首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein-protein interactions drive the assembly of the herpes simplex virus type 1 capsid. A key interaction occurs between the C terminus of the scaffold protein and the N terminus of the major capsid protein (VP5). Results from alanine-scanning mutagenesis of hydrophobic residues in the N terminus of VP5 revealed seven residues (I27, L35, F39, L58, L65, L67, and L71) that reside in two predicted alpha helices (helix 1(22-42) and helix 2(58-72)) that are important for this bimolecular interaction. The goal of the present study was to further characterize the VP5 scaffold interaction domain (SID). Amino acids at the seven positions were replaced with L, M, V or P (I27); I, M, V, or P (L35, L58, L65, L67, and L71); and H, W, Y, or L (F39). Replacement with a hydrophobic side chain did not affect the interaction with scaffold protein in yeast cells or the ability of a virus specifying the mutation from replicating in cells. The mutation to the proline side chain abolished the interaction in all cases and was lethal for virus replication. Mutant viruses with proline substitutions in helix 1(22-42) at positions 27 and 35 assembled large open capsid shells that did not attain closure. Proline substitutions in helix 2(58-72) at either position 59, 65, or 67 abolished the accumulation of VP5 protein, and, at 58 and 71, although VP5 did accumulate, capsid shells were not assembled. Thus, the second SID, SID2, is highly structured, and this alpha helix (helix 2(58-72)) is likely involved in capsomere-capsomere interactions during shell accretion. Conserved glycine G59 in helix 2(58-72) was also mutated. G59 may act as a flexible "hinge" in helix 2(58-72) because decreasing the movement of this side chain by replacement with valine impaired capsid assembly. Thus, the N terminus of VP5 and the alpha helices embedded in this domain, as in the capsid shell proteins of some double-stranded DNA phages, are a key regulator of shell accretion and stabilization.  相似文献   

3.
Cytoplasmic dynein,together with its cofactor dynactin, transports incoming herpes simplex virus type 1 (HSV-1) capsids along microtubules (MT) to the MT-organizing center (MTOC). From the MTOC, capsids move further to the nuclear pore, where the viral genome is released into the nucleoplasm. The small capsid protein VP26 can interact with the dynein light chains Tctex1 (DYNLT1) and rp3 (DYNLT3) and may recruit dynein to the capsid. Therefore, we analyzed nuclear targeting of incoming HSV1-DeltaVP26 capsids devoid of VP26 and of HSV1-GFPVP26 capsids expressing a GFPVP26 fusion instead of VP26. To compare the cell entry of different strains, we characterized the inocula with respect to infectivity, viral genome content, protein composition, and particle composition. Preparations with a low particle-to-PFU ratio showed efficient nuclear targeting and were considered to be of higher quality than those containing many defective particles, which were unable to induce plaque formation. When cells were infected with HSV-1 wild type, HSV1-DeltaVP26, or HSV1-GFPVP26, viral capsids were transported along MT to the nucleus. Moreover, when dynein function was inhibited by overexpression of the dynactin subunit dynamitin, fewer capsids of HSV-1 wild type, HSV1-DeltaVP26, and HSV1-GFPVP26 arrived at the nucleus. Thus, even in the absence of the potential viral dynein receptor VP26, HSV-1 used MT and dynein for efficient nuclear targeting. These data suggest that besides VP26, HSV-1 encodes other receptors for dynein or dynactin.  相似文献   

4.
VP26 is a 12-kDa capsid protein of herpes simplex virus 1. Although VP26 is dispensable for assembly, the native capsid (a T=16 icosahedron) contains 900 copies: six on each of the 150 hexons of VP5 (149 kDa) but none on the 12 VP5 pentons at its vertices. We have investigated this interaction by expressing VP26 in Escherichia coli and studying the properties of the purified protein in solution and its binding to capsids. Circular dichroism spectroscopy reveals that the conformation of purified VP26 consists mainly of beta-sheets (approximately 80%), with a small alpha-helical component (approximately 15%). Its state of association was determined by analytical ultracentrifugation to be a reversible monomer-dimer equilibrium, with a dissociation constant of approximately 2 x 10(-5) M. Bacterially expressed VP26 binds to capsids in the normal amount, as determined by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cryoelectron microscopy shows that the protein occupies its usual sites on hexons but does not bind to pentons, even when available in 100-fold molar excess. Quasi-equivalence requires that penton VP5 must differ in conformation from hexon VP5: our data show that in mature capsids, this difference is sufficiently pronounced to abrogate its ability to bind VP26.  相似文献   

5.
Herpes simplex virus virion protein 19C (VP19C) is a constituent of both unenveloped (nuclear) and enveloped (cytoplasmic) capsids. In this paper we report that 32P-labeled DNA, either supercoiled or linear double stranded, efficiently bound to VP19C electrically transferred from denaturing polyacrylamide gels containing electrophoretically separated proteins from purified capsids. Analyses of the polypeptides specified by herpes simplex virus type 1 X herpes simplex type 2 recombinants with respect to electrophoretic mobility and binding of 32P-labeled DNA indicate that VP19C maps at the same location as infected cell polypeptide 32 and is derived from it.  相似文献   

6.
Characterization of a major late herpes simplex virus type 1 mRNA   总被引:5,自引:18,他引:5       下载免费PDF全文
A major, late 6-kilobase (6-kb) mRNa mapping in the large unique region of herpes simplex virus type 1 (HSV-1) was characterized by using two recombinant DNA clones, one containing EcoRI fragment G (0.190 to 0.30 map units) in lambda. WES.B (L. Enquist, M. Madden, P. Schiop-Stansly, and G. Vandl Woude, Science 203:541-544, 1979) and one containing HindIII fragment J (0.181 to 0.259 map units) in pBR322. This 6-kb mRNA had its 3' end to the left of 0.231 on the prototypical arrangement of the HSV-1 genome and was transcribed from right to left. It was bounded on both sides by regions containing a large number of distinct mRNA species, and its 3' end was partially colinear with a 1.5-kb mRNA which encoded a 35,000-dalton polypeptide. The 6-kb mRNA encoded a 155,000-dalton polypeptide which was shown to be the only one of this size detectable by hybrid-arrested translation encoded by late polyadenylated polyribosomal RNA. The S1 nuclease mapping experiments indicated that there were no introns in the coding sequence for this mRNA and that its 3' end mapped approximately 800 nucleotides to the left of the BglII site at 0.231, whereas its 5' end extended very close to the BamHI site at 0.266.  相似文献   

7.
8.
We used CD4 lymphocyte clones from herpes simplex virus type 2 (HSV-2) lesions or the cervix and molecular libraries of HSV-2 DNA to define HSV-2 major capsid protein VP5 and glycoprotein E (gE) as T-cell antigens. Responses to eight HSV-2 glycoprotein, tegument, nonstructural, or capsid antigens were compared in 19 donors. Recognition of VP5 and tegument VP22 were similar to that of gB2 and gD2, currently under study as vaccines. These prevalence data suggest that HSV capsid and tegument proteins may also be candidate vaccine antigens.  相似文献   

9.
10.
11.
The alphaherpesvirus tegument protein VP22 has been characterized with multiple traits including microtubule reorganization, nuclear localization, and nonclassical intercellular trafficking. However, all these data were derived from studies using herpes simplex virus type 1 (HSV-1) and may not apply to VP22 homologs of other alphaherpesviruses. We compared subcellular attributes of HSV-1 VP22 (HVP22) with bovine herpesvirus 1 (BHV-1) VP22 (BVP22) using green fluorescent protein (GFP)-fused VP22 expression vectors. Fluorescence microscopy of cell lines transfected with these constructs revealed differences as well as similarities between the two VP22 homologs. Compared to that of HVP22, the BVP22 microtubule interaction was much less pronounced. The VP22 nuclear interaction varied, with a marbled or halo appearance for BVP22 and a speckled or nucleolus-bound appearance for HVP22. Both VP22 homologs associated with chromatin at various stages of mitosis and could traffic from expressing cells to the nuclei of nonexpressing cells. However, distinct qualitative differences in microtubule, nuclear, and chromatin association as well as trafficking were observed. The differences in VP22 homolog characteristics revealed in this study will help define VP22 function within HSV-1 and BHV-1 infection.  相似文献   

12.
13.
14.
The dispositions of 39 alpha helices of greater than 2.5 turns and four beta sheets in the major capsid protein (VP5, 149 kDa) of herpes simplex virus type 1 were identified by computational and visualization analysis from the 8.5A electron cryomicroscopy structure of the whole capsid. The assignment of helices in the VP5 upper domain was validated by comparison with the recently determined crystal structure of this region. Analysis of the spatial arrangement of helices in the middle domain of VP5 revealed that the organization of a tightly associated bundle of ten helices closely resembled that of a domain fold found in the annexin family of proteins. Structure-based sequence searches suggested that sequences in both the N and C-terminal portions of the VP5 sequence contribute to this domain. The long helices seen in the floor domain of VP5 form an interconnected network within and across capsomeres. The combined structural and sequence-based informatics has led to an architectural model of VP5. This model placed in the context of the capsid provides insights into the strategies used to achieve viral capsid stability.  相似文献   

15.
16.
Tegument proteins of herpes simplex virus type 1 (HSV-1) are hypothesized to contain the functional information required for the budding or envelopment process proposed to occur at cytoplasmic compartments of the host cell. One of the most abundant tegument proteins of HSV-1 is the U(L)49 gene product, VP22, a 38-kDa protein of unknown function. To study its subcellular localization, a VP22-green fluorescent protein chimera was expressed in transfected human melanoma (A7) cells. In the absence of other HSV-1 proteins, VP22 localizes to acidic compartments of the cell that may include the trans-Golgi network (TGN), suggesting that this protein is membrane associated. Membrane pelleting and membrane flotation assays confirmed that VP22 partitions with the cellular membrane fraction. Through truncation mutagenesis, we determined that the membrane association of VP22 is a property attributed to amino acids 120 to 225 of this 301-amino-acid protein. The above results demonstrate that VP22 contains specific information required for targeting to membranes of acidic compartments of the cell which may be derived from the TGN, suggesting a potential role for VP22 during tegumentation and/or final envelopment.  相似文献   

17.
Chi JH  Wilson DW 《Journal of virology》2000,74(3):1468-1476
The herpes simplex virus type 1 (HSV-1) capsid shell is composed of four major polypeptides, VP5, VP19c, VP23, and VP26. VP26, a 12-kDa polypeptide, is associated with the tips of the capsid hexons formed by VP5. Mature capsids form upon angularization of the shell of short-lived, fragile spherical precursors termed procapsids. The cold sensitivity and short-lived nature of the procapsid have made its isolation and biochemical analysis difficult, and it remains unclear whether procapsids contain bound VP26 or whether VP26 is recruited following shell angularization. By indirect immunocytochemical analysis of virally expressed VP26 and by direct visualization of a transiently expressed VP26-green fluorescent protein fusion, we show that VP26 fails to specifically localize to intranuclear procapsids accumulated following incubation of the temperature-sensitive HSV mutant tsProt.A under nonpermissive conditions. However, following a downshift to the permissive temperature, which allows procapsid maturation to proceed, VP26 was seen to concentrate at intranuclear sites which also contained epitopes specific to mature, angularized capsids. Like the formation of these epitopes, the association of VP26 with maturing capsids was blocked in a reversible fashion by the depletion of intracellular ATP. We conclude that unlike the other major capsid shell proteins, VP26 is recruited in an ATP-dependent fashion after procapsid maturation begins.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号