首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role electrical charge plays in determining glomerular permeability to macromolecules remains unclear. If the glomerular basement membrane (GBM) has any significant role in permselectivity, physical principles would suggest a negatively charged GBM would reject similarly charged more than neutral species. However, recent in vivo studies with negative and neutral glomerular probes showed the opposite. Whether this observation is due to unique characteristics of the probes used or is a general physiological phenomenon remains to be seen. The goal of this study was to use the basement membrane deposited by Madin-Darby canine kidney epithelial cells as a simple model of a biologically derived, negatively charged filter to evaluate size- and charge-based sieving properties. Fluorescein isothiocyanate-labeled carboxymethylated Ficoll 400 (FITC-CM Ficoll 400) and amino-4-methyl-coumarin-labeled Ficoll 400 (AMC Ficoll 400) were used as negatively charged and neutral tracer molecules, respectively, during pressure-driven filtration. Streaming potential measurement indicated the presence of fixed, negative charge in the basal lamina. The sieving coefficient for neutral Ficoll 400 decreased by ~0.0013 for each 1-? increment in solute radius, compared with a decrease of 0.0023 per ? for the anionic Ficoll 400. In this system, molecular charge played a significant role in determining the sieving characteristics of the membrane, pointing to solute charge as a potential contributor to GBM permselectivity.  相似文献   

2.
The filtrate formed by renal glomerular capillaries must pass through a layer of endothelial cells, the glomerular basement membrane (GBM), and a layer of epithelial cells, arranged in series. To elucidate the relative resistances of the GBM and cell layers to movement of uncharged macromolecules, we measured the diffusional permeabilities of intact and cell-free capillaries to narrow fractions of Ficoll with Stokes-Einstein radii ranging from 3.0 to 6.2 nm. Glomeruli were isolated from rat kidneys, and diffusion of fluorescein-labeled Ficoll across the walls of single capillary loops was monitored with a confocal microscopy technique. In half of the experiments the glomeruli were treated first to remove the cells, leaving skeletons that retained the general shape of the glomerulus and consisted almost entirely of GBM. The diffusional permeability of cell-free capillaries to Ficoll was approximately 10 to 20 times that of intact capillaries, depending on molecular size. Taking into account the blockage of much of the GBM surface by cells, the contribution of the GBM to the diffusional resistance of the intact barrier was calculated to be 13% to 26% of the total, increasing with molecular size. Thus, the GBM contribution, although smaller than that of the cells, was not negligible. The structure that is most likely to be responsible for the cellular part of the diffusional resistance is the slit diaphragm, which spans the filtration slit between epithelial foot processes. A novel hydrodynamic model was developed to relate the diffusional resistance of the slit diaphragm to its structure, which was idealized as a single layer of cylindrical fibers in a ladder-like arrangement.  相似文献   

3.
The present study was performed to investigate the effects of systemic atrial natriuretic peptide (ANP) infusion on the glomerular permeability to macromolecules in rats. In anesthetized Wistar rats (250-280 g), the left urether was cannulated for urine collection while simultaneously blood access was achieved. Rats were continuously infused intravenously with ANP [30 ng·kg(-1)·min(-1) (Lo-ANP; n=8) or 800 ng·kg(-1)·min(-1) (Hi-ANP; n=10)] or 0.9% NaCl (SHAM; n=16), respectively, and with polydisperse FITC-Ficoll-70/400 (molecular radius 13-90 ?) and 51Cr-EDTA for 2 h. Plasma and urine samples were taken at 5, 15, 30, 60, and 120 min of ANP infusion and analyzed by high-performance size-exclusion chromatography (HPLC) for determination of glomerular sieving coefficients (θ) for Ficoll. GFR was also assessed (51Cr-EDTA). In Hi-ANP, there was a rapid (within 5 min), but bimodal, increase in glomerular permeability. θ to high-molecular-weight Ficoll thus reached a maximum at 15 min, after which θ returned to near control at 30 min, to again increase moderately at 60 and 120 min. In Lo-ANP, there was also a rapid, reversible increase in glomerular θ, returning to near control at 30 min, followed by just a tendency of a sustained increase in permeability, but with a significant increase in "large-pore" radius. In conclusion, in Hi-ANP there was a rapid increase in glomerular permeability, with an early, partly reversible permeability peak, followed by a (moderate) sustained increase in permeability. In Lo-ANP animals, only the initial permeability peak was evident. In both Lo-ANP and Hi-ANP, the glomerular sieving pattern observed was found to mainly reflect an increase in the number and radius of large pores in the glomerular filter.  相似文献   

4.
The actions of systemic angiotensin II (ANG II) infusions on glomerular permeability were investigated in vivo. In anesthetized Wistar rats (250-280 g), the left ureter was cannulated for urine collection, while simultaneously blood access was achieved. Rats were continuously infused intravenously with either of four doses of ANG II ranging from 16 ng·kg(-1)·min(-1) (Lo-ANG II) to 1.82 μg·kg(-1)·min(-1) (Hi-ANG II), and in separate experiments with aldosterone (Aldo; 0.22 mg·kg(-1)·min(-1)), or with the calcium channel blocker nimodipine, or with the Aldo antagonist spironolactone together with a high ANG II dose (910 ng·kg(-1)·min(-1); Hi-Int-ANG II), respectively, and with polydisperse FITC-Ficoll-70/400 (molecular radius 10-80 ?) and (51)Cr-EDTA. Plasma and urine samples were taken at 5, 15, 30, 60, and 120 min and analyzed by high performance size-exclusion chromatography for determination of glomerular sieving coefficients (θ) to Ficoll. Mean arterial pressure (MAP) and glomerular filtration rate (GFR) were also assessed. For ANG II, there was a rapid, marked, partly reversible increase in glomerular permeability (θ) for Ficoll molecules >34 ? in radius, peaking at 5-15 min, which was completely abrogated by the ANG II blocker candesartan but not affected by spironolactone at 15 and 30 min. For Aldo, the response was similar to that found for the lowest dose of ANG II infused. For the two highest ANG II doses given (Hi-Int-ANG II and Hi-ANG II), GFR decreased transiently, concomitant with marked, sustained increases in MAP. Nimodipine completely blocked all hemodynamic ANG II actions, whereas the glomerular permeability response remained unchanged. Thus ANG II directly increased glomerular permeability independently of its hemodynamic actions and largely independently of the concomitant Aldo response. The ANG II-induced increases in glomerular permeability were, according to a two-pore and a log-normal distributed pore model, compatible with an increased number of "large pores" in the glomerular filter, and, to some extent, an increase in the dispersity of the small-pore radius.  相似文献   

5.
The glomerular filtration barrier (GFB) is commonly conceived as a negatively charged sieve to proteins. Recent studies, however, indicate that glomerular charge effects are small for anionic, carboxymethylated (CM) dextran vs. neutral dextran. Furthermore, two studies assessing the glomerular sieving coefficients (θ) for negative CM-Ficoll vs. native Ficoll have demonstrated an increased glomerular permeability for CM-Ficoll (Asgeirsson D, Venturoli D, Rippe B, Rippe C. Am J Physiol Renal Physiol 291: F1083-F1089, 2006; Guimar?es M, Nikolovski J, Pratt L, Greive K, Comper W. Am Physiol Renal Physiol 285: F1118-F1124, 2003.). The CM-Ficoll used, however, showed a larger Stokes-Einstein radius (a(e)) than neutral Ficoll, and it was proposed that the introduction of negative charges in the Ficoll molecule had made it more flexible and permeable. Recently, a negative FITC-labeled CM-Ficoll (CMI-Ficoll) was produced with a conformation identical to that of neutral FITC-Ficoll. Using these probes, we determined their θ:s in anesthetized Wistar rats (259 ± 2.5 g). After blood access had been achieved, the left ureter was cannulated for urine sampling. Either polysaccharide was infused (iv) together with a filtration marker, and urine and plasma were collected. Assessment of θ FITC-Ficoll was achieved by high-performance size-exclusion chromatography (HPSEC). CMI-Ficoll and native Ficoll had identical elugrams on the HPSEC. Diffusion of anionic Ficoll was significantly reduced compared with that of neutral Ficoll across the GFB for molecules of a(e) ~20-35 ?, while there were no charge effects for Ficoll of a(e) = 35-80 ?. The data are consistent with a charge effect present in "small pores," but not in "large pores," of the GFB and mimicked those obtained for anionic membranes in vitro for the same probes.  相似文献   

6.
Hindered convection of macromolecules in gels was studied by measuring the sieving coefficient (theta) of narrow fractions of Ficoll (Stokes-Einstein radius, r(s) = 2.7-5.9 nm) in agarose and agarose-dextran membranes, along with the Darcy permeability (kappa). To provide a wide range of kappa, varying amounts of dextran (volume fractions < or = 0.011) were covalently attached to agarose gels with volume fractions of 0.040 or 0.080. As expected, theta decreased with increasing r(s) or with increasing concentrations of either agarose or dextran. For each molecular size, theta plotted as a function of kappa fell on a single curve for all gel compositions studied. The dependence of theta on kappa and r(s) was predicted well by a hydrodynamic theory based on flow normal to the axes of equally spaced, parallel fibers. Values of the convective hindrance factor (K(c), the ratio of solute to fluid velocity), calculated from Theta and previous equilibrium partitioning data, were unexpectedly large; although K(c) < or = 1.1 in the fiber theory, its apparent value ranged generally from 1.5 to 3. This seemingly anomalous result was explained on the basis of membrane heterogeneity. Convective hindrances in the synthetic gels were quite similar to those in glomerular basement membrane, when compared on the basis of similar solid volume fractions and values of kappa. Overall, the results suggest that convective hindrances can be predicted fairly well from a knowledge of kappa, even in synthetic or biological gels of complex composition.  相似文献   

7.
Sulfated proteoglycans (fixed anionic sites) on the glomerular basement membrane (GBM) of kidneys from diabetic and nondiabetic patients have been demonstrated by electron microscopy using polycationic dyes (ruthenium red, polyethyleneimine). These substances were used for immersion fixation of renal biopsy specimens. The thickened GBM of diabetics revealed a reduced proteoglycan content within both the narrowed laminae rarae, where normally particles were seen at 60 nm intervals. Proteinuria was observed in all such cases, but no immunopathological alterations of the basement membranes were seen. With both tracer substances anionic sites were also demonstrated in different segments of the thickened lamina densa in diabetics. In polyethyleneimine-treated biopsies some segments of the membrane showed increased anionic moieties at the junction of the basement membrane and the epithelial and endothelial cell membranes. These are probably acid glycoproteins linked to the cell membrane and the synthesis of these basement membrane components may represent a compensatory mechanism seeking to restore normal permeability.  相似文献   

8.
The effects of bovine serum albumin adsorption on the transport characteristics of asymmetric poly(ether sulfone) ultrafiltration membranes were determined using polydisperse dextrans with gel permeation chromatography. Actual dextran sieving coefficients were evaluated from observed sieving data for both the clean and preadsorbed membranes using a stagnant film model. The flux dependence of the actual dextran sieving coefficients was used to evaluate the intrinsic membrane hindrance factors for convective (i.e., sieving) and diffusive transport for the different molecular weight dextrans using classical membrane transport theory. Protein adsorption caused a reduction in both dextran sieving and diffusion, with the magnitude of the reduction a function of the dextran molecular weight and pore size. The effects of adsorption on the specific pore area and the membrane porosity were then determined using a recent model for solute transport through asymmetric ultrafiltration membranes. The data indicate that protein adsorption occurs preferentially in the larger membrane pores, causing a greater reduction in solute sieving compared to the membrane hydraulic permeability and porosity than would be predicted on the basis of either a simple pore blockage or pore constriction model.  相似文献   

9.
Sulfated glycosaminoglycans and sialoglycoproteins are thought to play a pivotal role in the glomerular capillary wall barrier to filtration since these anionic charged elements are important in the maintenance of capillary wall integrity and constitute a charge-selective filter. The development of proteinuria in puromycin aminonucleoside (PAN) nephrosis is associated with polyanion loss from the glomerular capillary wall structures. Since in PAN nephrosis the permeability of the mesangial area to plasma proteins and tracer substances has also been shown to be increased, the purpose of this study was to analyse the localization and distribution of anionic charges in the glomerular mesangium in this experimental model. Glycosaminoglycans were labeled by perfusion of the kidneys with ruthenium red solution (RR). Electron microscopic examination revealed the presence of distinct small RR granules ("anionic sites") in the mesangial intercellular matrix substance and in the laminae rarae of the glomerular basement membrane (GBM). The center-to-center spacing of the granules was measured and a frequency distribution of intervals in different interval classes was constructed. In normal glomeruli the anionic sites in the mesangial matrix showed a distribution pattern identical to the GBM with a maximal interval incidence at the 31-40 nm class. In nephrotic rats anionic site distributions in matrix and GBM did not change significantly. Sialoglycoproteins were labeled with colloidal iron (CI). In PAN nephrosis a decrease of CI binding was observed at the epithelial-basement membrane junction of the glomerular capillary wall. However, CI labeling of the mesangial matrix and mesangial cell membranes did not differ from that of normal glomeruli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
S Chien  F Fan  M M Lee  D A Handley 《Biorheology》1984,21(4):631-641
The effects of variations in transmural pressure over a range of 0 to 200 mmHg on transendothelial transport of macromolecules were studied in the canine common carotid artery. The uptake of 125I-albumin per unit artery weight increased with rising pressure. There was no significant difference in albumin permeability per unit luminal surface area between 0 and 100 mmHg, but permeability nearly doubled when pressure was raised to 200 mmHg. The contribution of an increased rate of transendothelial vesicle diffusion, as evaluated from the experimental determination of the ratio of attached-to-free vesicles and theoretical modeling, was found to be negligible. The reduction in transendothelial vesicle diffusion distance due to pressure-induced thinning of the peripheral zone contributes to a 25% increase in permeability. With the use of colloidal Ag and Au of various sizes, vesicle loading of particles with diameters greater than or equal to 15 nm was found to be severely restricted at transmural pressure less than or equal to 100 mmHg, but it was significantly enhanced at 200 mmHg, when particles as large as 25 nm became detectable in endothelial vesicles and subendothelial space. This hypertension-induced increase in macromolecular transport across the endothelium may cause an overloading of the arterial wall with low-density lipoproteins and play a significant role in atherogenesis.  相似文献   

11.
Endothelin-1 (ET-1) is a pulmonary vasodilator in the unventilated fetal lamb. The site and mechanism of this vasodilator response were investigated in isolated blood-perfused lungs from nine fetal lambs delivered at 127-140 days gestation. The vascular occlusion technique was used to partition the total pulmonary pressure gradient into pressure gradients across large and small arteries (delta PLA and delta PSA, respectively) and veins (delta PV). Injection of ET-1 (74 ng/kg) into the pulmonary artery significantly decreased delta PLA from 12.4 +/- 2.1 to 5.2 +/- 1.1 mmHg and delta PSA from 49.2 +/- 2.7 to 31.3 +/- 4.9 mmHg. The pressure measured by double occlusion, an estimate of pulmonary capillary pressure, was not altered by ET-1 (15.5 +/- 1.0 vs. 14.8 +/- 1.0 mmHg), indicating that ET-1 had no effect on pulmonary veins. Addition of N omega-nitro-L-arginine (estimated perfusate concentration 2-6 mM), an analogue of L-arginine that inhibits the production of endothelium-derived relaxing factor (EDRF), significantly attenuated the dilator responses to acetylcholine (10 micrograms) and ET-1 (74 ng/kg) by 35 and 56%, respectively. These results in unventilated fetal lungs indicate that 1) ET-1 dilates both large and small pulmonary arteries with no effect on pulmonary veins, and 2) this effect is mediated in part through the action of the EDRF pathway.  相似文献   

12.
Incubation of glomerular homogenates (200 micrograms protein) with glomerular basement membrane (GBM, 30-35 micrograms hydroxyproline) at pH 7.5 for 36 h at 37 degrees C resulted in significant GBM degradation as measured by hydroxyproline release (40 +/- 6%, n = 17). GBM degradation increased with increasing incubation time (12-48 h) and glomerular protein concentration (50-250 micrograms). GBM degradation was not significantly decreased by inhibitors of serine or cysteine proteinases or the inhibitor of bacterial metalloproteinases, phosphoramidon. In contrast GBM degradation by glomerular homogenates was markedly inhibited by the metal chelators 10mM EDTA (-95 +/- 3%, n = 7) and 2mM 1,10-phenanthroline (-96 +/- 2%, n = 4). Preincubation of glomerular homogenates with trypsin (followed by soya bean trypsin inhibitor) markedly stimulated GBM degradation (+103 +/- 20%, n = 11). These results document the presence of a GBM-degrading, neutral metalloproteinase(s) in glomeruli suggesting an important role for this enzyme in glomerular pathophysiology.  相似文献   

13.
A morphometric study was undertaken to examine age-related changes in glomerular ultrastructure and anionic sites in ddY male mice at various ages. A progressive increase in glomerular extracellular matrices, including thickening of the glomerular basement membrane (GBM), formation of GBM nodules, and mesangial matrix increase, was found to be the primary age-related ultrastructural change in aging mice; there were also electron-dense deposits in mesangial and subepithelial regions. The extent of GBM thickening in mice was less than was reported in rats. Rather, the GBM nodules, which had the same electron density as the lamina densa (LD) and protruded on the subepithelial side of the GBM, were more striking. Quantitative evaluation showed that GBM thickness, number and size of GBM nodules, and the area of the mesangial matrix were significantly correlated with the age of the mice. The distribution of anionic sites in the glomeruli of aging animals was described for the first time. No statistically significant differences were noted between the number of glomerular anionic sites in the different age groups. These results indicate that the increase in glomerular extracellular matrices reported in aged rats was also present in aged mice, although the extent of various changes was different. The results also indicate that this increase in glomerular extracellular matrices with age was not accompanied by significant alteration in glomerular anionic sites.  相似文献   

14.
Microdissection of acellular rat renal cortex with pepsin was carried out to investigate the morphological substructure of glomerular basement membrane (GBM) by high resolution SEM. Renal cortical blocks (less than 5 mm3) from adult male Sprague Dawley rats were rendered acellular by sequential detergent extraction and digested up to 184 hrs with 5 mg/ml pepsin (185 U/mg) in 0.5 M acetic acid (pH 2) at 10-15 degrees C. Samples were conventionally prepared for SEM, and observed at original magnifications of 500-100,000 diameters. At low magnifications (500-5,000x), acellular GBM surfaces appeared smooth at all digestion times. At higher magnifications (50,000-100,000x), control GBM surfaces were finely granular. Granule diameter ranged from 20-80 nm, with most between 30-40 nm. Pepsin digestion did not affect average granule size. Beginning at 44 hrs of digestion, intrinsic fibrillar structures comprised of linear arrays of 20-40 nm granules were observed on/in GBM surfaces. At later incubation times, this component of GBM became more extensive. At 160 hrs, the fibrillar arrays frequently bifurcated and showed distinctive "forked" termini, some of which comprised two sides of a triangle (120-150 nm on a side). Fork "handles" (310-350 nm in length) radiated from each angle of the triangle. These sometimes terminated in large granules (approximately 100 nm in diameter), two of which appeared to connect fibrillar arrays end-to-end. Together with other arrays, the interconnected triangles appeared to comprise a three-dimensional meshwork extending into the GBM and possibly providing support for, its granular components.  相似文献   

15.
A model is developed and analyzed for type IV collagen turnover in the kidney glomerular basement membrane (GBM), which is the primary structural element in the glomerular capillary wall. The model incorporates strain dependence in both deposition and removal of the GBM, leading to an equilibrium tissue strain at which deposition and removal are balanced. The GBM thickening decreases tissue strain per unit of transcapillary pressure drop according to the law of Laplace, but increases the transcapillary pressure drop required to maintain glomerular filtration. The model results are in agreement with the observed GBM alterations in Alport syndrome and thin basement membrane disease, and the model-predicted linear relation between the inverse capillary radius and inverse capillary thickness at equilibrium is consistent with published data on different mammals. In addition, the model predicts a minimum achievable strain in the GBM based on the geometry, properties, and mechanical environment; that is, an infinitely thick GBM would still experience a finite strain. Although the model assumptions would be invalid for an extremely thick GBM, the minimum achievable strain could be significant in diseases, such as Alport syndrome, characterized by focal GBM thickening. Finally, an examination of reasonable values for the model parameters suggests that the oncotic pressure drop-the osmotic pressure difference between the plasma and the filtrate due to large molecules-plays an important role in setting the GBM strain and, thus, leakage of protein into the urine may be protective against some GBM damage.  相似文献   

16.
Emerging evidence suggests that renal endothelial function may be altered in ischemia-reperfusion injury. Acute kidney injury is sexually dimorphic, and estrogen protects renal tubular function after experimental ischemic injury. This study tested the hypothesis that during ischemia-reperfusion, estrogen alters glomerular endothelial function to prevent hyperpermeability. Glomerular endothelial cells were exposed to 8-h oxygen-glucose deprivation (OGD) followed by 4- and 8-h reoxygenation-glucose repletion. After 4-h reoxygenation-glucose repletion, transendothelial permeability to Ficoll-70 was reduced, and transendothelial resistance increased, by 17β-estradiol vs. vehicle treatment during OGD (OGD-vehicle: 91.0 ± 11.8%, OGD-estrogen: 102.6 ± 10.8%, P < 0.05). This effect was reversed by coadministration of G protein-coupled receptor 30 (GPR30) antagonist G15 with 17β-estradiol (OGD-estrogen-G15: 89.5 ± 6.9, P < 0.05 compared with 17β-estradiol). To provide preliminary confirmation of this result in vivo, Ficoll-70 was administered to mice 24 h after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). Blood urea nitrogen (BUN) and serum creatinine (SCr) in these mice were elevated within 12 h following CA/CPR and reduced at 24 h by pretreatment with 17β-estradiol (BUN/SCr 17β-estradiol: 34 ± 19/0.2 ± 0.1 vehicle: 92 ± 49/0.5 ± 0.3, n = 8-12, P < 0.05). Glomerular sieving of Ficoll 70 was increased by CA/CPR within 2 h of injury and 17β-estradiol treatment (θ; 17β-estradiol: 0.74 ± 0.26 vs. vehicle: 1.05 ± 0.53, n = 14-15, P < 0.05). These results suggest that estrogen reduces postischemic glomerular endothelial hyperpermeability at least in part through GPR30 and that estrogen may regulate post CA/CPR glomerular permeability in a similar fashion in vivo.  相似文献   

17.
Summary Cationized ferritin was injected into the circulatory system of teleosts, the sea raven and Atlantic eelpout, and into elasmobranchs, the spiny dogfish and the skate, to determine if the glomerular basement membranes (GBM) from these different groups of fishes possess anionic binding sites similar to those present in the GBM of mammals. The distribution of cationized ferritin was the same in all fishes listed. Cationized ferritin was localized only in the GBM and the mesangial matrix. The regular distribution of cationized ferritin within the laminae rarae (60 nm intervals) was taken as evidence of the presence of anionic binding sites. Cationized ferritin did not bind to the glomerular capillary endothelium, nor was any of it localized at the base of the slit diaphragms of the foot processes of the podocytes. The distribution of binding sites in the GBM of these fishes is similar to that in another teleost, the winter flounder, and in a cyclostome, the hagfish.  相似文献   

18.
Cross-linking glomerular basement membrane (GBM) has been shown to render it more permeable to protein. Isolated pig GBM was cross-linked with dimethylmalonimidate which reacts selectively with lysine epsilon-NH2 groups or with glutaraldehyde, a less selective cross-linking agent. Studies of the ultrafiltration properties of these materials in vitro using cytochrome c, myoglobin, bovine serum albumin and immunoglobulin showed that cross-linking had markedly increased solvent and protein fluxes as compared with native membranes particularly at higher pressures. Filtration studies with serum demonstrated that the cross-linked membranes were more permeable to serum proteins. Thickness measurements under pressure indicated that cross-linked membrane was less compressed than native membrane as pressure was increased. Pore theory did not provide a suitable model for analysis of the results, but analysis of the results using the fibre-matrix hypothesis indicated that cross-linking had the effect of bundling together the fibres (type IV collagen) in the GBM matrix. The effect of cross-linking on filtration could be explained by a combination of contraction of the membrane, fibre bundling and increased rigidity compared with native membrane. Cross-linking of GBM might lead to long-term damage of the glomerular capillary wall in nephritis, so promoting proteinuria.  相似文献   

19.
Clogging of the glomerular basement membrane   总被引:6,自引:1,他引:5       下载免费PDF全文
The negative charges of the sulfated glycosaminoglycans (GAGs) of the glomerular basement membrane (GBM) were differentially neutralized by perfusin with high molarity buffers in order to determine whether or not these charges protect the GBM from being clogged by circulating plasma macromolecules. Progressive elimination of the negative charges resulted in clogging of the GBM by perfused native ferritin (NF) and bovine serum albumin as evidenced ultrastructurally by the increase in accumulation of NF in the GBM. In addition, the permeability of the GBM to 125I-insulin, a macromolecule which is normally freely permeable, and the glomerular filtration rate (as determined by [3H]inulin clearance) were markedly reduced after the GBM had been clogged with NF in the presence of high molarity buffer, thereby indicating that clogging severely reduces the ability of the GMB to act as a selective filter. These findings are consistent with the idea that the sulfated GAGs of the GBM serve as anticlogging agents.  相似文献   

20.
Glomerular development was studied in the newborn rat kidney by electron microscopy and cytochemistry. Glomerular structure at different developmental stages was related to the permeability properties of its components and to the differentiation of anionic sites in the glomerular basement membrane (GBM) and on endothelial and epithelia cell surfaces. Cationic probes (cationized ferritin, ruthenium red, colloidal iron) were used to determine the time of appearance and distribution of anionic sites, and digestion with specific enzymes (neuraminidase, heparinase, chondroitinases, hyaluronidases) was used to determine their nature. Native (anionic) ferritin was used to investigate glomerular permeability. The main findings were: (a) The first endothelial fenestrae (which appear before the GBM is fully assembled) possess transient, negatively charged diaphragms that bind cationized ferritin and are impermeable to native ferritin. (b). Two types of glycosaminoglycan particles can be identified by staining with ruthenium red. Large (30-nm) granules are seen only in the cleft of the S-shaped body at the time of mesenchymal migration into the renal vesicle. They consist of hyaluronic acid and possibly also chondroitin sulfate. Smaller (10-15-nm) particles are seen in the earliest endothelial and epithelial basement membranes (S-shaped body stage), become concentrated in the laminae rarae after fusion of these two membranes to form the GBM, and contain heparan sulfate. They are assumed to be precursors of the heparan sulfate-rich granules present in the mature GBM. (c) Distinctive sialic acid-rich, and sialic acid-poor plasmalemmal domains have been delineated on both the epithelial and endothelial cell surfaces. (d) The appearance of sialoglycoproteins on the epithelial cell surface concides with the development of foot processes and filtration slits. (e) Initially the GBM is loosely organized and quite permeable to native ferritin ;it becomes increasinly impermeable to ferritin as the lamina densa becomes more compact. (f) The number of endothelial fenestrae and open epithelial slits increases as the GBM matures and becomes organized into an effective barrier to the passage of native ferritin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号