首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rabbit predominantly fast-twitch-fibre and predominantly slow-twitch-fibre skeletal muscles of the hind limbs, the psoas, the diaphragm and the masseter muscles were fibre-typed by one-dimensional polyacrylamide-gel electrophoresis of the myofibrillar proteins of chemically skinned single fibres. Investigation of the distribution of fast-twitch-fibre and slow-twitch-fibre isoforms of myosin light chains and the type of myosin heavy chains, based on peptide ''maps'' published in Cleveland. Fischer, Kirschner & Laemmli [(1977) J. Biol. Chem. 252, 1102-1106], allowed a classification of muscle fibres into four classes, corresponding to histochemical types I, IIA, IIB and IIC. Type I fibres with a pure slow-twitch-type of myosin were found to be characterized by a unique set of isoforms of troponins I, C and T, in agreement with the immunological data of Dhoot & Perry [(1979) Nature (London) 278, 714-718], by predominance of the beta-tropomyosin subunit and by the presence of a small amount of an additional tropomyosin subunit, apparently dissimilar from fast-twitch-fibre alpha-tropomyosin subunit. The myofibrillar composition of type IIB fast-twitch white fibres was the mirror image of that found for slow-twitch fibres in that the fast-twitch-fibre isoforms only of the troponin subunits were present and the alpha-tropomyosin subunit predominated. Type IIA fast-twitch red fibres showed a troponin subunit composition identical with that of type IIB fast-twitch white fibres. On the other hand, a unique type of myosin heavy chains was found to be associated with type IIA fibres. Furthermore, the myosin light-chain composition of these fibres was invariably characterized by a small amount of LC3F light chain and by a pattern that was either a pure fast-twitch-fibre light-chain pattern or a hybrid LC1F/LC2F/LC3F/LC1Sb light-chain pattern. By these criteria type IIA fibres could be distinguished from type IIC intermediate fibres, which showed coexistence of fast-twitch-fibre and slow-twitch-fibre forms of myosin light chains and of troponin subunits.  相似文献   

2.
This paper reports the preparation of specific anti-slow myosin antibodies (anti-I) and anti-fast myosin antibodies (anti-IIA) raised against myosins from sheep and guinea pig masseter muscles. The specificity of the antibodies has been studied by immunodiffusion in agar and by the GEDELISA test using slow-twitch (type I), fast-twitch red (type IIA) and fast-twitch white (type IIB) myofibrils isolated from guinea pig muscles. The principal specificity of the anti-I and anti-IIA antibodies was for the heavy chains of type I and IIA myosins, respectively. A smaller reaction with the corresponding light chains was also detected. Immunohistochemical staining of muscle sections using these antibodies confirmed their fibre type specificity.  相似文献   

3.
Isolated myosins from human predominantly fast and slow muscles, human neonatal and foetal muscle were examined for light chain composition by one- and two-dimensional electrophoresis. The LC1F, LC2F and LC3F light chains were identical with their counterparts from rabbit fast myosin. Human LC1S was identified by correlative criteria as a single component having a molecular weight slightly lower than, but an electric charge similar to, that of rabbit LC1Sb. Consequently, human LC1S appears to be much less heterogeneous relative to LC1F than is the case with other mammalian species. A high immunological cross-reactivity was likewise observed, with antibody specific to rabbit LC1F, between the isolated myosins from several human mixed muscles and rabbit fast myosin, though reactivity was highest with foetal myosin (having a pure-fast-light-chain pattern).  相似文献   

4.
Myosin subunit composition in human developing muscle.   总被引:5,自引:2,他引:3       下载免费PDF全文
Previous pyrophosphate-gel studies have reported the existence of embryonic neonatal myosin isoenzymes in human developing muscle. The present investigation was undertaken to characterize their subunit composition more precisely. Two immature muscle myosins are contrasted with adult myosin: neonatal myosin and foetal myosin. The neonatal form of myosin is weakly cross-reactive with rabbit slow myosin and contains only fast-type light chains (LC), LC1F and LC2F. The associated heavy chains consist of a single electrophoretic component that reacts exclusively with antibodies against human foetal myosin and has a mobility and peptide pattern distinct from that of adult fast and slow heavy chains. Foetal myosin is distinguished by the presence of low amounts of a heavy chain immunologically cross-reactive with the adult slow form and of two additional light-chain components: a LC2S light chain and a foetal-specific light chain (LCemb.). The foetal-specific light chain, as shown by one-dimensional-peptide-map analysis, is structurally unrelated to both LC1S and LC1F light chains of human adult myosin. We conclude from these results that the ontogenesis of human muscle myosin shares certain common features with that observed in other species, except for the persistence until birth of a foetal form of heavy chain (HCemb.).  相似文献   

5.
Loss of fast-twitch isomyosins in skeletal muscles of the diabetic rat.   总被引:1,自引:1,他引:0  
By means of pyrophosphate electrophoresis the myosin isoenzyme pattern of two fast-twitch skeletal muscles (extensor digitorum longus, gastrocnemius) and one slow-twitch muscle (soleus) was investigated in control rats and was compared with that of rats 4 weeks after induction of diabetes mellitus by streptozotocin injection. In the fast-twitch muscles the isomyosin pattern consisting of FM1 (fast isomyosin 1), FM2 and FM3 was strongly affected by diabetes, resulting in an extensive loss of FM1 and a substantial decrease of FM2. These changes were also apparent when the light chains of the fast isomyosins were analysed by two-dimensional electrophoresis: LC3f (myosin light chain 3f) largely disappeared and LC2f was significantly diminished. In contrast, the isomyosin pattern in soleus muscle, consisting of SM1 (slow isomyosin 1) and SM2, was not affected by the diabetic state, and two-dimensional electrophoresis revealed a normal light-chain pattern of LC1sa, LC1sb and LC2s. These results indicate that the isomyosins of slow-twitch oxidative myofibres are more resistant to the hormonal and metabolic disorders during diabetes mellitus than are the isomyosins of fast-twitch fibres.  相似文献   

6.
The expression of myosin isoforms and their subunit composition in the white skeletal body musculature of Arctic charr (Salvelinus alpinus) of different ages (from 77-day embryos until about 5 years old) was studied at the protein level by means of electrophoretic techniques. Myosin from the white muscle displayed three types of light chain during all the developmental stages examined: two myosin light chains type 1 (LC1F) differing in both apparent molecular mass and pI, one myosin light chain type 2 (LC2F) and one myosin light chain type 3 (LC3F). The fastest-migrating form of LC1F seemed to be predominant during the embryonic and eleutheroembryonic periods. The slowest-migrating form of LC1F was predominant in the 5-year-old fish. Between 1 year and 4 years, both types of LC1F were present in similar amounts. Cardiac as well as red muscle myosin from 3-year-old fish had two types of light chain. The myosin light chains from atria and ventriculi were indistinguishable by two-dimensional electrophoresis, but were different from the myosin light chains from red muscle. Neither the light chains from cardiac nor red muscle were coexpressed with the myosin light chains of white muscle at any of the developmental stages examined. Two myosin heavy chain bands were resolved by SDS/glycerol/polyacrylamide gel electrophoresis of the extract from embryos. One of the bands was present in minor amounts. The other, and most abundant, band comigrated with the only band found in the extracts of white muscle myosin from older fish. One-dimensional Staphylococcus aureus V8 protease peptide mapping of these bands revealed some differences during development of the white muscle tentatively interpreted as follows. The myosin heavy chain band present in minor amounts in the embryos may represent an early embryonic form that is replaced by a late embryonic or foetal form in the eleutheroembryos. The foetal myosin heavy chain appears to be present until the resorption of the yolk sack and beginning of the free-swimming stage. A new form of myosin heavy chain, termed neonatal and probably expressed around hatching, is present until about 1 year of age.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
1. A purified preparation of Ascaris myosin was obtained from the muscle layer of Ascaris lumbricoides suum, using gel filtration and ion-exchange chromatography. 2. Ascaris myosin whether purified or unpurified, had almost the same ability for ATP-splitting and superprecipitation. 3. Ascaris myosin and rabbit skeletal myosin were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A significant difference in the number of light chains between both myosins was found. Ascaris myosin was found to have one heavy chain and two distinct light chain components (LC1-A and LC2-A), having molecular weights of 18000 and 16000, respectively. These light chains correspond in molecular weight to the light chain 2 (LC2-S) and light chain 3 (LC3-S) in rabbit skeletal myosin. 4. LC1-A could be liberated from the Ascaris myosin molecule reacted with 5,5'-dithio-bis(2-nirobenzoic acid( Nbs2) with recovery of ATPase activity by addition of dithiothreitol. These properties are equivalent to those of the LC2-S in rabbit skeletal myosin, although Ascaris myosin when treated with Nbs2-urea lost its ATPase activity.  相似文献   

8.
1. A method is described for the electrophoretic analysis of intact myosin in polyacrylamide gel in a buffer system containing 0.02 M-pyrophosphate and 10% (v/v) glycerol, pH 8.8. 2. In this system chicken skeletal-muscle myosins reveal five distinct electrophoretic components, three components from the fast-twitch posterior latissimus dorsi muscle and two slower-migrating components from the slow-twitch anterior latissimus dorsi muscle. 3. The Ca2+-activated ATPase (adenosine triphosphatase) activity of myosin components was measured by densitometric scanning of the gel for the Ca3(PO4)2 precipitate formed during the ATPase reaction and subsequently for stained protein. Each component from the same muscle appears to have identical ATPase activity, but components from the fast-twitch muscle had an activity 2.2 times higher than those from the slow-twitch muscle. 4. On re-electrophoresis in the same buffer system, individual fractions of fast-twitch myosin did not reproduce the three-band pattern of the original myosin, but migrated at rates consistent with their original mobility. 5. Analysis of the mobility of the three fast-twitch myosin components in gels of different concentrations suggests that they are not stable oligomers of each other. 6. It is suggested that these components of fast-twitch myosin and slow-twitch myosin are isoenzymes of myosin.  相似文献   

9.
In this study, myosin types in human skeletal muscle fibers were investigated with electrophoretic techniques. Single fibers were dissected out of lyophilized surgical biopsies and typed by staining for myofibrillar ATPase after preincubation in acid or alkaline buffers. After 14C-labelling of the fiber proteins in vitro by reductive methylation, the myosin light chain pattern was analysed on two-dimensional gels and the myosin heavy chains were investigated by one-dimensional peptide mapping. Surprisingly, human type I fibers, which contained only the slow heavy chain, were found to contain variable amounts of fast myosin light chains in addition to the two slow light chains LC1s and LC2s. The majority of the type I fibers in normal human muscle showed the pattern LC1s, LC2s and LC1f. Further evidence for the existence in human muscle of a hybrid myosin composed of a slow heavy chain with fast and slow light chains comes from the analysis of purified human myosin in the native state by pyrophosphate gel electrophoresis. With this method, a single band corresponding to slow myosin was obtained; this slow myosin had the light chain composition LC1s, LC2s and LC1f. Type IIA and IIB fibers, on the other hand, revealed identical light chain patterns consisting of only the fast light chains LC1f, LC2f and LC3f but were found to have different myosin havy chains. On the basis of the results presented, we suggest that the histochemical ATPase normally used for fibre typing is determined by the myosin heavy chain type (and not by the light chains). Thus, in normal human muscle a number of 'hybrid' myosins were found to occur, namely two extreme forms of fast myosins which have the same light chains but different heavy chains (IIA and IIB) and a continuum of slow forms consisting of the same heavy chain and slow light chains with a variable fast light chain composition. This is consistent with the different physiological roles these fibers are thought to have in muscle contraction.  相似文献   

10.
The endogenous essential light chain (LC17) of myosin from intestine smooth muscle was replaced with mutated essential light chains prepared using recombinant techniques. Complete exchange was observed with histidine-tagged derivatives of LC17a, LC17b and E122A-LC17a (LC17a and LC17b are the usual constituants of smooth muscle myosin), with small changes in the ATPase activity of reconstituted myosins. Much less exchange was observed with the light-chain derivative lacking the last 12 amino acid residues, demonstrating the importance of this segment, which may act as one arm of a pair of pincers to bind the myosin heavy chain.  相似文献   

11.
Distribution of myosin isoenzymes among skeletal muscle fiber types.   总被引:17,自引:4,他引:13  
Using an immunocytochemical approach, we have demonstrated a preferential distribution of myosin isoenzymes with respect to the pattern of fiber types in skeletal muscles of the rat. In an earlier study, we had shown that fluorescein-labeled antibody against "white" myosin from the chicken pectoralis stained all the white, intermediate and about half the red fibers of the rat diaphragm, a fast-twitch muscle (Gauthier and Lowey, 1977). We have now extended this study to include antibodies prepared against the "head" (S1) and "rod" portions of myosin, as well as the alkali- and 5,5'dithiobis (2-nitrobenzoic acid) (DTNB)-light chains. Antibodies capable of distinguishing between alkali 1 and alkali 2 type myosin were also used to localize these isoenzymes in the same fast muscle. We observed, by both direct and indirect immunofluorescence, that the same fibers which had reacted previously with antibodies against white myosin reacted with antibodies to the proteolytic subfragments and to the low molecular-weight subunits of myosin. These results confirm our earlier conclusion that the myosins of the reactive fibers in rat skeletal muscle are sufficiently similar to share antigenic determinants. The homology, furthermore, is not confined to a limited region of the myosin molecule, but includes the head and rod portions and all classes of light chains. Despite the similarities, some differences exist in the protein compositions of these fibers: antibodies to S1 did not stain the reactive (fast) red fiber as strongly as they did the white and intermediate fibers. Non-uniform staining was also observed with antibodies specific for A2 myosin; the fast red fiber again showed weaker fluorescence than did the other reactive fibers. These results could indicate a variable distribution of myosin isoenzymes according to their alkali-light chain composition among fiber types. Alternatively, there may exist yet another myosin isoenzyme which is localized in the fast red fiber. Those red fibers which did not react with any of the antibodies to pectoralis myosin, did react strongly with an antibody against myosin isolated from the anterior latissimus dorsi (ALD), a slow red muscle of the chicken. The myosin in these fibers (slow red fibers) is, therefore, distinct from the other myosin isoenzymes. In the rat soleus, a slow-twitch muscle, the majority of the fibers reacted only with antibody against ALD myosin. A minority, however, reacted with antiboddies to pectoralis as well as ALD myosin, which indicates that both fast and slow myosin can coexist within the same fiber of a normal adult muscle. These immunocytochemical studies have emphasized that a wide range of isoenzymes may contribute to the characteristic physiological properties of individual fiber types in a mixed muscle.  相似文献   

12.
The P light chain of myosin is partially phosphorylated in resting slow and fast twitch skeletal muscles of the rabbit in vivo. The extent of P light-chain phosphorylation increases in both muscles on stimulation. Rabbit slow-twitch muscles contain two forms of the P light chain that migrate with the same electrophoretic mobilities as the two forms of P light chain in rabbit ventricular muscle. The rate of phosphorylation of the P light chain in slow-twitch muscle is slower than its rate of phosphorylation in fast-twitch muscles during tetanus. The rate of P light-chain dephosphorylation is slow after tetanic contraction of fast-twitch muscles in vivo. The time course of dephosphorylation does not correlate with the decline of post-tetanic potentiation of peak twitch tension in rabbit fast-twitch muscles. The frequency of stimulation is an important factor in determining the extent of P light-chain phosphorylation in fast- and slow-twitch muscles.  相似文献   

13.
Light chain exchange in 4.7 M NH4Cl was used to hybridize the essential light chain of cardiac myosin with the heavy chain of fast muscle myosin subfragment 1, S-1. The actin-activated ATPase properties of this hybrid were compared to those of the two fast S-1 isoenzymes, S-1(A1), fast muscle subfragment 1 which contains only the alkali-1 light chain, and S-1(A2), fast muscle myosin subfragment 1 which contains only the alkali-2 light chain. This hybrid S-1 behaved like S-1(A1)., At low ionic strength in the presence of actin, this hybrid had a maximal rate of ATP hydrolysis about the same as that of S-1(A1) and about one-half that of S-1(A2), while at higher ionic strengths the actin-activated ATPases of these three S-2 species were all similar. Light chain exchange in NH4Cl was also used to hybridize the essential light chains of fast muscle myosin with the heavy chains of cardiac myosin and to hybridize the essential light chains of cardiac myosin with the heavy chains of fast muscle myosin. In 60 and 100 mM KCl, the actin-activated ATPases of these two hybrid myosins were very different from those of the control myosins with the same essential light chains but were very similar to those of the control myosins with the same heavy chains, differing at most by one-third.  相似文献   

14.
The catabolic action of glucocorticoids on the molecular level of the two main muscular proteins, myosin and actin, was found to depend on the type of muscle fibres. The synthesis rate of actin and myosin heavy chain was decreased in all types of muscle fibres, and in myosin light chain only in the slow-twitch red fibres. The turnover rate of actin and myosin heavy chain was also found decreased in all types of muscle fibres. The myosin light chains turned over more rapidly in dexamethasone-treated than in the control rats in all types of muscle fibres except in the case of the slow-twitch red ones as was shown by single and double isotope methods. Dexamethasone treatment enhanced the urinary 3-methylhistidine excretion in rats by 60%.  相似文献   

15.
The myosin light chains of cultured muscle cells and embryonic muscle tissue have been examined by two-dimensional gel electrophoresis. Myosin purified from primary cultures of rat muscle cells or the myogenic cell line L6 contain not only the light chains corresponding to those of fast twitch muscle but also another protein, differing slightly in molecular weight and isoelectric point from the adult LC1 protein. By a number of criteria this additional protein is shown to be a myosin light chain: (1) it is found in highly purified myosin preparations; (2) in L6 myosin it replaces the other LC1-type light chains in stoichiometric amounts; (3) it is part of the subfragment-1 complex of myosin produced by chymotrypsin. as expected for an LC1-type light chain. Total extracts of fused cultured muscle cells, when analyzed by two-dimensional electrophoresis, contain substantial amounts of this additional LC1-type protein, strongly suggesting that it is not a proteolytic fragment produced during myosin isolation. Unfused cultures do not synthesize detectable amounts of the adult light chains or the additional LC1-type light chain. This additional LC1 protein can be detected in embryonic or newborn muscle tissue but it is not present in adult myosin or myofibrils. These results indicate that a novel form of myosin light chain, referred to as an embryonic LC1 or LC1emb, is characteristic of the early stages of muscle development.  相似文献   

16.
Smooth muscle myosin from scallop (Patinopecten yessoensis) adductor muscle contains two kinds of regulatory light chains (regulatory light chains a and b), and myosin having regulatory light chain a is suggested to be suitable for inducing "catch contraction" rather than myosin having regulatory light chain b (Kondo, S. & Morita, F. (1981) J. Biochem. 90, 673-681). The amino acid sequences of these two light chains were determined and compared. Regulatory light chain a consists of 161 amino acid residues, while regulatory light chain b consist of 156 amino acid residues. Amino acid substitutions and insertions were found only in the N-terminal regions of the sequences. The structural difference between the two light chains may contribute to the functional difference between myosins having regulatory light chains a and b.  相似文献   

17.
Summary Single muscle fibres were isolated by microdissection from freeze-dried samples of rabbit psoas and soleus muscles. The individual fibres were typed according to qualitative histochemical reactions for succinate dehydrogenase or NADH-tetrazolium reductase and for alkaline Ca2+-activated myofibrillar myosin ATPase after acid or alkaline preincubation. Methods are described for electrophoretic analysis by means of polyacrylamide disc electrophoresis in the presence of SDS of total myofibrillar proteins in single fibres after pre-extraction of soluble proteins. Fast-twitch white fibres revealed a myosin light chain pattern characteristic of fast-type myosin with three light chains of apparent molecular weights of 22,300 (LC1), 18,400 (LC2) and 16,000 (LC3). Fast-twitch red fibres were indistinguishable in this respect from fast-twitch white fibres and showed an identical pattern of myosin light chains. Slow-twitch fibres could be characterized by a myosin light chain pattern typical of myosin of slow-twitch muscles with peptides of the apparent molecular weights of 23,500 (LC1Sa), 23,000 (LC1Sb) and 18,500 (LS2S). Slow-twitch fibres isolated from soleus as well as from psoas muscle were indistinguishable with regard to their myosin light chain patterns, thus suggesting that fibres of the same histochemical type correspond in their myosin light chain patterns irrespective of their origin from different muscles.Dedicated to the memory of Ernest Gutmann who has contributed so much to our knowledge on differentiation of muscle and who died on August 6, 1977  相似文献   

18.
The expression of myosin light chains (MLCs) during the development of human skeletal muscle was investigated by using two different two-dimensional electrophoretic techniques. In both electrophoretic systems the predominant light chain 1 (LC1) expressed during the whole fetal period was found to co-migrate with the adult fast LC1 (LC1F). The main LC2 expressed during the whole fetal period was found to be different from the main fast LC2 (LC2F) and slow LC2 (LC2S) usually present in adult muscle, but co-migrated with a minor component often present in adult muscle. This fetal LC2 was phosphorylatable, and the phosphorylated form co-migrated with the main component of LC2F expressed in the adult. The adult fast LC3 appeared as early as week 20 of gestation, whereas the adult slow light chains (LC1S and LC2S) appeared only during the late fetal period. A minor component of LC1, previously described in humans as an 'embryonic LC' (LCemb.) [Strohman, Micou-Eastwood, Glass & Matsuda (1983) Science 221, 955-957], was only expressed in the early fetal period and was found to co-migrate with atrial LC1 (ALC1). We discuss the expression of these specific developmental forms of MLCs co-existing with immature myosin heavy chains during fetal life.  相似文献   

19.
Regulatory light chains, located on the 'motor' head domains of myosin, belong to the family of Ca2+ binding proteins that consist of four 'EF-hand' subdomains. Vertebrate regulatory light chains can be divided into two functional classes: (i) in smooth/non-muscle myosins, phosphorylation of the light chains by a calcium/calmodulin-dependent kinase regulates both interaction of the myosin head with actin and assembly of the myosin into filaments, (ii) the light chains of skeletal muscle myosins are similarly phosphorylated, but they play no apparent role in regulation. To discover the basis for the difference in regulatory properties of these two classes of light chains, we have synthesized in Escherichia coli, chimeric mutants composed of subdomains derived from the regulatory light chains of chicken skeletal and smooth muscle myosins. The regulatory capability of these mutants was analysed by their ability to regulate molluscan myosin. Using this test system, we identified the third subdomain of the regulatory light chain as being responsible for controlling not only the actin-myosin interaction, but also myosin filament assembly.  相似文献   

20.
A cDNA clone encoding skeletal muscle myosin light chain kinase (MLCK) was isolated from a rat skeletal muscle library using oligonucleotide probes. The total length of the rat skeletal muscle MLCK cDNA was 2823 base pairs with an open reading frame of 1830 base pairs. The deduced sequence of the 610-amino acid protein exhibited 96% amino acid identity to rabbit skeletal muscle MLCK in the carboxyl-terminal portion of the molecule, which contains the catalytic and the calmodulin-binding domains, and 58% identity in the amino-terminal region. Analysis of total rat mRNA revealed a single mRNA species of 3.4 kilobases that was unique to skeletal muscle. Further analysis of skeletal muscle tissue using fast-twitch glycolytic, fast-twitch oxidative glycolytic, and slow-twitch oxidative fibers isolated from rat leg revealed that the mRNA level for MLCK varied among the three fiber types. The results of kinase assays performed on the fibers showed that MLCK activity levels paralleled the MLCK mRNA levels found in each of the three types of skeletal muscle fibers studied. Fast-twitch oxidative glycolytic (gastrocnemius red) and slow-twitch oxidative (soleus) exhibited 60 and 13%, respectively, of the enzymatic activity present in fast-twitch glycolytic (gastrocnemius white) fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号