首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria were prepared from the spadices of skunk cabbage (Symplocarpus foetidus) whose respiratory rate with succinate and malate showed 15% to 30% sensitivity to cyanide inhibition, and which showed respiratory control by added ADP. The observed respiratory control ratios ranged from 1.1 to 1.4. The change in pH of the mitochondrial suspension was recorded simultaneously with oxygen uptake: alkalinization of the medium, expected for phosphorylation of ADP, coincided with the period of acceleration in oxygen uptake caused by addition of an ADP aliquot. The ADP/O ratios obtained were 1.3 for succinate and 1.9 for malate. In the presence of 0.3 mm cyanide, the ADP/O ratio for succinate was zero, while that for malate was 0.7. These results are consistent with the existence of an alternate oxidase which interacts with the flavoprotein and pyridine nucleotide components of the respiratory chain and which, in the presence of cyanide, allows the first phosphorylation site to function with an efficiency of about 70%. In the absence of respiratory inhibitors, the efficiency of each phosphorylation site is also about 70%. This result implies that diversion of reducing equivalents through the alternate oxidase, thereby bypassing the 2 phosphorylation sites associated with the cytochrome components of these mitochondria, occurs to a negligible extent during the oxidative phosphorylation of ADP or State 3.Addition of ADP or uncoupler to skunk cabbage mitochondria respiring in the controlled state or State 4, results in reduction of cytochrome c and the oxidation of the cytochromes b, ubiquinone and pyridine nucleotide. A site of interaction of ADP with the respiratory chain between cytochromes b and cytochrome c is thereby identified by means of the crossover theorem. Flavoprotein measured by fluorescence is also oxidized upon addition of ADP or uncoupler, but flavoprotein measured by optical absorbance changes becomes more reduced under these conditions. Depletion of the mitochondria by pretreatment with ADP and uncoupler prevents reduction of most of the fluorescent flavoprotein by succinate. These results indicate that skunk cabbage mitochondria contain both high and low potential flavo-proteins characterized by different fluorescence/absorbance ratios similar to those demonstrated to be part of the respiratory chain in mitochondria from animal tissues.  相似文献   

2.
Proton pump coupled to cytochrome c oxidase in Paracoccus denitrificans   总被引:12,自引:0,他引:12  
The proton translocating properties of cytochrome c oxidase in whole cells of Paracoccus denitrificans have been studied with the oxidant pulse method. leads to H+/2e- quotients have been measured with endogenous substrates, added methanol and added ascorbate (+TMPD) as reductants, and oxygen and ferricyanide as oxidants. It was found that both the observed leads to H+/O with ascorbate (+TMPD) as reductant, and the differences in proton ejection between oxygen-and ferricyanide pulses, with endogenous substrates or added methanol as a substrate, indicate that the P. denitrificans cytochrome c oxidase translocates protons with a stoichiometry of 2H+/2e-. The results presented in this and previous papers are in good agreement with recent findings concerning the mitochondrial cytochrome c oxidase, and suggest unequal charge separation by different coupling segments of the respiratory chain of P. denitrificans.  相似文献   

3.
The membrane fractions of the microaerobically grown type strains of Wolinella curva, Wolinella recta, Bacteroides ureolyticus, and Bacteroides gracilis contained membrane-bound cytochrome b, cytochrome c, and CO-binding cytochrome c. Soluble cytochrome c and CO-binding cytochrome c were also present. Although B. gracilis is oxidase negative, it possessed cytochrome c. With H2 or formate as the electron donor, proton efflux from anaerobic cells occurred upon addition of a pulse of oxygen. With formate as the electron donor, the H+/O ratios of W. curva, W. recta, B. ureolyticus, and B. gracilis were 0.75, 1.66, 2.06, and 2.04, respectively. With H2 as the electron donor, the H+/O ratios of W. curva, B. ureolyticus, and B. gracilis were 1.25, 1.97, and 2.36, respectively. Proton translocation was inhibited by the protonophore carbonylcyanide m-chlorophenylhydrazone. The results confirm that the organisms are not anaerobes but are microaerophiles capable of respiring with oxygen.  相似文献   

4.
The relationship between respiratory chain redox carrier composition and the efficiency of aerobic growth in continuous culture under carbon-limited conditions has been investigated for nine species of bacteria.True molar growth yields with respect to molecular oxygen ( ) or dissimilated carbon source (Y substrate ox. max ) were not significantly affected by the nature either of the major quinone component (ubiquinone or menaquinone), of the major cytochrome oxidase moiety (cytochrome aa 3 or o) or of the transhydrogenase segment (energy-dependent transhydrogenase, energy-independent transhydrogenase or no transhydrogenase), but were significantly influenced by the presence or absence of a high potential, membrane-bound cytochrome c. Under glycerol-limited conditions the presence of cytochrome c raised the average from 51.1 to 84.3 g cells · mole O 2 –1 , and the average Y glycerol ox. max from 154.6 to 233.2 g cells · mole glycerol oxidised–1; the presence of this redox carrier also elicited increases in and Y substrate ox. max of a similar order during growth under lactate, and glucose-limited conditions.The average efficiencies of aerobic energy conservation calculated from these true molar growth yields were 3.4 mole ATP equivalents · mole O 2 –1 for organisms with respiratory chains which were deficient in cytochrome c and 5.9 mole ATP equivalents · mole O 2 –1 for organisms with respiratory chains which contained cytochrome c.It is concluded from these data, and from parallel measurements of whole cell H+/O ratios, that bacterial respiratory systems invariably exhibit energy conservation at sites 1 and 2 but that the presence of a highpotential, membrane-bound cytochrome c is an obligatory prerequisite for energy conservation at site 3.  相似文献   

5.
Impaired electron transport chain function has been related to increases in reactive oxygen species (ROS) generation. Here we analyzed different pet mutants of Saccharomyces cerevisiae in order to determine the relative contribution of respiratory chain components in ROS generation and removal. We found that the maintenance of respiration strongly prevented mitochondrial H(2)O(2) release and increased cellular H(2)O(2) removal. Among all respiratory-deficient strains analyzed, cells lacking cytochrome c (cyc3 point mutants) presented the highest level of H(2)O(2) synthesis, indicating that the absence of functional cytochrome c in mitochondria leads to oxidative stress. This finding was supported by the presence of high levels of catalase and peroxidase activity despite the lack of respiration. Furthermore, the addition of exogenous cytochrome c to isolated yeast mitoplasts significantly reduced H(2)O(2) detection in a manner enhanced by cytochrome c reduction and the presence of a functional respiratory chain. Together, our results indicate that the maintenance of electron transport by cytochrome c prevents ROS generation by the respiratory chain.  相似文献   

6.
1. The NAD(P) transhydrogenase activity of the soluble fraction of sonicated rat liver mitochondrial preparations was greater than the NAD-linked isocitrate dehydrogenase activity, and the NAD-linked and NADP-linked isocitrate dehydrogenase activities were not additive. The NAD-linked isocitrate dehydrogenase activity was destroyed by an endogenous autolytic system or by added nucleotide pyrophosphatase, and was restored by a catalytic amount of NADP. 2. We concluded that the isocitrate dehydrogenase of rat liver mitochondria was exclusively NADP-specific, and that the oxoglutarate/isocitrate couple could therefore be used unequivocally as redox reactant for NADP in experiments designed to operate only the NAD(P) transhydrogenase (or loop 0) segment of the respiratory chain in intact mitochondria. 3. During oxidation of isocitrate by acetoacetate in intact, anaerobic, mitochondria via the rhein-sensitive, but rotenone- and arsenite-insensitive, NAD(P) transhydrogenase, measurements of the rates of carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive and carbonyl cyanide p-trifluoromethoxyphenylhydrazone-insensitive pH change in the presence of various oxoglutarate/isocitrate concentration ratios gave an -->H(+)/2e(-) quotient of 1.94+/-0.12 for outward proton translocation by the NAD(P) transhydrogenase. 4. Measurements with a K(+)-sensitive electrode confirmed that the electrogenicity of the NAD(P) transhydrogenase reaction corresponded to the translocation of one positive charge per acid equivalent. 5. Sluggish reversal of the NAD(P) transhydrogenase reaction resulted in a significant inward proton translocation. 6. The possibility that isocitrate might normally be oxidized via loop 0 at a redox potential of -450mV, or even more negative, is discussed, and implies that a P/O quotient of 4 for isocitrate oxidation might be expected.  相似文献   

7.
  1. The respiratory chain energy conservation systems of Bacillus megaterium strains D440 and M have been investigated following growth in batch and continuous culture. Respiratory membranes from these strains contained cytochromes b, aa 3 , o and b, c, a, o, respectively; both readily oxidised NADH but neither showed any pyridine nucleotide transhydrogenase activity.
  2. Whole cells of both strains exhibited endogenous →H-/O ratios of approximately 4; when loaded with specific substrates the resultant →H+/O ratios indicated that proton translocating loops 1 and 2 were present in strain D440 and that loops 2 and 3 were present in strain M.
  3. In situ respiratory activities were measured as a function of dilution rate during growth in continuous culture. True molar growth yields with respect to oxygen (Y O 2) of approximately 50 g cells·mole oxygen-1 were obtained for most of the nutrient limitations employed. Average values for Y ATP of 12.7 and 10.8 g cells·mole ATP equivalents-1 were subsequently calculated for strains D440 and M respectively.
  4. Energy requirements for maintenance purposes were low in energy-limited cultures but were substantially increased when growth was limited by nitrogen source (NH 4 + ). Under the latter conditions there is probably a partial uncoupling of energy-conserving and energy-utilising processes leading to energy wastage.
  相似文献   

8.
Steady-state H+/O stoichiometry of liver mitochondria.   总被引:2,自引:1,他引:1       下载免费PDF全文
We have measured the H+/O stoichiometry of rat liver mitochondria respiring in a steady-state, using a novel method. This involves measuring the initial rate of H+ back-flow into mitochondria after respiratory inhibition, with the assumption that this is equal to the steady-state H+-ejection rate. Division by the steady-state O2-consumption rate yields the H+/O ratio. The H+/O values obtained were: 8.3 +/- 1.0 (mean +/- S.E.M.) for 3-hydroxybutyrate: 8.2 +/- 0.7 for glutamate plus malate; 6.0 +/- 0.2 for succinate; 4.1 +/- 0.3 for ascorbate/tetramethylphenylenediamine and 3.0 +/- 0.1 for ascorbate/ferrocyanide. These values correspond to H+/O stoichiometries for electron flow to oxygen from NAD+-linked substrates, succinate and cytochrome c of 8, 6 and 2 (charge/O ratio = 4) respectively.  相似文献   

9.
The fumigant insecticide phosphine (PH3) is known to inhibit cytochrome c oxidase in vitro. Inhibition of the respiratory chain at this site has been shown to stimulate the generation of superoxide radicals (O2-), which dismutate to form hydrogen peroxide (H2O2). This study was performed in order to investigate the production of H2O2 by mitochondria isolated from granary weevil (Sitophilus granarius) and mouse liver on exposure to PH3. Other respiratory inhibitors, antimycin, myxothiazol, and rotenone were used with insect mitochondria. Hydrogen peroxide was measured spectrophotometrically using yeast cytochrome c peroxidase as an indicator. Insect and mouse liver mitochondria, utilizing endogenous substrate, both produced H2O2 after inhibition by PH3. Insect organelles released threefold more H2O2 than did mouse organelles, when exposed to PH3. Production of H2O2 by PH3-treated insect mitochondria was increased significantly on addition of the substrate alpha-glycerophosphate. Succinate did not enhance H2O2 production, however, indicating that the H2O2 did not result from the autoxidation of ubiquinone. NAD(+)-linked substrates, malate and pyruvate also had no effect on H2O2 production, suggesting that NADH-dehydrogenase was not the source of H2O2. Data obtained using antimycin and myxothiazol, both of which stimulated the release of H2O2 from insect mitochondria, lead to the conclusion that glycerophosphate dehydrogenase is a source of H2O2. The effect of combining PH3, antimycin, and myxothiazol on cytochrome spectra in insect mitochondria was also recorded. It was observed that PH3 reduces cytochrome c oxidase but none of the other cytochromes in the electron transport chain. There was no movement of electrons to cytochrome b when insect mitochondria are inhibited with PH3. The spectral data show that the inhibitors interact with the respiratory chain in a way that would allow the production of H2O2 from the sites proposed previously.  相似文献   

10.
The primary recognized function of cytochrome c is to act as an electron carrier transferring electrons from complex III to complex IV in the respiratory chain of mitochondria. Recent studies on cell apoptosis reveal that cytochrome c is responsible for the programmed cell death when it is released from mitochondria to cytoplasm. In this study we present evidence showing that cytochrome c plays an antioxidative role by acting on the generation and elimination of O(2)(*) and H(2)O(2) in mitochondria. The O(2)(*) and H(2)O(2) generation in cytochrome c-depleted Keilin-Hartree heart muscle preparation (HMP) is 7-8 times higher than that in normal HMP. The reconstitution of cytochrome c to the cytochrome c-depleted HMP causes the O(2)(*) and H(2)O(2) generation to exponentially decrease. An alternative electron-leak pathway of the respiratory chain is suggested to explain how cytochrome c affects on the generation and elimination of O(2)(*) and H(2)O(2) in mitochondria. Enough cytochrome c in the respiratory chain is needed for keeping O(2)(*) and H(2)O(2) at a lower physiological level. A dramatic increase of O(2)(*) and H(2)O(2) generation occurs when cytochrome c is released from the respiratory chain. The burst of O(2)(*) and H(2)O(2), which happens at the same time as cytochrome c release from the respiratory chain, should have some role in the early stage of cell apoptosis.  相似文献   

11.
Hepatic submitochondrial particles, prepared at neutral pH from rats pretreated with glucagon, exhibited stimulated rates of State 3 and uncoupled respiration when succinate or NADH were the substrates, but not when ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine were employed. Measurements of 8-anilino-1-naphthalenesulfonic acid fluorescence in the particles indicated that glucagon treatment resulted in a stimulation of energization supported by succinate respiration or ATP hydrolysis. Similarly, the energy-linked pyridine nucleotide transhydrogenase and reverse electron flow reactions driven by succinate oxidation or ATP were also stimulated. The results indicate that mitochondrial substrate transport is not the prime locus of glucagon action. It is suggested that the increased level of energization in particles prepared from glucagon-treated rats is a reflection of a stimulation of the respiratory chain, possibly between cytochromes b and c, and the ATP-forming reactions.  相似文献   

12.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

13.
F Widmer  N O Kaplan 《Biochemistry》1976,15(21):4699-4703
Active enzyme ultracentrifugation studies of the pyridine nucleotide transhydrogenase from Pseudomonas aeruginosa (EC 1.6.1.1.) show that the enzymatic reaction is catalyzed by a molecular species characterized by an S20,W value of about 34 S, whatever the reduced substrate may be (tri- or diphosphopyridine nucleotide). The filamentous aggregated form of the enzyme (S20,W = 121 S and higher), identified by previous investigations (Cohen, P. T., and Kaplan, N. O. (1970), J. Biol. Chem. 245, 2825-2836; Louie, D. D., Kaplan, N. O., and Mc Lean, J. D. (1972), J. Mol. Biol. 70, 651-664), appears, therefore, to be an inactive species. The physiological implications of the enzyme are discussed. Several lines of evidence lead to the conclusion that the transhydrogenase might act as an essential link between carbohydrate catabolism and the respiratory chain.  相似文献   

14.
Mitochondria were isolated from unfertilized and fertilized eggs of the sea urchin, Strongylocentrotus purpuratus. Both preparations exhibited coupled adenosine 5'-diphosphate (ADP)-dependent) oxidation of flavin and pyridine-linked substrates and both yielded the expected P:O ratios with these substrates. Highest respiratory control indices (greater than 4.0) were observed when succinate or pyruvate + malate were used as substrates. Mitochondria from unfertilized and fertilized eggs exhibited sensitivity to respiratory and phosphorylation inhibitors and uncouplers and both preparations exhibited cross-over points at sites I, II and III of the respiratory chain. Low-temperature difference spectra revealed a normal complement of cytochromes c, b and aa3, although cytochrome c from unfertilized eggs appears to be more subject to extraction during the course of mitochondrial isolation than does cytochrome c from fertilized eggs. An unidentified pigment absorbing at approx. 570 nm was visible in low-temperature spectra of unfertilized eggs and unfertilized egg mitochondria.  相似文献   

15.
The effects of aeration during bacterial growth on the proton translocating activity of the respiratory chain of B. stearothermophilus ATCC 8005, which is stable enough for measurement of the H+/O ratio by an oxygen pulse method, were examined. For endogenous and ascorbate-N,N,N',N'-tetramethyl p-phenylene diamine (TMPD) respiration, H+/O ratios of around 6 and 2 were obtained using resting cells grown under highly aerated conditions. The values were about 4 and 0 when cells were grown under limited-air conditions. Spectrophotometric and enzyme kinetical analyses revealed that both cytochrome caa3 and pigment-432 (cytochrome cao) were acting as terminal oxidases, while cytochrome b-558 (corresponding to the "cytochrome o-type oxidase" of the thermophilic bacterium PS3 in the previous paper [Sone, N., Kutoh, E., & Sato, K. (1990) J. Biochem. 107, 597-602]) was mainly serving in the cells grown under limited-air conditions. Measurement of the pH change upon ferrocytochrome c pulse with proteoliposomes reconstituted from the membrane extract of vigorously aerated cells and that of limited-air cells suggested that both cytochrome caa3, and pigment-432 (cytochrome cao) pump protons, while cytochrome b-558 does not.  相似文献   

16.
The stoichiometry of vectorial H+ translocation coupled to oxidation of added ferrocytochrome c by O2 via cytochrome-c oxidase of rat liver mitoplasts was determined employing a fast-responding O2 electrode. Electron flow was initiated by addition of either ferrocytochrome c or O2. When the rates were extrapolated to level flow, the H+/O ratios in both cases were less than but closely approached 4; the directly observed H+/O ratios significantly exceeded 3.0. The mechanistic H+/O ratio was then more closely fixed by a kinetic approach that eliminates the necessity for measuring energy leaks and is independent of any particular model of the mechanism of energy transduction. From two sets of kinetic measurements, an overestimate and an underestimate and thus the upper and lower limits of the mechanistic H+/O ratio could be obtained. In the first set, the utilization of respiratory energy was systematically varied through changes in the concentrations of valinomycin or K+. From the slope of a plot of the initial rates of H+ ejection (JH) and O2 uptake (JO) obtained in such experiments, the upper limit of the H+/O ratio was in the range 4.12-4.19. In the second set of measurements, the rate of respiratory energy production was varied by inhibiting electron transport. From the slope of a plot of JH versus JO, the lower limit of the H+/O ratio, equivalent to that at level flow, was in the range 3.83-3.96. These data fix the mechanistic H+/O ratio for the cytochrome oxidase reaction of mitoplasts at 4.0, thus confirming our earlier measurements (Reynafarje, B., Alexandre, A., Davies, P., and Lehninger, A. L. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7218-7222). Possible reasons for discrepancies in published reports on the H+/O ratio of cytochrome oxidase in various mitochondrial and reconstituted systems are discussed.  相似文献   

17.
Proton extrusion during ferricyanide reduction by NADH-generating substrates or succinate was studied in isolated rat liver mitochondria with the use of optical indicators. NN'-Dicyclohexylcarbodi-imide (DCCD) caused a decrease of 84% in the H+/e- ratio of NADH:cytochrome c reduction, but a decrease of only 49% in that of succinate:cytochrome c reduction, even though electron transfer was decreased equally in both spans. The data indicate that a DCCD-sensitive channel operates in the NADH:ubiquinone oxidoreductase region of the respiratory chain.  相似文献   

18.
Because adaptation to physiological changes in cellular energy demand is a crucial imperative for life, mitochondrial oxidative phosphorylation is tightly controlled by ATP consumption. Nevertheless, the mechanisms permitting such large variations in ATP synthesis capacity, as well as the consequence on the overall efficiency of oxidative phosphorylation, are not known. By investigating several physiological models in vivo in rats (hyper- and hypothyroidism, polyunsaturated fatty acid deficiency, and chronic ethanol intoxication) we found that the increase in hepatocyte respiration (from 9.8 to 22.7 nmol of O(2)/min/mg dry cells) was tightly correlated with total mitochondrial cytochrome content, expressed both per mg dry cells or per mg mitochondrial protein. Moreover, this increase in total cytochrome content was accompanied by an increase in the respective proportion of cytochrome oxidase; while total cytochrome content increased 2-fold (from 0.341 +/- 0.021 to 0.821 +/- 0.024 nmol/mg protein), cytochrome oxidase increased 10-fold (from 0.020 +/- 0.002 to 0.224 +/- 0.006 nmol/mg protein). This modification was associated with a decrease in the overall efficiency of the respiratory chain. Since cytochrome oxidase is well recognized for slippage between redox reactions and proton pumping, we suggest that this dramatic increase in cytochrome oxidase is responsible for the decrease in the overall efficiency of respiratory chain and, in turn, of ATP synthesis yield, linked to the adaptive increase in oxidative phosphorylation capacity.  相似文献   

19.
Effects of dietary copper deficiency in rats on respiratory enzymes of isolated rat liver mitochondria have been studied. After 2 weeks of Cu-depletion, cytochrome c oxidase (EC 1.9.3.1) activity had declined by 42% and between 4 and 8 weeks exhibited between 20 and 25% of the activity of control mitochondria. Activities of NADH cytochrome c reductase (EC 1.6.99.3) and succinate cytochrome c reductase (EC 1.3.99.1), were unaffected initially but declined by 32 and 46%, respectively, after 8 weeks of Cu-depletion. After 4 weeks there was a significant (34%) decline in succinate supported state 3 respiration with only a modest (18%) decline in state 4 respiration. The ADP:O ratio was unaffected by Cu-depletion after 6 and 8 weeks of dietary Cu-restriction. State 3 respiration was significantly reduced after 6 weeks when glutamate/malate or beta-hydroxybutyrate were used as substrates, whereas state 4 respiration and ADP:O ratios were unaffected. The fall in state 3 respiration was of sufficient magnitude at 8 weeks to cause a significant decline in the respiratory control ratio with all substrates. Comparisons between the relative activities of cytochrome c oxidase and reductase activities in Cu-deficient preparations, the relatively specific effect of the deficiency on state 3 respiration with all substrates tested and the ability to increase significantly oxygen consumption in excess of maximal state 3 respiration by the uncoupler 2,4-dinitrophenol suggest that the defect in Cu-deficient mitochondria cannot be attributed solely to the decreased activity of cytochrome c oxidase.  相似文献   

20.
1. Subcellular fractionation of sphaeroplasts produced at different stages during the first 4h of respiratory adaptation of anaerobically grown glucose-de-repressed Saccharomyces carlsbergensis gave mitochondrial fractions that contained all the detectable c- and a-type cytochromes. 2. The rates of cytochrome formation were studied; individual cytochromes were produced at different rates so as to give respiratory chains having widely differing cytochrome ratios. A CO-reacting haemoprotein other than cytochrome a(3) also increased throughout 8h of respiratory adaptation. 3. Even after short periods of aeration, organisms contained mitochondria in which cytochrome-cytochrome interactions and the reaction of cytochrome a(3) with O(2) proceeded at rates almost as fast as in organelles from aerobically grown cells. 4. The technique of flow-flash photolysis enabled kinetic resolution of the reoxidation of cytochromes a(3) and a to be achieved and their individual contributions to extinction changes in the Soret region were assessed. The ratio cytochrome a(3)/cytochrome a increased over the early stages of adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号