首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Isopedin is a network of collagen bundles present in the scales of most fishes. The scales of coelacanths show a remarkable three-dimensional arrangement of this network which is similar to a regularly twisted plywood. The successive fibrous layers cross at an angle which differs slightly from a right angle. It results that the whole system is twisted. The progressive rotation of the fibril direction is right-handed. Certain preferential orientations of fibrils have been observed, namely parallel to the growth rings. Such arrangements also exist in the embryonic cornea of birds and in the cuticle of certain insects, but do not present such an extensive and regular development.  相似文献   

2.
The fish scale of Pagrus major has an orthogonal plywood structure of stratified lamellae, 1-2 microm in thickness, consisting of closely packed 70- to 80-nm-diameter collagen fibers. X-ray diffraction, energy-dispersive X-ray analysis, and infrared spectroscopy indicate that the mineral phase in the scale is calcium-deficient hydroxyapatite containing a small amount of sodium and magnesium ions, as well as carbonate anions in phosphate sites of the apatite lattice. The tensile strength of the scale is high (approximately 90 MPa) because of the hierarchically ordered structure of mineralized collagen fibers. Mechanical failure occurs by sliding of the lamellae and associated pulling out and fracture of the collagen fibers. In contrast, demineralized scales have significantly lower tensile strength (36 MPa), indicating that interactions between the apatite crystals and collagen fibers are of fundamental importance in determining the mechanical properties. Thermal treatment of fish scales to remove the organic components produces remarkable inorganic replicas of the native orthogonal plywood structure of the fibrillary plate. The biomimetic replica produced by heating to 873 K consists of stratified porous lamellae of c-axis-aligned apatite crystals that are long, narrow plates, 0.5-0.6 microm in length and 0.1-0.2 microm in width. The textured inorganic material remains intact when heated to 1473 K, although the size of the constituent crystals increases as a result of thermal sintering.  相似文献   

3.
The present article describes the three-dimensional arrangement of collagen fibrils in dermal plates of different species of Ostraciidae. These dermal plates or 'scutes' are transformed scales, which have a polygonal shape and form a rigid tiling. They are natural composites, associating a fibrous network with a mineral deposit lying at two different levels of the scute, the 'ceiling' and the 'floor', plus a set of similarly mineralized walls joining the two levels. The three-dimensional structure of the collagen network can be compared to that of 'plywood': fibrils align parallel within superposed layers of uniform thickness, and their direction changes from layer to layer. In the dermal plate, two types of plywood have been evidenced: (1) one lying between the two mineralized plates, where the orientation of fibrils rotates continuously, and (2) one under the lower plate, with thick layers of fibrils, each showing a constant orientation, but abrupt angular changes are observed at the transition from one layer to the following one. In oblique sections, both types of plywood reveal large series of arced patterns, testifying to a twisted arrangement of collagen fibrils, analogous to the arrangement of molecules or polymers in cholesteric liquid crystals. The network is reinforced by some collagen fibrils running unidirectionally and almost normally to the lamellate structure. Moreover in the overall organization of the scute, these plywood systems form a set of nested boxes. This original architecture is compared to the arrangement of the collagenous network previously described in most fish scales and in other extracellular matrices.  相似文献   

4.
The anisotropic elastic constants of human cortical bone were predicted using a specimen-specific micromechanical model that accounted for structural parameters across multiple length scales. At the nano-scale, the elastic constants of the mineralized collagen fibril were estimated from measured volume fractions of the constituent phases, namely apatite crystals and Type I collagen. The elastic constants of the extracellular matrix (ECM) were predicted using the measured orientation distribution function (ODF) for the apatite crystals to average the contribution of misoriented mineralized collagen fibrils. Finally, the elastic constants of cortical bone tissue were determined by accounting for the measured volume fraction of Haversian porosity within the ECM. Model predictions using the measured apatite crystal ODF were not statistically different from experimental measurements for both the magnitude and anisotropy of elastic constants. In contrast, model predictions using common idealized assumptions of perfectly aligned or randomly oriented apatite crystals were significantly different from the experimental measurements. A sensitivity analysis indicated that the apatite crystal volume fraction and ODF were the most influential structural parameters affecting model predictions of the magnitude and anisotropy, respectively, of elastic constants.  相似文献   

5.
Combined small-angle x-ray scattering and transmission electron microscopy studies of intramuscular fish bone (shad and herring) indicate that the lateral packing of nanoscale calcium-phosphate crystals in collagen fibrils can be represented by irregular stacks of platelet-shaped crystals, intercalated with organic layers of collagen molecules. The scattering intensity distribution in this system can be described by a modified Zernike-Prins model, taking preferred orientation effects into account. Using the model, the diffuse fan-shaped small-angle x-ray scattering intensity profile, dominating the equatorial region of the scattering pattern, could be quantitatively analyzed as a function of the degree of mineralization. The mineral platelets were found to be very thin (1.5 nm ∼ 2.0 nm), having a narrow thickness distribution. The thickness of the organic layers between adjacent mineral platelets within a stack is more broadly distributed with the average value varying from 6 nm to 10 nm, depending on the extent of mineralization. The two-dimensional analytical scheme also leads to quantitative information about the preferred orientation of mineral stacks and the average height of crystals along the crystallographic c axis.  相似文献   

6.
This paper focuses on the ultrastructure of bone at a single lamella level. At this scale, collagen fibrils reinforced with apatite crystals are aligned preferentially to form a lamella. At the next structural level, such lamella are stacked in different orientations to form either osteons in cortical bone or trabecular pockets in trabecular bone. We use a finite element model, which treats small strain elasticity of a spatially random network of collagen fibrils, and compute anisotropic effective stiffness tensors and deformations of such a single lamella as a function of fibril volume fractions (or porosities), prescribed microgeometries, and fibril geometric and elastic properties.  相似文献   

7.
Low-angle X-ray diffraction patterns have been recorded from the cornea. A fibre diagram was obtained: the reflections from the axial period of collagen were on the equator while reflections from the collagen fibril lattice structure were on the meridian. Only the reflections from tha array of collagen fibrils have been studied. These reflections contain a primary first-order reflection and up to four subsidiary maxima. The first-order reflection from the array provides an estimate of the interfibril separation distance. Evidence is presented that the subsidiary maxima are consistent with the intensity transform of a uniform cylinder with a constant radius. Values for the fibril diameters and the interfibril distances are obtained for corneas from rabbit, cow and frog and from corneas of two marine fishes: toadfish and skate. Although the volume fraction of the collagen fibrils cannot be directly evaluated, an upper limit can be given. Thus, an upper limit of 0.28 was obtained for rabbit cornea.  相似文献   

8.
9.
Molecular packing in type I collagen fibrils   总被引:1,自引:0,他引:1  
Previous studies of the X-ray diffraction pattern of the crystalline regions of type I collagen fibrils yielded information on the unit cell parameters and also the orientation of the pseudo-hexagonally packed molecular segments in the overlap region. The absence of Bragg reflections at high angles attributable to the molecular segments in the gap region led to the suggestion that these segments were more mobile than those in the overlap region. We report a study of the low-angle Bragg reflections in a search for information about the nature of the orientation and packing of the molecular segments in the gap region. We conclude that the (m = 0, n = 0) helix layer plane of the molecular segments in the overlap region makes little or no contribution to the Bragg reflections at low angles, and identify three possible origins for the observed low-angle reflections in the electron density contrast associated with: (1) the "hole" created by the missing molecular segment in the gap region; (2) the telopeptides; or (3) the axial regularities in amino acid residues of a particular type, with periodicities of D/5 or D/6. Sufficient information is available to investigate the first two of these possibilities, and the results obtained suggest specific arrangements for the molecular segments in the overlap and gap regions, and specific connectivities between the molecular segments in successive overlap regions. In addition, we have examined the amino acid sequence and identified features related to the mobility of the molecular segments in the gap region and to the regions where it is thought that molecules are kinked.  相似文献   

10.
Indian bones from Mississippian and Archaic periods were examined by the techniques of electron microscopy and electron diffraction. Specimens of all ages containing intact mineral constituents showed numerous areas in which the apatite crystals exhibited typical periodic banding as seen in hard tissues of recent age. Diffraction patterns from the same areas verified the morphological appearance. Phosphotungstic acid stained, decalcified sections exhibited collagen fibrils with typical periodic banding regardless of age or soil conditions. In specimens of Archiac age there were a greater number of “poorly preserved” areas as compared with bones from Mississipian excavations. In these areas the collagen appeared to be degraded and the apatite crystals were randomly oriented. No attempt to quantitate the age changes was made in view of the inherent limitations of the method of investigation.  相似文献   

11.
Collagen fibrils, a major component of mitral valve leaflets, play an important role in defining shape and providing mechanical strength and flexibility. Histopathological studies show that collagen fibrils undergo dramatic changes in the course of myxomatous mitral valve disease in both dogs and humans. However, little is known about the detailed organization of collagen in this disease. This study was designed to analyze and compare collagen fibril organization in healthy and lesional areas of myxomatous mitral valves of dogs, using synchrotron small-angle x-ray diffraction. The orientation, density, and alignment of collagen fibrils were mapped across six different valves. The findings reveal a preferred collagen alignment in the main body of the leaflets between two commissures. Qualitative and quantitative analysis of the data showed significant differences between affected and lesion-free areas in terms of collagen content, fibril alignment, and total tissue volume. Regression analysis of the amount of collagen compared to the total tissue content at each point revealed a significant relationship between these two parameters in lesion-free but not in affected areas. This is the first time this technique has been used to map collagen fibrils in cardiac tissue; the findings have important applications to human cardiology.  相似文献   

12.
High-voltage (1.0 MV) electron microscopy and stereomicroscopy, electron probe microanalysis, electron diffraction and three-dimensional computer reconstruction, have been used to examine the spatial relationship between the inorganic crystals of calcium phosphate and the collagen fibrils of pickerel and herring bone. High-voltage stereo electron-micrographs were obtained of cross-sections of the cylinder-shaped intramuscular bones in uncalcified regions, in regions where only one or only several crystals had been deposited in some of the fibrils, and in successive sections containing progressively more mineral crystals until the stage of full mineralization was reached. High-resolution electron probe microanalysis confirmed that the electron-dense particles contained calcium and phosphorus. In the earliest stages of mineralization and progressing throughout the mineralization process, the crystals are located only within the collagen fibrils; crystals are not observed free in the extracellular spaces between collagen fibrils. The progressive increase in the mass of mineral deposited in the bone tissue with time occurs, essentially, completely within the collagen fibrils including the stage of full mineralization. At this stage, cross-sectional profiles of collagen fibrils are completely obliterated by mineral. A small number of crystals that are located on or close to the surface of the fibrils appear to extend a very short distance into the spaces between the fibrils. These ultrastructural observations of the very onset of calcification in which nucleation of the calcium phosphate crystals is clearly shown to begin within specific volumes of collagen fibrils, and of the subsequent temporal and spatial sequences of this phenomenon, which shows that calcification continues wholly within the collagen fibrils until maximum calcification is achieved, add important information on the basic physical chemical mechanism of the calcification and the structural elements that are involved. The spatial and temporal independence of the sites where mineralization is initiated establishes that such ultrastructural locations within individual collagen fibrils represent independent, physical chemical nucleation loci. The findings are totally inconsistent with the proposal that crystals must first be deposited in matrix vesicles, or other components such as mitochondria, and subsequently released and propagated in the interfibrillar space, until they eventually reach and impregnate the hole zone regions of the collagen fibrils. Three-dimensional computer reconstruction of serial transverse and longitudinal sections demonstrates periodic swellings along the collagen fibrils, corresponding to the hole zone region of their axial period as mineralization proceeds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
In Sarcopterygii (Latimeria, Neoceratodus, Protopterus, Leptdosiren)and Amiidae (Amia) collagen fibrils of the basal plate are packedin bundles whereas they remain isolated in Teleostei. The basalplate looks like plywood, a system of superimposed layers ofparallel fibers or fibrils the directions of which rotate witha regular angle in two successive layers. The double twistedplywood is constituted of two imbricate systems, the odd andthe even, where the rotation of the fibrillar directions isright-handed in Sarcopterygii and lefthanded in Amiidae andnumerous primitive Teleostei. The orthogonal plywood, with itstwo main orthogonal fibrillar directions, characterizes theevolved Teleostei and some more primitive ones. In most teleosteanspecies, as in Amia and Protopterus, mineralization of the basalplate in elasmoid scales involves Mandl's corpuscles that mineralizewithout contact with a pre-existing calcified tissue; they growand coalesce with the neighbouring ones and fuse to the mineralizingfront. Their shape is directly influenced by the local arrangementof the collagenous fibrils. In two teleostean families (Osteoglossidaeand Mormyridae) Mandl's corpuscles are completely lacking butspreading of mineralization in the basal plate has a peculiaraspect. Whatever that may be, the various characteristic organizationsof the skeletal tissues or isopedine that constitute the basalplate of osteichthyan elasmoid scales, all are varieties ofbone tissue that have undergone more or less important specializationlinked to the general regression of dermal ossifications andto functional adaptations.  相似文献   

14.
We report here the existence of a crystalline molecular packing of type II collagen in the fibrils of the lamprey notochord sheath. This is the first finding of a crystalline structure in any collagen other than type I.The lamprey notochord sheath has a composition similar to that of cartilage, with type II collagen, a minor collagen component with 1α, 2α and 3α chains, and cartilage-like proteoglycan. The high degree of orientation of fibrils in the notochord makes it possible to use X-ray diffraction to determine collagen fibril organization in this type II-containing tissue. The low angle equatorial scattering shows the fibrils are all about 17 nm in diameter and have an average center-to-center separation of 31 nm. These results are supported by electron microscope observations. A set of broad equatorial diffraction maxima at higher angles represents the sampling of the collagen molecular transform by a limited crystalline lattice, extending over a lateral dimension close to the diameter of one fibril. This indicates that each 17 nm fibril contains a crystalline array of molecules and, although a unit cell is difficult to determine because of the broad overlapping reflections, it is clear that the quasi-hexagonal triclinic unit cell of type I collagen in rat tail tendon is not consistent with the data. The meridional diffraction pattern showed 26 orders with the characteristic 67 nm periodicity found for tendon. However, the intensities of these reflections differ markedly from those found for tendon and cannot be explained by an unmodified gap/ overlap model within each 67 nm period. Both X-ray diffraction and electron microscope data indicate a low degree of contrast along the fibril axis and are consistent with a periodic binding of a non-collagenous component in such a way as to obscure the gap region.  相似文献   

15.
Kemp A  Barry JC 《Tissue & cell》2006,38(2):127-140
The Australian lungfish, Neoceratodus forsteri, has a dentition consisting of enamel, mantle dentine and bone, enclosing circumdenteonal, core and interdenteonal dentines. Branching processes from cells that produce interdenteonal dentine leave the cell surface at different angles, with collagen fibrils aligned parallel to the long axis of each process. In the interdenteonal dentine, crystals of calcium hydroxyapatite form within fibrils of collagen, and grow within a matrix of non-collagenous protein. Crystals are aligned parallel to the cell process, as are the original collagen fibrils. Because the processes are angled to the cell surface, the crystals within the core or interdenteonal dentine are arranged in bundles set at angles to each other. Apatite crystals in circumdenteonal dentine are finer and denser than those of the interdenteonal dentine, and form outside the fibrils of collagen. In mature circumdenteonal dentine the crystals of circumdenteonal dentine form a dense tangled mass, linked to interdenteonal dentine by isolated crystals. The functional lungfish tooth plate contains prisms of large apatite crystals in the interdenteonal dentine and masses of fine tangled crystals around each denteon. This confers mechanical strength on a structure with little enamel that is subjected to heavy wear.  相似文献   

16.
Bone structure: from angstroms to microns.   总被引:7,自引:0,他引:7  
S Weiner  W Traub 《FASEB journal》1992,6(3):879-885
Bone has a complex hierarchical structure, which despite much investigation, is still not well understood. Here we bring together pieces of this complicated puzzle, albeit from different sources, to present a tentative overview of bone structure. The basic building blocks are the extremely small plate-shaped crystals of carbonate apatite, just hundreds of angstroms long and wide and some 20-30 A thick. They are arranged in parallel layers within the collagenous framework. At the next hierarchical level these mineral-filled collagen fibrils are ordered into arrays in which the fibril axes and the crystal layers are all organized into a 3-dimensional structure that makes up a single layer or lamella of bone a few microns thick. The orientations of the collagen fibrils and the crystal layers in alternating lamellae of rat bone differ such that in the thinner lamellae, the fibrils and the crystal layers are parallel to the lamellar boundaries. In the thicker lamellae the fibrils are parallel to the boundary, but the crystal layers are rotated out of the plane of the boundary. In many bones these alternating lamellae are organized into even larger ordered structures to produce what is truly a remarkably ordered material, all the way from the molecular scale to the macroscopic product.  相似文献   

17.
A recent study of bone structure shows that the plate-shaped carbonate apatite crystals in individual lamellae are arranged in layers across the lamellae, and that the orientation of these layers are different in alternate lamellae. Based on these findings, a new micromechanical model for the Young's modulus of bone is proposed, which accounts for the anisotropy and geometrical characteristics of the material. The model incorporates the platelet-like geometry of the basic reinforcing unit, the presence of alternating thin and thick lamellae, and the orientations of the crystal platelets in the lamellae. The thin and thick lamellae are modeled as orthotropic composite layers made up of thin rectangular apatite platelets within a collagen matrix, and classical orthotropic elasticity theory is used to calculate the Young's modulus of the lamellae. Bone is viewed as an assembly of such orthotropic lamellae bent into cylindrical structures, and having a constant, alternating angle between successive lamellae. The micromechanical model employs a modified rule-of-mixtures to account for the two types of lamellae. The model provides a curve similar to the published experimental data on the angular dependence of Young's modulus, including a local maximum at an angle between 0 and 90 degrees. A rigorous testing of the model awaits additional experimental data.  相似文献   

18.
Radial packing, order, and disorder in collagen fibrils.   总被引:9,自引:2,他引:7       下载免费PDF全文
Collagen fibrils resemble smectic, liquid crystals in being highly ordered axially but relatively disordered laterally. In some connective tissues, x-ray diffraction reveals three-dimensional crystallinity in the molecular packing within fibrils, although the continued presence of diffuse scatter indicates significant underlying disorder. In addition, several observations from electron microscopy suggest that the molecular packing is organized concentrically about the fibril core. In the present work, theoretical equatorial x-ray diffraction patterns for a number of models for collagen molecular packing are calculated and compared with the experimental data from tendon fibrils. None of the models suggested previously can account for both the crystalline Bragg peaks and the underlying diffuse scatter. In addition, models in which any of the nearest-neighbor, intermolecular vectors are perpendicular to the radial direction are inconsistent with the observed radial orientation of the principal approximately 4 nm Bragg spacing. Both multiple-start spiral and concentric ring models are devised in which one of the nearest-neighbor vectors is along the radial direction. These models are consistent with the radial orientation of the approximately 4 nm spacing, and energy minimization results in radially oriented crystalline domains separated by disordered grain boundaries. Theoretical x-ray diffraction patterns show a combination of sharp Bragg peaks and underlying diffuse scatter. Close agreement with the observed equatorial diffraction pattern is obtained. The concentric ring model is consistent with the observation that the diameters of collagen fibrils are restricted to discrete values.  相似文献   

19.
Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions’ orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young’s modulus \(E = 1.90\) GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young’s modulus in the preferential direction of 9–16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.  相似文献   

20.
The structure of teleost scales from snakehead Channa argus was investigated using thermogravimetric analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive analysis of X-rays (EDAX), Fourier transform infra-red spectroscopy (FTIR) and X-ray diffraction (XRD). Thermal treatment of fish scales indicates that the fibrillary plate is partially calcified. SEM shows two kinds of scale denticles, arranged along the circuli in the anterior field and the lateral fields, respectively. TEM indicates the stratum laxum with abundant fibrils, chromatophores and capillary blood vessels within the scale covering, and shows the fibrillary plate as an 'orthogonal plywood structure' of stratified lamellae, consisting of 80–100 nm diameter collagen fibres co-aligned in individual lamellae and alternated by c. 90° of the fibre alignment between adjacent lamellae. EDAX, FTIR and XRD show that the mineral phase of the scales is a carbonated hydroxyapatite with a Ca:P molar ratio of 1·85.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号