lysosomal protein degradation on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was determined using a mouse mammary cell line (TS-85) which expresses a temperature-sensitive mutation in the ubiquitin degradative pathway. Incubating cells for 18 hr in medium containing 20 mM NH4Cl did not alter total protein synthesis or cell growth, but it did inhibit the rate of total protein degradation by 19%, which is consistent with the known inhibitory effect of NH4Cl on lysosomal protein degradation. NH4Cl treatment also resulted in an increase (81% +/- 20) in HMG-CoA reductase activity. The increase in reductase activity was not correlated with changes in the phosphorylation state of the enzyme or with alteration in the relative rate of reductase synthesis. However, the basal degradation rate of the reductase was significantly inhibited, and after NH4Cl treatment, the half-life of the enzyme increased from 4.0 +/- 0.4 hr to 8.3 +/- 0.8 hr. The change in the rate of reductase degradation can account completely for the increase in reductase activity observed in NH4Cl-treated cells. The accelerated degradation of HMG-CoA reductase induced by 25-hydroxycholesterol treatment was not affected by either NH4Cl or by inactivation of the ubiquitin degradative pathway. Therefore, two different mechanisms may be responsible for the accelerated degradation and basal degradation of HMG-CoA reductase. The latter can be inhibited by NH4Cl and may imply that under basal conditions the enzyme may be degraded in lysosomes.  相似文献   

10.
31P-NMR spectroscopy was used to monitor intracellular pH (pHi) in a suspension of LLC-PK1 cells, a renal epithelial cell line. The regulation of intracellular pH (pHi) was studied during intracellular acidification with 20% CO2 or intracellular alkalinization with 30 mM NH4Cl. The steady-state pHi in bicarbonate-containing Ringer's solution (pHo 7.40) was 7.14 +/- 0.04 and in bicarbonate-free Ringer's solution (pHo 7.40) 7.24 +/- 0.04. When pHo was altered in nominally HCO3(-)-free Ringer's, the intracellular pHi changed to only a small extent between pHo 6.6 and pHo 7.6; beyond this range pHi was linearly related to pHo. Below pHo 6.6 the cell was capable of maintaining a delta pH of 0.2 pH unit (inside more alkaline), above pH 7.6 a delta pH of 0.4 unit could be generated (inside more acid). During exposure to 20% CO2 in HCO3(-)-free Ringer's solution, pHi dropped initially to 6.9 +/- 0.05, the rate of realkalinisation was found to be 0.071 pH unit X min-1. After removal of CO2 the pHi increased by 0.65 and the rate of reacidification was 0.056 pH unit X min-1. Exposure to 30 mM NH4Cl caused a raise of pHi by 0.48 pH unit and an initial rate of re-acidification of 0.063 pH unit X min-1, after removal of NH4Cl the pHi fell by 0.58 pH unit below the steady-state pHi, followed by a subsequent re-alkalinization of 0.083 pH unit X min-1. Under both experimental conditions, the pHi recovery after an intracellular acidification, introduced by exposure to 20% CO2 and by removal of NH4+, was found to be inhibited by 53% and 63%, respectively, in the absence of sodium and 60% and 72%, respectively, by 1 mM amiloride. These studies indicate that 31P-NMR can be used to monitor steady-state intracellular pH as well a pHi transients in suspensions of epithelial cells. The results support the view that LLC-PK1 cells use an Na+-H+ exchange system to readjust their internal pH after acid loading of the cell.  相似文献   

11.
The role of vacuolar-type H(+)-ATPase (V-ATPase) in the cytotoxic action of diphtheria toxin (DT) was studied by using bafilomycin A1, a specific inhibitor of V-ATPase. Studies with acridine orange showed that the acidification of intracellular acidic compartments was inhibited strongly when Vero cells were treated with 500 nM bafilomycin A1, indicating that bafilomycin effectively inhibits V-ATPase when it is added to the culture medium. The toxicity of DT to Vero cells, which was determined by the inhibition of protein synthesis by DT, was inhibited partially by bafilomycin at 10 nM and inhibited completely at 500 nM. Therefore, V-ATPase is involved in the expression of the toxicity of DT. Studies using 125I-labeled DT showed that bafilomycin inhibited the degradation of internalized DT, indicating that V-ATPase is also involved in this step. Subcellular fractionation revealed that 125I-DT accumulated mainly in the endosome fraction, and not in the lysosome fraction, when the cells were incubated with 125I-DT in the presence of bafilomycin. Under the cell fractionation conditions similar to those used for the DT-treated cells, we determined the location of 125I-labeled epidermal growth factor in the degradation pathway. The result suggests that bafilomycin A1 does not inhibit the transport of epidermal growth factor to lysosome.  相似文献   

12.
Role of intracellular pH in secretion from adrenal medulla chromaffin cells   总被引:5,自引:0,他引:5  
The role of intracellular pH in stimulus-secretion coupling was investigated in cultured bovine adrenal medullary chromaffin cells. NH4Cl (1-25 mM) did not affect basal catecholamine or ATP release but markedly inhibited nicotine- or high K+-induced release by up to 60%. The inhibition had a rapid onset (less than 1 min) and was maximal at about 5 mM NH4Cl. The effect of NH4Cl was largely sustained over 20 min and was reversed upon NH4Cl removal. Sodium propionate did not affect secretion but partially reversed the inhibition by NH4Cl in a concentration-dependent manner. Methylamine (10 mM) produced a similar, but slower, inhibition than NH4Cl. Monensin (1-10 microM) inhibited catecholamine secretion by 30-60%, and its effect was reduced in the presence of NH4Cl. Using the fluorescent Ca2+ probe Fura-2, we found that the increase of [Ca2+]i following stimulation was not altered by concentrations of NH4Cl which inhibited secretion maximally. Measurement of cytosolic pH (pHi) with the fluorescent probe 2',7'-bis-carboxyethyl-5(6)-carboxyfluorescein (BCECF) revealed an alkalinization by NH4Cl (2.5-25 mM) of 0.1-0.23 pH units and acidification by sodium propionate (10-20 mM) of 0.2-0.25 pH units, with intermediate combined effects. Monensin (1 microM) caused a cytosolic acidification of 0.26 pH units. All pHi changes were partly recovered in 15 min. Fluorescence quenching measurements using the weakly basic fluorescent probe acridine orange indicated the accumulation of the probe into acidic compartments, presumably the chromaffin granules, which was strongly reduced by both NH4Cl and monensin. From these findings we conclude that the pH of the chromaffin granule modulates secretion by affecting some step in the secretory process unrelated to the rise in [Ca2+]i.  相似文献   

13.
The activity of Na+/H(+)-exchange and H(+)-ATPase was measured in the absence of CO2/HCO3 by microfluorometry at the single cell level in rat proximal tubules (superficial S1/S2 segments) loaded with BCECF [2'7'-bis(carboxyethyl)5-6-carboxyfluorescein- acetoxymethylester]. Intracellular pH (pHi) was lowered by a NH4Cl-prepulse technique. In the absence of Na+ in the superfusion solutions, pHi recovered from the acid load by a mechanism inhibited by 0.1 microM bafilomycin A1, a specific inhibitor of a vacuolar-type H(+)-ATPase. Readdition of Na+ in the presence of bafilomycin A1 produced an immediate recovery of pHi by a mechanism sensitive to the addition of 10 microM EIPA (ethylisopropylamiloride), a specific inhibitor of Na+/H+ exchange. The transport rate of the H(+)-ATPase is about 40% of Na+/H(+)-exchange activity at a similar pHi (0.218 +/- 0.028 vs. 0.507 +/- 0.056 pH unit/min. Pre-exposure of the tubules to 30 mM fructose, 0.5 mM iodoacetate and 1 mM KCN (to deplete intracellular ATP) prevented a pHi recovery in Na(+)-free media; readdition of Na+ led to an immediate pHi recovery. Tubules pre-exposed to Cl(-)-free media for 2 hr also reduced the rate of Na(+)-independent pHi recovery. In free-flow electrophoretic separations of brush border membranes and basolateral membranes, a bafilomycin A1-sensitive ATPase activity was found to be associated with the brush border membrane fraction; half maximal inhibition is at 6 x 10(-10) M bafilomycin A1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Intralysosomal iron: a major determinant of oxidant-induced cell death   总被引:4,自引:0,他引:4  
As a result of continuous digestion of iron-containing metalloproteins, the lysosomes within normal cells contain a pool of labile, redox-active, low-molecular-weight iron, which may make these organelles particularly susceptible to oxidative damage. Oxidant-mediated destabilization of lysosomal membranes with release of hydrolytic enzymes into the cell cytoplasm can lead to a cascade of events eventuating in cell death (either apoptotic or necrotic depending on the magnitude of the insult). To assess the importance of the intralysosomal pool of redox-active iron, we have temporarily blocked lysosomal digestion by exposing cells to the lysosomotropic alkalinizing agent, ammonium chloride (NH(4)Cl). The consequent increase in lysosomal pH (from ca. 4.5 to > 6) inhibits intralysosomal proteolysis and, hence, the continuous flow of reactive iron into this pool. Preincubation of J774 cells with 10 mM NH(4)Cl for 4 h dramatically decreased apoptotic death caused by subsequent exposure to H(2)O(2), and the protection was as great as that afforded by the powerful iron chelator, desferrioxamine (which probably localizes predominantly in the lysosomal compartment). Sulfide-silver cytochemical detection of iron revealed a pronounced decrease in lysosomal content of redox-active iron after NH(4)Cl exposure, probably due to diminished intralysosomal digestion of iron-containing material coupled with continuing iron export from this organelle. Electron paramagnetic resonance experiments revealed that hydroxyl radical formation, readily detectable in control cells following H(2)O(2) addition, was absent in cells preexposed to 10 mM NH(4)Cl. Thus, the major pool of redox-active, low-molecular-weight iron may be located within the lysosomes. In a number of clinical situations, pharmacologic strategies that minimize the amount or reactivity of intralysosomal iron should be effective in preventing oxidant-induced cell death.  相似文献   

15.
16.
The turnover rates of 3H-labeled 18S ribosomal ribonucleic acid (RNA), 28S ribosomal RNA, transfer RNA, and total cytoplasmic RNA were very similar in growing WI-38 diploid fibroblasts. The rate of turnover was at least twofold greater when cell growth stopped due to cell confluence, 3H irradiation, or treatment with 20 mM NaN3 or 2 mM NaF. In contrast, the rate of total 3H-protein turnover was the same in growing and nongrowing cells. Both RNA and protein turnovers were accelerated at least twofold in WI-38 cells deprived of serum, and this increase in turnover was inhibited by NH4Cl. These results are consistent with two pathways for RNA turnover, one of them being nonlysosomal and the other being lysosome mediated (NH4Cl sensitive), as has been suggested for protein turnover. Also consistent with the notion of two pathways for RNA turnover were findings with I-cells, which are deficient for many lysosomal enzymes, and in which all RNA turnover was nonlysosomal (NH4Cl resistant).  相似文献   

17.
Gastric luminal ammonia produced by Helicobacter pylori has been shown to cause gastric mucosal injury. This study was conducted to examine the mechanisms by which gastric luminal ammonia causes apoptosis of gastric epithelial cells. Monolayers of GSM06 cells, developed from murine gastric surface mucous cells, were cultured in the absence or presence of 10-30 mM NH(4)Cl at ambient pH of 5.0, 6.0, and 7.0. In the presence of luminal NH(4)Cl, GSM06 cells showed 1) cell shrinkage and nuclear chromatin condensation, 2) DNA fragmentation into oligonucleosomes, 3) leakage of cytochrome c into cytosolic fraction without affecting bax expression, and 4) increases in activity of caspases-3 and -9. These changes were accentuated when the cells were cultured at pH 7.0. In the absence of NH(4)Cl, none of these changes was detected at any pH examined. These results suggest that gastric luminal ammonia, at concentrations detected in H. pylori-infected subjects, induces apoptosis of gastric epithelial cells by release of cytochrome c from mitochondria, followed by activation of caspases-9 and -3, especially at higher ambient pH.  相似文献   

18.
Addition of the weak base ammonium chloride (NH4Cl) or the proton pump inhibitor bafilomycin A1 to cultured HeLa and LS 174T cells effectively neutralized the pH gradient of the secretory pathway. This resulted in relocalization of the three studied glycosyltransferases, N-acetylgalactosaminyltransferase 2, beta1,2 N-acetylglucosaminyltransferase I, and beta1,4 galactosyltransferase 1, normally localized to the Golgi stack, the medial/trans-Golgi and the trans-Golgi/TGN, respectively. Indirect immunofluorescence microscopy, immunoelectron microscopy, and subcellular fractionation of the tagged or native glycosyltransferases showed that NH4Cl caused a relocalization of the enzymes mainly to vesicles of endosomal type, whereas bafilomycin A1 gave mainly cell surface staining. The general morphology of the endoplasmic reticulum and Golgi apparatus was retained as judged from immunofluorescence and electron microscopy studies. When the O-glycans on the guanidinium chloride insoluble gel-forming mucins from the LS 174T cells were analyzed by gas chromatography-mass spectrometry after neutralization of the secretory pathway pH by NH4Cl over 10 days shorter O-glycans were observed. However, no decrease in the number of oligosaccharide chains was indicated. Together, the results suggest that pH is a contributing factor for proper steady-state distribution of glycosyltransferases over the Golgi apparatus and that altered pH may cause alterations in glycosylation possibly due to a relocalization of glycosyltransferases.  相似文献   

19.
Entamoeba histolytica kills mammalian target cells in a multi-step sequential process with separate adherence, cytolytic, and phagocytic events. In the studies reported here, we used fluorescein isothiocyanate linked to dextran to label the endocytic vesicles of the HM1 strain of E. histolytica and measure vesicle pH (5.1 +/- 0.2 by spectrofluorimetry). Concentrations of NH4Cl (1.0-10.0 mM) sufficient to increase vesicle pH to greater than or equal to 5.7 inhibited amebic killing of target Chinese hamster ovary (CHO) cells as assayed by trypan blue staining, by the release of 3H-thymidine previously incorporated into CHO cell monolayers, and by the release of 111indium oxine from radiolabeled CHO cells. Similar effects were also observed with two other weak bases, primaquine and chloroquine (both 50 microM). In contrast, NH4Cl (10 mM) did not affect either the adherence or phagocytic events, as measured by amebic adherence to CHO cells at 4 degrees C and by the binding and ingestion of 3H-leucine-labeled bacteria. In the presence of NH4Cl and the carbohydrate ligand asialofetuin, there was no evidence of intracellular trapping of the amebic galactose-inhibitable lectin; inhibition of adherence by cycloheximide (10 micrograms/ml for 3 h) suggested rapid turnover of the surface lectin. Prolonged exposure to NH4Cl for 48 h (which had no effect on amebic protein synthesis) or shorter exposure to cycloheximide (10 micrograms for 3 h) produced persistent inhibition of cytolysis. These results indicate that an uninterrupted acid pH in intracellular endocytic vesicles is necessary for the cytolysis of target cells by E. histolytica trophozoites.  相似文献   

20.
Following agonist activation, the chemokine receptor CCR5 is internalised through clathrin-coated pits and delivered to recycling endosomes. Subsequently, ligand- free and resensitised receptors are recycled to the cell surface. Currently little is known of the mechanisms regulating resensitisation and recycling of this G-protein coupled receptor. Here we show that raising the pH of endocytic compartments, using bafilomycin A, monensin or NH(4)Cl, does not significantly affect CCR5 endocytosis, recycling or dephosphorylation. By contrast, these reagents inhibited recycling of another well-characterised G protein coupled receptor, the beta(2)-adrenergic receptor, following agonist-induced internalisation. CCR5-bound RANTES (CCL5) and MIP-1beta (CCL4) only exhibit pH-dependent dissociation at pH < 4.0, below the values normally found in endocytic organelles. Although receptor-agonist dissociation is not dependent on low pH, the subsequent degradation of released chemokine is inhibited in the presence of reagents that raise endosomal pH. Our data show that exposure to low pH is not required for RANTES or MIP-1beta dissociation from CCR5, or for recycling of internalised CCR5 to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号