首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generation of auxotrophic mutants of Enterococcus faecalis.   总被引:4,自引:1,他引:3       下载免费PDF全文
A 22-kb segment of chromosomal DNA from Enterococcus faecalis OG1RF containing the pyrimidine biosynthesis genes pyrC and pyrD was previously detected as complementing Escherichia coli pyrC and pyrD mutations. In the present study, it was found that the E. faecalis pyrimidine biosynthetic genes in this clone (designated pKV48) are part of a larger cluster resembling that seen in Bacillus spp. Transposon insertions were isolated at a number of sites throughout the cluster and resulted in loss of the ability to complement E. coli auxotrophs. The DNA sequences of the entire pyrD gene of E. faecalis and selected parts of the rest of the cluster were determined, and computer analyses found these to be similar to genes from Bacillus subtilis and Bacillus caldolyticus pyrimidine biosynthesis operons. Five of the transposon insertions were introduced back into the E. faecalis chromosome, and all except insertions in pyrD resulted in pyrimidine auxotrophy. The prototrophy of pyrD knockouts was observed for two different insertions and suggests that E. faecalis is similar to Lactococcus lactis, which has been shown to possess two pyrD genes. A similar analysis was performed with the purL gene from E. faecalis, contained in another cosmid clone, and purine auxotrophs were isolated. In addition, a pool of random transposon insertions in pKV48, isolated in E. coli, was introduced into the E. faecalis chromosome en masse, and an auxotroph was obtained. These results demonstrate a new methodology for constructing defined knockout mutations in E. faecalis.  相似文献   

2.
3.
4.
In response to iron deprivation, Bacillus subtilis secretes a catecholic siderophore, 2,3-dihydroxybenzoyl glycine, which is similar to the precursor of the Escherichia coli siderophore enterobactin. We isolated two sets of B. subtilis DNA sequences that complemented the mutations of several E. coli siderophore-deficient (ent) mutants with defective enterobactin biosynthesis enzymes. One set contained DNA sequences that complemented only an entD mutation. The second set contained DNA sequences that complemented various combinations of entB, entE, entC, and entA mutations. The two sets of DNA sequences did not appear to overlap. AB. subtilis mutant containing an insertion in the region of the entD homolog grew much more poorly in low-iron medium and with markedly different kinetics. These data indicate that (i) at least five of the siderophore biosynthesis genes of B. subtilis can function in E. coli, (ii) the genetic organization of these siderophore genes in B. subtilis is similar to that in E. coli, and (iii) the B. subtilis entD homolog is required for efficient growth in low-iron medium. The nucleotide sequence of the B. subtilis DNA contained in plasmid pENTA22, a clone expressing the B. subtilis entD homolog, revealed the presence of at least two genes. One gene was identified as sfpo, a previously reported gene involved in the production of surfactin in B. subtilis and which is highly homologous to the E. coli entD gene. We present evidence that the E. coli entD and B. subtilis sfpo genes are interchangeable and that their products are members of a new family of proteins which function in the secretion of peptide molecules.  相似文献   

5.
The genes ptsI and ptsH, which encode, respectively, enzyme I and Hpr, cytoplasmic proteins involved in the phosphoenolpyruvate:sugar phosphotransferase system, were cloned from Bacillus subtilis. A plasmid containing a 4.1-kilobase DNA fragment was shown to complement Escherichia coli mutations affecting the ptsH and ptsI genes. In minicells this plasmid expressed two proteins with the molecular weights expected for Hpr and enzyme I. Therefore, ptsH and ptsI are adjacent in B. subtilis, as in E. coli. In E. coli a third gene (crr), involved in glucose translocation and also in catabolite repression, is located downstream from the ptsHI operon. The 4.1-kilobase fragment from B. subtilis was shown to contain a gene that enables an E. coli crr mutant to use glucose. This gene, unlike the E. coli crr gene, was located to the left of ptsH.  相似文献   

6.
With the exception of Escherichia coli lysyl-tRNA synthetase, the genes coding for the different aminoacyl-tRNA synthetases in procaryotes are always unique. Here we report on the occurrence and cloning of two genes (thrSv and thrS2), both encoding functional threonyl-tRNA synthetase in Bacillus subtilis. The two proteins share only 51.5% identical residues, which makes them almost as distinct from each other as each is from E. coli threonyl-tRNA synthetase (42 and 47%). Both proteins complement an E. coli thrS mutant and effectively charge E. coli threonyl tRNA in vitro. Their genes have been mapped to 250 degrees (thrSv) and 344 degrees (thrS2) on the B. subtilis chromosome. The regulatory regions of both genes are quite complex and show structural similarities. During vegetative growth, only the thrSv gene is expressed.  相似文献   

7.
Glycosyl hydrolase (GH) genes from Escherichia coli and Bacillus subtilis were used to search for cases of horizontal gene transfer. Such an event was inferred by G + C content, codon usage analysis, and a phylogenetic congruency test. The codon usage analysis used is a procedure based on a distance derived from a Pearson linear correlation coefficient determined from a pairwise codon usage comparison. The distances are then used to generate a distance-based tree with which we can define clusters and rapidly compare codon usage. Three genes (yagH from E. coli and xynA and xynB from B. subtilis) were determined to have arrived by horizontal gene transfer and were located in E. coli CP4-6 prophage, and B. subtilis prophages 6 and 5, respectively. In this study, we demonstrate that with codon usage analysis, the proposed horizontally transferred genes can be distinguished from highly expressed genes.  相似文献   

8.
Escherichia coli 5'-phosphoribosylformylglycinamide (FGAR) amidotransferase (EC 6.3.5.3) encoded by the purL gene catalyzes the conversion of FGAR to formylglycinamidine in the presence of glutamine and ATP for the de novo purine nucleotide biosynthesis. On the basis of the nucleotide sequence of purL, the enzyme was dissected along the polypeptide chain into at least three discrete regions, designated as domains I, II, and III, by genetic complementation tests. Domain III (255 amino acids), which resides in the C-terminal region, is similar in amido acid sequence to several glutamine amidotransferases and exerts the transfer of the amide nitrogen of glutamine. Domain I (791 amino acids) resides in the N-terminal region and contains a potential ATP binding motif. Domain II (249 amino acids) locates between domains I and III and is composed of an alternating structure of at least eight predicted beta-strand and alpha-helix elements, as has been observed in the family of triosephosphate isomerases. The functions of domains I and II have been discussed in relation to the transfer of the carbonyl oxygen of FGAR into the gamma-phosphorus moiety of ATP. These results support a model that the E. coli purL gene is a fused gene of at least three different gene families. The highly repetitive sequences of the E. coli genome appeared to play an important role in the process of the gene fusion.  相似文献   

9.
B Beall  M Lowe    J Lutkenhaus 《Journal of bacteriology》1988,170(10):4855-4864
The Bacillus subtilis homolog of the Escherichia coli ftsZ gene was isolated by screening a B. subtilis genomic library with anti-E. coli FtsZ antiserum. DNA sequence analysis of a 4-kilobase region revealed three open reading frames. One of these coded for a protein that was about 50% homologous to the E. coli FtsZ protein. The open reading frame just upstream of ftsZ coded for a protein that was 34% homologous to the E. coli FtsA protein. The open reading frames flanking these two B. subtilis genes showed no relationship to those found in E. coli. Expression of the B. subtilis ftsZ and ftsA genes in E. coli was lethal, since neither of these genes could be cloned on plasmid vectors unless promoter sequences were first removed. Cloning the B. subtilis ftsZ gene under the control of the lac promoter resulted in an IPTGs phenotype that could be suppressed by overproduction of E. coli FtsZ. These genes mapped at 135 degrees on the B. subtilis genetic map near previously identified cell division mutations.  相似文献   

10.
Plasmids carrying the intact Bacillus subtilis dnaA-like gene and two reciprocal hybrids between the B. subtilis and Escherichia coli dnaA genes were constructed. None of the plasmids could transform wild-type E. coli cells unless the cells contained surplus E. coli DnaA protein (DnaAEc). A dnaA (Ts) strain integratively suppressed by the plasmid R1 origin could be transformed by plasmids carrying either the B. subtilis gene (dnaABs) or a hybrid gene containing the amino terminus of the E. coli gene and the carboxyl terminus of the B. subtilis gene (dnaAEc/Bs). In cells with surplus E. coli DnaA protein, expression of the E. coli dnaA gene was derepressed by the B. subtilis DnaA protein and by the hybrid DnaAEc/Bs protein, whereas it was strongly repressed by the reciprocal hybrid protein DnaABs/Ec. The plasmids carrying the different dnaA genes probably all interfere with initiation of chromosome replication in E. coli by decreasing the E. coli DnaA protein concentration to a limiting level. The DnaABs and the DnaAEc/Bs proteins effect this decrease possibly by forming inactive oligomeric proteins, while the DnaABs/Ec protein may decrease dnaAEc gene expression.  相似文献   

11.
Two genes encoding functional RNase H (EC 3.1.26.4) were isolated from a gram-positive bacterium, Bacillus subtilis 168. Two DNA clones exhibiting RNase H activities both in vivo and in vitro were obtained from a B. subtilis DNA library. One (28.2 kDa) revealed high similarity to Escherichia coli RNase HII, encoded by the rnhB gene. The other (33.9 kDa) was designated rnhC and encodes B. subtilis RNase HIII. The B. subtilis genome has an rnhA homologue, the product of which has not yet shown RNase H activity. Analyses of all three B. subtilis genes revealed that rnhB and rnhC cannot be simultaneously inactivated. This observation indicated that in B. subtilis both the rnhB and rnhC products are involved in certain essential cellular processes that are different from those suggested by E. coli rnh mutation studies. Sequence conservation between the rnhB and rnhC genes implies that both originated from a single ancestral RNase H gene. The roles of bacterial RNase H may be indicated by the single rnhC homologue in the small genome of Mycoplasma species.  相似文献   

12.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

13.
14.
Genes and their organization are conserved in the replication origin region of the bacterial chromosome. To determine the extent of the conserved region in Gram-positive and Gram-negative bacteria, which diverged 1.2 billion years ago, we have further sequenced the region upstream from the dnaA genes in Bacillus subtilis and Pseudomonas putida. Fifteen open reading frames (ORFs) and 11 ORFs were identified in the 13.6 kb and the 9.8 kb fragments in B. subtilis and P. putida, respectively. Eight consecutive P. putida genes, except for one small ORF (homologous to gene 9K of Escherichia coli) in between, are homologous in sequence and relative locations to genes in B. subtilis. Altogether, 12 genes and their organization are conserved in B. subtilis and P. putida in the origin region. We found that the conserved region terminated on one side after the orf290 in P. putida (orf282 in B. subtilis). In the B. subtilis chromosome, five additional ORFs were found in between the conserved genes, suggesting that they are added after Gram-positive bacteria were diverged from the Gram-negative bacteria. One of the ORFs is a duplicate of the conserved gene. The third non-translatable region containing multiple repeats of DnaA-box (second in the case of P. putida) was found flanking gidA in both organisms. This result shows clearly that E. coli oriC and flanking genes gidA and gidB have been translocated by the inversion of some 40 kb fragment.  相似文献   

15.
A 3.5-kb HindIII DNA fragment containing the secY gene of Bacillus subtilis has been cloned into plasmid pUC13 using the Escherichia coli secY gene as a probe. The complete nucleotide sequence of the cloned DNA indicated that it contained five open reading frames, and their order in the region, given by the gene product, was suggested to be L30-L15-SecY-Adk-Map by their similarity to the products of the E. coli genes. The region was similar to a part of the spc operon of the E. coli chromosome, although the genes for Adk and Map were not included. The gene product of the B. subtilis secY homologue was composed of 423 amino acids and its molecular weight was calculated to be 46,300. The distribution of hydrophobic amino acids in the gene product suggested that the protein is a membrane integrated protein with ten transmembrane segments. The total deduced amino acid sequence of the B. subtilis SecY homologue shows 41.3% homology with that of E. coli SecY, but remarkably higher homologous regions (more than 80% identity) are present in the four cytoplasmic domains.  相似文献   

16.
We have compared the recF genes from Escherichia coli K-12, Salmonella typhimurium, Pseudomonas putida, and Bacillus subtilis at the DNA and amino acid sequence levels. To do this we determined the complete nucleotide sequence of the recF gene from Salmonella typhimurium and we completed the nucleotide sequence of recF gene from Pseudomonas putida begun by Fujita et al. (1). We found that the RecF proteins encoded by these two genes contain respectively 92% and 38% amino acid identity with the E. coli RecF protein. Additionally, we have found that the S. typhimurium and P. putida recF genes will complement an E. coli recF mutant, but the recF gene from Bacillus subtilis [showing about 20% identity with E. coli (2)] will not. Amino acid sequence alignment of the four proteins identified four highly conserved regions. Two of these regions are part of a putative phosphate binding loop. In one region (position 36), we changed the lysine codon (which is essential for ATPase, GTPase and kinase activity in other proteins having this phosphate binding loop) to an arginine codon. We then tested this mutation (recF4101) on a multicopy plasmid for its ability to complement a recF chromosomal mutation and on the E. coli chromosome for its effect on sensitivity to UV irradiation. The strain with recF4101 on its chromosome is as sensitive as a null recF mutant strain. The strain with the plasmid-borne mutant allele is however more UV resistant than the null mutant strain. We conclude that lysine-36 and possibly a phosphate binding loop is essential for full recF activity. Lastly we made two chimeric recF genes by exchanging the amino terminal 48 amino acids of the S. typhimurium and E. coli recF genes. Both chimeras could complement E. coli chromosomal recF mutations.  相似文献   

17.
A series of shuttle vectors for Bacillus subtilis and Escherichia coli.   总被引:10,自引:0,他引:10  
R Brückner 《Gene》1992,122(1):187-192
  相似文献   

18.
19.
The cryptic Streptococcus cremoris Wg2 plasmid pWV01 (1.5 megadaltons) was genetically marked with the chloramphenicol resistance (Cmr) gene from pC194. The recombinant plasmid (pGK1, 2.4 megadaltons) replicated and expressed Cmr in Bacillus subtilis. From this plasmid an insertion-inactivation vector was constructed by inserting the erythromycin resistance (Emr) gene from pE194 cop-6. This plasmid (pGK12, 2.9 megadaltons) contained a unique BclI site in the Emr gene and unique ClaI and HpaII sites outside both resistance genes. It was stably maintained in B. subtilis at a copy number of approximately 5. pGK12 also transformed Escherichia coli competent cells to Cmr and Emr. The copy number in E. coli was about 60. Moreover, pGK12 transformed protoplasts of Streptococcus lactis. In this host both resistance genes are expressed. pGK12 is stably maintained in S. lactis at a copy number of 3.  相似文献   

20.
The cryptic Streptococcus cremoris Wg2 plasmid pWV01 (1.5 megadaltons) was genetically marked with the chloramphenicol resistance (Cmr) gene from pC194. The recombinant plasmid (pGK1, 2.4 megadaltons) replicated and expressed Cmr in Bacillus subtilis. From this plasmid an insertion-inactivation vector was constructed by inserting the erythromycin resistance (Emr) gene from pE194 cop-6. This plasmid (pGK12, 2.9 megadaltons) contained a unique BclI site in the Emr gene and unique ClaI and HpaII sites outside both resistance genes. It was stably maintained in B. subtilis at a copy number of approximately 5. pGK12 also transformed Escherichia coli competent cells to Cmr and Emr. The copy number in E. coli was about 60. Moreover, pGK12 transformed protoplasts of Streptococcus lactis. In this host both resistance genes are expressed. pGK12 is stably maintained in S. lactis at a copy number of 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号