首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction of uranium by Desulfovibrio desulfuricans.   总被引:2,自引:0,他引:2       下载免费PDF全文
The possibility that sulfate-reducing microorganisms contribute to U(VI) reduction in sedimentary environments was investigated. U(VI) was reduced to U(IV) when washed cells of sulfate-grown Desulfovibrio desulfuricans were suspended in a bicarbonate buffer with lactate or H2 as the electron donor. There was no U(VI) reduction in the absence of an electron donor or when the cells were killed by heat prior to the incubation. The rates of U(VI) reduction were comparable to those in respiratory Fe(III)-reducing microorganisms. Azide or prior exposure of the cells to air did not affect the ability of D. desulfuricans to reduce U(VI). Attempts to grow D. desulfuricans with U(VI) as the electron acceptor were unsuccessful. U(VI) reduction resulted in the extracellular precipitation of the U(IV) mineral uraninite. The presence of sulfate had no effect on the rate of U(VI) reduction. Sulfate and U(VI) were reduced simultaneously. Enzymatic reduction of U(VI) by D. desulfuricans was much faster than nonenzymatic reduction of U(VI) by sulfide, even when cells of D. desulfuricans were added to provide a potential catalytic surface for the nonenzymatic reaction. The results indicate that enzymatic U(VI) reduction by sulfate-reducing microorganisms may be responsible for the accumulation of U(IV) in sulfidogenic environments. Furthermore, since the reduction of U(VI) to U(IV) precipitates uranium from solution, D. desulfuricans might be a useful organism for recovering uranium from contaminated waters and waste streams.  相似文献   

2.
Reduction of uranium by Desulfovibrio desulfuricans.   总被引:7,自引:0,他引:7  
The possibility that sulfate-reducing microorganisms contribute to U(VI) reduction in sedimentary environments was investigated. U(VI) was reduced to U(IV) when washed cells of sulfate-grown Desulfovibrio desulfuricans were suspended in a bicarbonate buffer with lactate or H2 as the electron donor. There was no U(VI) reduction in the absence of an electron donor or when the cells were killed by heat prior to the incubation. The rates of U(VI) reduction were comparable to those in respiratory Fe(III)-reducing microorganisms. Azide or prior exposure of the cells to air did not affect the ability of D. desulfuricans to reduce U(VI). Attempts to grow D. desulfuricans with U(VI) as the electron acceptor were unsuccessful. U(VI) reduction resulted in the extracellular precipitation of the U(IV) mineral uraninite. The presence of sulfate had no effect on the rate of U(VI) reduction. Sulfate and U(VI) were reduced simultaneously. Enzymatic reduction of U(VI) by D. desulfuricans was much faster than nonenzymatic reduction of U(VI) by sulfide, even when cells of D. desulfuricans were added to provide a potential catalytic surface for the nonenzymatic reaction. The results indicate that enzymatic U(VI) reduction by sulfate-reducing microorganisms may be responsible for the accumulation of U(IV) in sulfidogenic environments. Furthermore, since the reduction of U(VI) to U(IV) precipitates uranium from solution, D. desulfuricans might be a useful organism for recovering uranium from contaminated waters and waste streams.  相似文献   

3.
The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 +/- 3 degrees C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, V(max), ranged from 2.4 +/- 0.2 micromol of sulfate/mg (dry weight) of SRB. h(-1)) at 0.25 mM sulfate to 5.0 +/- 1.1 micromol of sulfate/mg (dry weight) of SRB. h(-1) at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, V(max) was 1.6 +/- 0.2 micromol of sulfate/mg (dry weight) of SRB. h(-1) at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 +/- 0.003 mg (dry weight) of cells/ml. min(-1) for the mixed culture and 0.137 +/- 0.016 mg (dry weight) of cells/ml. min(-1) (U(0) = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source.  相似文献   

4.
Growth-decoupled cells of Desulfovibrio vulgaris NCIMB 8303 can be used to reduce Pd(II) to cell-bound Pd(0) (Bio-Pd(0)), a bioinorganic catalyst capable of reducing hexavalent chromium to less toxic Cr(III), using formate as the electron donor. Magnetic resonance imaging showed that Bio-Pd(0), immobilized in chitosan and agar beads, is distinguishable from the surrounding gel and is evenly dispersed within the immobilization matrix. Agar-immobilized Bio-Pd(0) and 'chemical Pd(0)' were packed into continuous-flow reactors, and challenged with a solution containing 100 microM Cr(VI) (pH 7) at a flow rate of 2.4 ml h(-1). Agar-immobilized chemical Pd(0) columns lost Cr(VI) reducing ability by 160 h, whereas columns containing immobilized Bio-Pd(0) maintained 90% reduction until 680 h, after which reduction efficiency was gradually lost.  相似文献   

5.
Selenium at high levels may cause adverse health effects on human beings and endanger aquatic lives due to its toxicity. Se(VI) reduction in continuous-flow reactors packed with Shigella fergusonii strain TB42616 immobilized by Ca2+-alginate gel beads was investigated under various hydraulic retention times (HRT) and influent Se(VI) concentrations. Removal efficiency up to 98.8 % was achieved after 96 days operation under an HRT of 5 days and an influent Se(VI) concentration of 400 mg/L. The results showed that the overall selenium removal efficiency was affected by the HRT and the bed height of the reactor but not the influent Se(VI) concentration. The steady-state data were analyzed using a mathematical model and Monod-type kinetics. Biokinetic parameters of half-velocity constants and maximum specific reduction rates were optimized using steady-state data obtained under a range of HRTs (0.73–5.0 days) at a constant influent Se(VI) concentration of 50 mg/L. The model was validated using steady-state data obtained under influent Se(VI) concentrations ranging from 10 to 400 mg/L while maintaining the HRT at 5.0 days. The high correlation coefficients between model calculated Se(VI) and Se(IV) concentrations and the experimental data indicate that the model is robust to predict the performance of the continuous-flow bioreactor.  相似文献   

6.
Chromate reduction by immobilized palladized sulfate-reducing bacteria   总被引:1,自引:0,他引:1  
Resting cells of Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans NCIMB 8307 were used for the hydrogenase-mediated reduction of Pd(II) to Pd(0). The resulting hybrid palladium bionanocatalyst (Bio-Pd(0)) was used in the reduction of Cr(VI) to the less environmentally problematic Cr(III) species. The reduction of Cr(VI) by free and agar-immobilized Bio-Pd(0) was evaluated. Investigations using catalyst suspensions showed that Cr(VI) reduction was similar ( approximately 170 nmol Cr(VI)/h/mg Bio-Pd(0)) when Bio-Pd(0) was produced using D. vulgaris or D. desulfuricans. Continuous-flow studies using D. vulgaris Bio-Pd(0) with agar as the immobilization matrix investigated the effect of Bio-Pd(0) loading, inlet Cr(VI) concentration, and flow rate on the efficiency of Cr(VI) reduction. Reduction of Cr(VI) was highest at a D. vulgaris Bio-Pd(0) loading of 7.5 mg Bio-Pd(0)/mL agar (3:1 dry cell wt: Pd(0)), an input [Cr(VI)] of 100 microM, and a flow rate of 1.75 mL/h (approx. 3.5 column volumes/h). A mathematical interpretation predicted the activity of the immobilized Bio-Pd(0) for a given set of conditions within 5% of the value found by experiment. Considering the system as an 'artificial enzyme' analog and application of applied enzyme kinetics gave an apparent K(m) value (K(m app)) of 430 microM Cr(VI) and a determined value of flow-through reactor activity which differed by 11% from that predicted mathematically.  相似文献   

7.
Kinetic parameters and the role of cytochrome c(3) in sulfate, Fe(III), and U(VI) reduction were investigated in Desulfovibrio vulgaris Hildenborough. While sulfate reduction followed Michaelis-Menten kinetics (K(m) = 220 micro M), loss of Fe(III) and U(VI) was first-order at all concentrations tested. Initial reduction rates of all electron acceptors were similar for cells grown with H(2) and sulfate, while cultures grown using lactate and sulfate had similar rates of metal loss but lower sulfate reduction activities. The similarities in metal, but not sulfate, reduction with H(2) and lactate suggest divergent pathways. Respiration assays and reduced minus oxidized spectra were carried out to determine c-type cytochrome involvement in electron acceptor reduction. c-type cytochrome oxidation was immediate with Fe(III) and U(VI) in the presence of H(2), lactate, or pyruvate. Sulfidogenesis occurred with all three electron donors and effectively oxidized the c-type cytochrome in lactate- or pyruvate-reduced, but not H(2)-reduced cells. Correspondingly, electron acceptor competition assays with lactate or pyruvate as electron donors showed that Fe(III) inhibited U(VI) reduction, and U(VI) inhibited sulfate loss. However, sulfate reduction was slowed but not halted when H(2) was the electron donor in the presence of Fe(III) or U(VI). U(VI) loss was still impeded by Fe(III) when H(2) was used. Hence, we propose a modified pathway for the reduction of sulfate, Fe(III), and U(VI) which helps explain why these bacteria cannot grow using these metals. We further propose that cytochrome c(3) is an electron carrier involved in lactate and pyruvate oxidation and is the reductase for alternate electron acceptors with higher redox potentials than sulfate.  相似文献   

8.
Bacillus sp. ES 29 (ATCC: BAA-696) is an efficient chromate reducing bacterium. We evaluated hexavalent chromium (Cr[VI]) reduction by immobilized intact cells and the cell-free enzyme extracts of Bacillus sp. ES 29 in a bioreactor system. Influences of different flow rates (3 to 14 mL h?1), Cr(VI) concentration (2 to 8 mg L?1), and immobilization support materials (Celite, amberlite, and Ca-alginate) on Cr(VI) reduction were examined. Both immobilized intact cells and the cell-free extract of Bacillus sp. ES 29 displayed substantial Cr(VI) reduction. Increasing flow rates from 3 to 6 mL h?1 did not affect the rate of Cr(VI) reduction, but above 6 mL h?1, the Cr(VI) reducing capacity of the immobilized intact cells and cell-free extract of Bacillus sp. ES 29 decreased. With both intact cells and the cell-free extracts, the rate of Cr(VI) reduction was inversely related to the concentration. Intact cells immobilized to Celite displayed the highest rate (k = 0.443 at 3 mL h?1) of Cr(VI) reduction. For the immobilized cell-free extract, maximal reduction (k = 0.689 at 3 mL h?1) was observed with Ca-alginate. Using initial Cr(VI) concentrations of 2 to 8 mg L?1 at flow rates of 3 to 6 mL h?1 both immobilized intact cells and the cell-free extracts reduced 84 to 98% of the influent Cr(VI). Results indicate that immobilized cells and the cell-free extracts of Bacillus sp. ES 29 could be used for large-scale removal of Cr(VI) from contaminated water and waste streams in containment systems.  相似文献   

9.
Cytochrome c(3) of Desulfovibrio desulfuricans strain G20 is an electron carrier for uranium (VI) reduction. When D. desulfuricans G20 was grown in medium containing a non-lethal concentration of uranyl acetate (1 mM), the rate at which the cells reduced U(VI) was decreased compared to cells grown in the absence of uranium. Western analysis did not detect cytochrome c(3) in periplasmic extracts from cells grown in the presence of uranium. The expression of this predominant tetraheme cytochrome was not detectably altered by uranium during growth of the cells as monitored through a translational fusion of the gene encoding cytochrome c(3) ( cycA) to lacZ. Instead, cytochrome c(3) protein was found tightly associated with insoluble U(IV), uraninite, after the periplasmic contents of cells were harvested by a pH shift. The association of cytochrome c(3) with U(IV) was interpreted to be non-specific, since pure cytochrome c(3) adsorbed to other insoluble metal oxides, including cupric oxide (CuO), ferric oxide (Fe(2)O(3)), and commercially available U(IV) oxide.  相似文献   

10.
Escherichia coli and Desulfovibrio desulfuricans reduce Tc(VII) (TcO(4)(-)) with formate or hydrogen as electron donors. The reaction is catalyzed by the hydrogenase component of the formate hydrogenlyase complex (FHL) of E. coli and is associated with a periplasmic hydrogenase activity in D. desulfuricans. Tc(VII) reduction in E. coli by H(2) and formate was either inhibited or repressed by 10 mM nitrate. By contrast, Tc(VII) reduction catalyzed by D. desulfuricans was less sensitive to nitrate when formate was the electron donor, and unaffected by 10 mM or 100 mM nitrate when H(2) was the electron donor. The optimum pH for Tc(VII) reduction by both organisms was 5.5 and the optimum temperature was 40 degrees C and 20 degrees C for E. coli and D. desulfuricans, respectively. Both strains had an apparent K(m) for Tc(VII) of 0.5 mM, but Tc(VII) was removed from a solution of 300 nM TcO(4)(-) within 30 h by D. desulfuricans at the expense of H(2). The greater bioprocess potential of D. desulfuricans was shown also by the K(s) for formate (>25 mM and 0.5 mM for E. coli and D. desulfuricans, respectively), attributable to the more accessible, periplasmic localization of the enzyme in the latter. The relative rates of Tc(VII) reduction for E. coli and D. desulfuricans (with H(2)) were 12.5 and 800 micromol Tc(VII) reduced/g biomass/h, but the use of an E. coli HycA mutant (which upregulates FHL activities by approx. 50%) had a similarly enhancing effect on the rate of Tc reduction. The more rapid reduction of Tc(VII) by D. desulfuricans compared with the E. coli strains was also shown using cells immobilized in a hollow-fiber reactor, in which the flow residence times sustaining steady-state removal of 80% of the radionuclide were 24.3 h for the wild-type E. coli, 4.25 h for the upregulated mutant, and 1.5 h for D. desulfuricans.  相似文献   

11.
Kinetic parameters and the role of cytochrome c3 in sulfate, Fe(III), and U(VI) reduction were investigated in Desulfovibrio vulgaris Hildenborough. While sulfate reduction followed Michaelis-Menten kinetics (Km = 220 μM), loss of Fe(III) and U(VI) was first-order at all concentrations tested. Initial reduction rates of all electron acceptors were similar for cells grown with H2 and sulfate, while cultures grown using lactate and sulfate had similar rates of metal loss but lower sulfate reduction activities. The similarities in metal, but not sulfate, reduction with H2 and lactate suggest divergent pathways. Respiration assays and reduced minus oxidized spectra were carried out to determine c-type cytochrome involvement in electron acceptor reduction. c-type cytochrome oxidation was immediate with Fe(III) and U(VI) in the presence of H2, lactate, or pyruvate. Sulfidogenesis occurred with all three electron donors and effectively oxidized the c-type cytochrome in lactate- or pyruvate-reduced, but not H2-reduced cells. Correspondingly, electron acceptor competition assays with lactate or pyruvate as electron donors showed that Fe(III) inhibited U(VI) reduction, and U(VI) inhibited sulfate loss. However, sulfate reduction was slowed but not halted when H2 was the electron donor in the presence of Fe(III) or U(VI). U(VI) loss was still impeded by Fe(III) when H2 was used. Hence, we propose a modified pathway for the reduction of sulfate, Fe(III), and U(VI) which helps explain why these bacteria cannot grow using these metals. We further propose that cytochrome c3 is an electron carrier involved in lactate and pyruvate oxidation and is the reductase for alternate electron acceptors with higher redox potentials than sulfate.  相似文献   

12.
Reductive precipitation of soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) containing minerals is one of the more promising approaches to uranium remediation. The objective of this study was to evaluate the long-term performance of methanogenic granules for the continuous treatment of U(VI). For this purpose, three sand-packed columns inoculated with anaerobic biofilm were operated with or without ethanol and one column was exposed to nitrate co-contamination. The columns were operated for 373 days and efficiently removed U (24 mg L(-1)) in excess of 99.8%. No long-term benefit of ethanol addition was observed, suggesting that endogenous substrates in the biofilm were sufficient to drive the reduction reactions. Nitrate addition was found to inhibit U(VI) reduction and cause re-oxidation of some U(IV) deposited in the column. Taken as a whole, the results indicate that methanogenic biofilms can be reliably applied in bioreactor technology for sustained U removal from groundwater.  相似文献   

13.
Microbial reduction is a promising strategy for chromium remediation, but the effects of competing electron acceptors are still poorly understood. We investigated chromate (Cr(VI)) reduction in batch cultures of Shewanella oneidensis MR-1 under aerobic and denitrifying conditions and in the absence of an additional electron acceptor. Growth and Cr(VI) removal patterns suggested a cometabolic reduction; in the absence of nitrate or oxygen, MR-1 reduced Cr(VI), but without any increase in viable cell counts and rates gradually decreased when cells were respiked. Only a small fraction (1.6%) of the electrons from lactate were transferred to Cr(VI). The 48-h transformation capacity (Tc) was 0.78 mg (15 micromoles) Cr(VI) reduced. [mg protein](-1) for high levels of Cr(VI) added as a single spike. For low levels of Cr(VI) added sequentially, Tc increased to 3.33 mg (64 micromoles) Cr(VI) reduced. [mg protein](-1), indicating that it is limited by toxicity at higher concentrations. During denitrification and aerobic growth, MR-1 reduced Cr(VI), with much faster rates under denitrifying conditions. Cr(VI) had no effect on nitrate reduction at 6 microM, was strongly inhibitory at 45 microM, and stopped nitrate reduction above 200 microM. Cr(VI) had no effect on aerobic growth at 60 microM, but severely inhibited growth above 150 microM. A factor that likely plays a role in Cr(VI) toxicity is intracellular reduced chromium. Transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of denitrifying cells exposed to Cr(VI) showed reduced chromium precipitates both extracellularly on the cell surface and, for the first time, as electron-dense round globules inside cells.  相似文献   

14.
Growth-decoupled cells of Desulfovibrio vulgaris NCIMB 8303 can be used to reduce Pd(II) to cell-bound Pd(0) (Bio-Pd0), a bioinorganic catalyst capable of reducing hexavalent chromium to less toxic Cr(III), using formate as the electron donor. Magnetic resonance imaging showed that Bio-Pd0, immobilized in chitosan and agar beads, is distinguishable from the surrounding gel and is evenly dispersed within the immobilization matrix. Agar-immobilized Bio-Pd0 and `chemical Pd0' were packed into continuous-flow reactors, and challenged with a solution containing 100 m Cr(VI) (pH 7) at a flow rate of 2.4 ml h–1. Agar-immobilized chemical Pd0 columns lost Cr(VI) reducing ability by 160 h, whereas columns containing immobilized Bio-Pd0 maintained 90% reduction until 680 h, after which reduction efficiency was gradually lost.  相似文献   

15.
The potential for stimulating microbial U(VI) reduction as an in situ bioremediation strategy for uranium-contaminated groundwater was evaluated in uranium-contaminated sediment from the FRC, Oak Ridge, TN. Sediment was at low pH (pH 4) and contained high (55 mM) concentrations of nitrate. The addition of organic electron donors resulted in a slow removal of ca. 20% of the nitrate over 120 days with a concurrent increase in pH. Uranium precipitated during nitrate reduction. This precipitation of U(VI) was not due to its reduction to U(IV) because over 90% of the uranium in the sediments remained as U(VI). Studies in which the pH of the sediments was artificially raised suggested that an increase in pH alone could not account for the precipitation of the U(VI) during nitrate reduction. Metal-reducing bacteria were recovered from the sediments in enrichment cultures, but molecular analysis of the sediment demonstrated that the addition of electron donors did not stimulate the growth of these metal reducers. Thus, although U(VI) was precipitated from the groundwater with the simple addition of electron donors, most of the uranium in the sediments was in the form of U(VI), and thus was not effectively immobilized.  相似文献   

16.
The chromate-reducing ability of Pseudomonas aeruginosa A2Chr was compared in batch culture, with cells entrapped in a dialysis sac, and with cells immobilized in an agarose-alginate film in conjunction with a rotating biological contactor. In all three systems, the maximum Cr(VI) reduction occurred at 10 mg Cr(VI)/l. Whereas at 50 mg Cr(VI)/l concentration, only 16% of the total Cr(VI) was reduced, five spikings with 10 mg chromate/l at 2-h intervals led to 96% reduction of the total input of 50 mg Cr(VI)/l. Thus maximum Cr(VI) reduction was achieved by avoiding Cr(VI) toxicity to the cells by respiking with lower Cr(VI) concentrations. At 10 mg Cr(VI)/l, the pattern of chromate reduction in dialysis-entrapped cells was almost similar to that of batch culture and 86% of the bacterially reduced chromium was retained inside the dialysis sac. In electroplating effluent containing 100 mg Cr(VI)/l, however, the amount of Cr(VI) reduced by the cells immobilized in agarose-alginate biofilm was twice and thrice the amount reduced by batch culture and cells entrapped in a dialysis sac, respectively.  相似文献   

17.
Pang Y  Zeng GM  Tang L  Zhang Y  Liu YY  Lei XX  Wu MS  Li Z  Liu C 《Bioresource technology》2011,102(22):10733-10736
Pseudomonas aeruginosa (P. aeruginosa) was immobilized with polyvinyl alcohol (PVA), sodium alginate and multiwalled carbon nanotubes (MCNTs). After immobilization, the beads were subjected to freeze-thawing to enhance mechanical strength. When exposed to 80 mg/L Cr(VI), the immobilized bacteria were able to reduce 50% of them in 84 h, however the free cells were deactivated at this concentration. The beads were used to reduce 50 mg/L Cr(VI) for nine times, with the reduction efficiency above 90% in the first five times and 65% in the end.  相似文献   

18.
The influence of organic-hexavalent-uranium [U(VI)] complexation on U(VI) reduction by a sulfate-reducing bacterium (Desulfovibrio desulfuricans) and an iron-reducing bacterium (Shewanella alga) was evaluated. Four aliphatic ligands (acetate, malonate, oxalate, and citrate) and an aromatic ligand (tiron [4,5-dihydroxy-1,3-benzene disulfonic acid]) were used to study complexed-uranium bioavailability. The trends in uranium reduction varied with the nature and the amount of U(VI)-organic complex formed and the type of bacteria present. D. desulfuricans rapidly reduced uranium from a monodentate aliphatic (acetate) complex. However, reduction from multidentate aliphatic complexes (malonate, oxalate, and citrate) was slower. A decrease in the amount of organic-U(VI) complex in solution significantly increased the rate of reduction. S. alga reduced uranium more rapidly from multidentate aliphatic complexes than from monodentate aliphatic complexes. The rate of reduction decreased with a decrease in the amount of multidentate complexes present. Uranium from an aromatic (tiron) complex was readily available for reduction by D. desulfuricans, while an insignificant level of U(VI) from the tiron complex was reduced by S. alga. These results indicate that selection of bacteria for rapid uranium reduction will depend on the organic composition of waste streams.  相似文献   

19.
Chromate (Cr(VI)) reduction studies were performed in bench scale flow columns using the fermentative subsurface isolate Cellulomonas sp. strain ES6. In these tests, columns packed with either quartz sand or hydrous ferric oxide (HFO)-coated quartz sand, were inoculated with strain ES6 and fed nutrients to stimulate growth before nutrient-free Cr(VI) solutions were injected. Results show that in columns containing quartz sand, a continuous inflow of 2 mg/L Cr(VI) was reduced to below detection limits in the effluent for durations of up to 5.7 residence times after nutrient injection was discontinued proving the ability of strain ES6 to reduce chromate in the absence of an external electron donor. In the HFO-containing columns, Cr(VI) reduction was significantly prolonged and effluent Cr(VI) concentrations remained below detectable levels for periods of up to 66 residence times after nutrient injection was discontinued. Fe was detected in the effluent of the HFO-containing columns throughout the period of Cr(VI) removal indicating that the insoluble Fe(III) bearing solids were being continuously reduced to form soluble Fe(II) resulting in prolonged abiotic Cr(VI) reduction. Thus, growth of Cellulomonas within the soil columns resulted in formation of permeable reactive barriers that could reduce Cr(VI) and Fe(III) for extended periods even in the absence of external electron donors. Other bioremediation systems employing Fe(II)-mediated reactions require a continuous presence of external nutrients to regenerate Fe(II). After depletion of nutrients, contaminant removal within these systems occurs by reaction with surface-associated Fe(II) that can rapidly become inaccessible due to formation of crystalline Fe-minerals or other precipitates. The ability of fermentative organisms like Cellulomonas to reduce metals without continuous nutrient supply in the subsurface offers a viable and economical alternative technology for in situ remediation of Cr(VI)-contaminated groundwater through formation of permeable reactive biobarriers (PRBB).  相似文献   

20.
Bacillus sp. ES 29 (ATCC: BAA-696) is an efficient chromate reducing bacterium. We evaluated hexavalent chromium (Cr[VI]) reduction by immobilized intact cells and the cell-free enzyme extracts of Bacillus sp. ES 29 in a bioreactor system. Influences of different flow rates (3 to 14 mL h-1), Cr(VI) concentration (2 to 8 mg L-1), and immobilization support materials (Celite, amberlite, and Ca-alginate) on Cr(VI) reduction were examined. Both immobilized intact cells and the cell-free extract of Bacillus sp. ES 29 displayed substantial Cr(VI) reduction. Increasing flow rates from 3 to 6 mL h-1 did not affect the rate of Cr(VI) reduction, but above 6 mL h-1, the Cr(VI) reducing capacity of the immobilized intact cells and cell-free extract of Bacillus sp. ES 29 decreased. With both intact cells and the cell-free extracts, the rate of Cr(VI) reduction was inversely related to the concentration. Intact cells immobilized to Celite displayed the highest rate (k = 0.443 at 3 mL h-1) of Cr(VI) reduction. For the immobilized cell-free extract, maximal reduction (k = 0.689 at 3 mL h-1) was observed with Ca-alginate. Using initial Cr(VI) concentrations of 2 to 8 mg L-1 at flow rates of 3 to 6 mL h-1 both immobilized intact cells and the cell-free extracts reduced 84 to 98% of the influent Cr(VI). Results indicate that immobilized cells and the cell-free extracts of Bacillus sp. ES 29 could be used for large-scale removal of Cr(VI) from contaminated water and waste streams in containment systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号