首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Electrical membrane properties of solitary spiking cells during newt (Cynops pyrrhogaster) retinal regeneration were studied with whole-cell patch-clamp methods in comparison with those in the normal retina.The membrane currents of normal spiking cells consisted of 5 components: inward Na+ and Ca++ currents and 3 outward K+ currents of tetraethylammonium (TEA)-sensitive, 4-aminopyridine (4-AP)-sensitive, and Ca++-activated varieties. The resting potential was about -40mV. The activation voltage for Na+ and Ca++ currents was about -30 and -17 mV, respectively. The maximum Na+ and Ca++ currents were about 1057 and 179 pA, respectively.In regenerating retinae after 19–20 days of surgery, solitary cells with depigmented cytoplasm showed slowrising action potentials of long duration. The ionic dependence of this activity displayed two voltage-dependent components: slow inward Na+ and TEA-sensitive outward K+ currents. The maximum inward current (about 156 pA) was much smaller than that of the control. There was no indication of an inward Ca++ current.During subsequent regeneration, the inward Ca++ current appeared in most spiking cells, and the magnitude of the inward Na+, Ca++, and outward K+ currents all increased. By 30 days of regeneration, the electrical activities of spiking cells became identical to those in the normal retina. No significant difference in the resting potential and the activation voltage for Na+ and Ca++ currents was found during the regenerating period examined.  相似文献   

2.
Ionic bases of action potentials in identified flatworm neurones   总被引:1,自引:0,他引:1  
Summary The ionic bases for generation of action potentials in three types of identified multimodal neurones of the brain ofNotoplana acticola, a polyclad flatworm, were studied. The action potentials were generated spontaneously, in response to water-borne vibrations, or by intracellularly injected current pulses. At least three components comprise the depolarizing excitable phase of the action potentials: (a) a rapidly inactivating TTXsensitive Na+ component (Fig. 2); (b) a Ca++ component that is unmasked by intracellular TEA+ (Figs. 4, 6, 7); (c) a TTX-resistant Na+ component (Fig. 8). Two K+ currents appear to account for the repolarization phase of the action potentials: (a) a rapid K+ current that is blocked by intracellular TEA+ (Figs. 4, 7, 8) and (b) a Ca++ -activated K+ conductance that is blocked by Ca++ and Ba++ (Fig. 6). Ionic mechanisms in the generation of action potentials in the central multimodal neurones ofNotoplana pharmacologically resemble those in higher metazoans.Abbreviations TTX tetrodotoxin - TEA + tetraethylammonium ion - LY lucifer yellow - HRP horseradish peroxidase - BRA bilaterally reciprocally arrayed neurons - SC single contralaterally projecting - SIC single ipsilaterally and contralaterally projecting neurons - HAP hyperpolarizing after potential - AHP after hyperpolarization - EGTA ethyleneglycol-bis-(-amino-ethyl ester) N,N-tetra-acetic acid  相似文献   

3.
Although the role of Na+ in several aspects of Ca2+ regulation has already been shown, the exact mechanism of intracellular Ca2+ concentration ([Ca2+]i) increase resulting from an enhancement in the persistent, non‐inactivating Na+ current (INa,P), a decisive factor in certain forms of epilepsy, has yet to be resolved. Persistent Na+ current, evoked by veratridine, induced bursts of action potentials and sustained membrane depolarization with monophasic intracellular Na+ concentration ([Na+]i) and biphasic [Ca2+]i increase in CA1 pyramidal cells in acute hippocampal slices. The Ca2+ response was tetrodotoxin‐ and extracellular Ca2+‐dependent and ionotropic glutamate receptor‐independent. The first phase of [Ca2+]i rise was the net result of Ca2+ influx through voltage‐gated Ca2+ channels and mitochondrial Ca2+ sequestration. The robust second phase in addition involved reverse operation of the Na+–Ca2+ exchanger and mitochondrial Ca2+ release. We excluded contribution of the endoplasmic reticulum. These results demonstrate a complex interaction between persistent, non‐inactivating Na+ current and [Ca2+]i regulation in CA1 pyramidal cells. The described cellular mechanisms are most likely part of the pathomechanism of certain forms of epilepsy that are associated with INa,P. Describing the magnitude, temporal pattern and sources of Ca2+ increase induced by INa,P may provide novel targets for antiepileptic drug therapy.  相似文献   

4.
Summary Driver potentials (DP), TTX-resistant voltage-activated slow depolarizations probably involving Ca++-influx, have previously been shown to play an essential role in the organization of spike bursts in crustacean cardiac ganglia. The work reported here suggests that the DP system may also constitute an important component of the ganglionic oscillator.DPs were recorded intracellularly from neurons in ganglia isolated from two brachyurans,Portunus sanguinolentus and Podophthalmus vigil. InPortunus, full-sized DPs can be evoked in TTX by brief stimulus pulses only at invervals of several seconds; a single DP is triggered during a long (3-s) current pulse, and spontaneous DPs never occur. In contrast, nearly one half ofPodophthalmus preparations show spontaneous high-frequency trains of DPs lasting up to 5 min and recurring at irregular intervals. In allPodophthalmus preparations repetitive DPs are evoked during a 3-s pulse, and increase in frequency as current strength is increased. Portunus ganglia can be made to exhibit repetitive DPs in response to current if perfused with TEA (which suppresses a rectifying K+-current) in a medium with reduced Na+ (which is likely to enhance the inward Ca++-current); neither TEA alone nor low-Na+ alone permits repetitive DPs. IfPortunus large cells are first conditioned at more negative voltages than normal, subsequent depolarizing current tends to induce large oscillations, and a second full DP may result in normal medium containing TTX.InPodophthalmus ganglia, single evoked DPs rise more rapidly and are shorter in duration than inPortunus; they are less effectively suppressed by Mn++, but show similar Ca++-dependency at lowered Ca++ levels. Conditioning hyperpolarization slows the rate of rise of single evoked DPs and delays the onset of repetitive DPs during a 3-s pulse. A fast-K+ current appears to be more strongly activated inPodophthalmus.The results suggest (1) that oscillatory capability of the DP system may itself play an important role in the generation of rhythmic output by cardiac ganglia; and (2) differences in the V-dependence of Ca+ +, delayed rectifying K+ and fast K+ currents may be responsible in diverse species for different tendency of the DP system to oscillate in TTX.Abbreviations DP driver potential - Rm membrane resistance - TEA tetraethylammonium - TTX tetrodotoxin - Vm membrane potential  相似文献   

5.
Summary When the mulletMugil capito is transferred to medium lacking Ca++ (either Ca++-free seawater or distilled water) the passive permeability of the gill to Na+ and Cl is increased and the activating effect of external K+ on the Na+ and Cl effluxes in hyposaline media is inhibited. The permeability of the gill increases progressively in proportion to the time of Ca++ deprivation; it declines when Ca++ is added again to the external medium. The active mechanisms for ion excretion are not reversible. At external Ca++ concentrations from 0.1 to 10 mM the Na+ permeability is constant but the activation of Na+ efflux by K+ shows a maximum at a Ca++ concentration of about 1 mM. For activation of Cl efflux external bicarbonate must be present, in addition to Ca++, suggesting the existence of a Cl/HCO 3 exchange. The mechanism by which Ca++ controls the passive branchial permeability is thus probably different from that involved in K+ activation of ion excretion. The Ca++ effect on the K+ sensitive ionic excretory mechanisms seems to be related to intracellular Ca++ movements. Thus, on the one hand, substances such as Ruthenium Red and La+++ which both inhibit Ca++ exchange, in media containing Ca++ and HCO 3 also inhibit K+ activation of Na+ and Cl effluxes; on the other hand, the ionophore A 23187, a stimulator of Ca++ exchange, when added to these media, activates the Na+ and Cl effluxes; its maximal effect on the Na+ flux occurs at 2 mM Ca++.Abbreviations ASW-Ca artificial seawater minus calcium - DW deionised water - DWCa deionised water with 1 mM Ca++ added - DWCaHCO 3 DW with calcium plus bicarbonate - DWHCO 3 DW with 1 mM sodium bicarbonate added - FW freshwater (tap water) - FWK freshwater with K+ added - P. D. potential difference - SW seawater The experiments reported in this paper were done with Jean Maetz who tragically died in August 1977. It is the last report about several years of friendly collaboration  相似文献   

6.
The influx of Na+, K+, Rb+, and Cs+ into frog sartorius muscle has been followed. The results show that a maximum rate is found for K+, while Na+ and Cs+ penetrate much more slowly. Similar measurements with Ca++, Ba++, and Ra++ show that Ba++ penetrates at a rate somewhat greater than that of either Ca++ or Ra++. All these divalent cations, however, penetrate at rates much slower than do the alkali cations. The results obtained are discussed with reference to a model that has been developed to explain the different penetration rates for the alkali cations.  相似文献   

7.
The carotid body and its own nerve were removed from cats anesthetized with sodium pentobarbital and placed in an air gap system; the carotid body was bathed in modified Locke's solution equilibrated with 50% O2 in N2, pH 7.43 at 35°C. The sensory discharges, changes in “resting” receptor polarization and the mass receptor potential evoked by ACh or NaCN were recorded with nonpolarizable electrodes placed across the gap. Receptor potentials and sensory discharges evoked by ACh showed an appreciable increase in amplitude and frequency when the preparation was bathed in eserinized Locke. Eserine did not change appreciably the responses evoked by NaCN. Excessive depolarization elicited by either ACh or NaCN was accompanied by sensory discharge block. Removal of K+ ions from the bathing solution induced receptor hyperpolarization and an increase in the amplitude of the evoked receptor potentials. An increase of K+ concentration had the opposite effect. Reduction of Na+ or NaCl to one half, or total removal of this salt, induced an initial reduction and later disappearance of the sensory discharges, some receptor hyperpolarization and a reduction in the amplitude of the evoked receptor potentials. Reduction or removal of Ca++ produced receptor depolarization, a marked depression of the evoked receptor potentials, an increase in the frequency of the sensory discharges and a reduction in the amplitude of the nerve action potentials. High Ca++ or Mg++ had little or no effect on action potential amplitude or resting polarization, but decreased sensory discharge frequency and the evoked receptor potentials. Total or partial replacement of Ca++ with Mg++ induced complex effects: (1) receptor depolarization which occurred in low Ca++, was prevented by addition of Mg++ ions; (2) the amplitude of the evoked receptor potentials was depressed; (3) the nerve discharge frequency was reduced as it was in high Mg++ solutions; and (4) the amplitude of the nerve action potentials was reduced as it was in low Ca++ solutions. Temperature had a marked effect on the chemoreceptors since a t high temperatures the receptors were depolarized and the discharge frequency increased. The baseline discharge and responses evoked by ACh or NaCN were depressed at low temperatures. The results are discussed in terms of possible receptor mechanisms influenced by the different ions.  相似文献   

8.
1.  Normal activity in bilateral pairs of heart interneurons, from ganglia 3 or 4, in the medicinal leech (Hirudo medicinalis) is antiphasic due to their reciprocally inhibitory connections. However, Ca+-free Co+-containing salines lead to synchronous oscillations in these neurons.
2.  Internal TEA+ allows expression of full plateaus during Co++ induced oscillations in heart interneurons; these plateaus are not blocked by Cs+. Similar plateaus are also observed with internal TEA+ alone, but under these conditions activity in heart interneurons from ganglia 3 or 4 is antiphasic.
3.  Plateaus in heart interneurons induced by Co++ and internal TEA+ involve a conductance increase.
4.  A voltage-dependent inward current, IP, showing little inactivation, was isolated using single-electrode voltageclamp in heart interneurons. This current is carried at least in part by Na+; the current is reduced when external Na+ is reduced and is carried by Li+ when substituted for Na+.
5.  Calcium channel blockers such as La3+ and Co++ block neither the TEA+ induced plateaus nor IP, suggesting that Na+ is not using Ca++ channels. Moreover, IP is enhanced by Ca++-free Co++-containing salines. Thus, IP is correlated with the TEA+- and Co++-induced plateau behavior.
  相似文献   

9.
Abstract: The effects of four K+-channel inhibitors on synaptosomal free Ca2+ concentrations and 86Rb+ fluxes are analysed. 4-Aminopyridine, α-dendrotoxin, charybdotoxin, and tetraethylammonium all increase the free Ca2+ concentration, although their potencies differ widely. In each case, the elevation in free Ca2+ concentration is reversed by the subsequent addition of tetrodotoxin. The transient 86Rb+ efflux from preequilibrated synaptosomes induced with high concentrations of veratridine is partially inhibited by 4-aminopyridine and α-dendrotoxin. In contrast, when 4-aminopyridine or α-dendrotoxin is added to polarized synaptosomes, an enhanced86Rb+ flux is seen, both for uptake and for efflux with no change in the total 86Rb+/K+ content of the synaptosomes and with only a slight time-averaged plasma membrane depolarization (6.4 and 3.3 mV, respectively). The enhancements of flux by 4-aminopyridine or α-dendrotoxin are sensitive to ouabain and/or to tetrodotoxin. Furthermore, these flux changes show the same concentration dependencies as the blocked component of veratridine-stimulated 86Rb+ efflux, the elevation of free Ca2+ concentration, and the facilitation of glutamate exocytosis that are elicited by 4-aminopyridine or α-dendrotoxin. It is concluded that these findings support the proposal of spontaneous, repetitive firing of synaptosomes evoked by K+-channel inhibitors and that the enhanced 86Rb+ flux is a consequence of the activity of 4-aminopyridine- and α-dendrotoxin-insensitive K+ channels during these action potentials.  相似文献   

10.
The weakly electric fish Gymnotus carapo emits a triphasic electric organ discharge generated by muscle-derived electrocytes, which is modified by environmental and physiological factors. Two electrode current clamp recordings in an in vitro preparation showed that Gymnotus electrocytes fired repetitively and responded with plateau potentials when depolarized. This electrophysiological behavior has never been observed in electrocytes from related species. Two types of plateaus with different thresholds and amplitudes were evoked by depolarization when Na+-dependent currents were isolated in a K+- and Ca2+-free solution containing TEA and 4-AP. Two electrode voltage clamp recordings revealed a classical fast activating–inactivating Na+ current and two persistent Na+-dependent currents with voltage-dependencies consistent with the action potential (AP) and the two plateaus observed under current clamp, respectively. The three currents, the APs and the plateaus were reduced by TTX, and were absent in Na+-free solution. The different Na+-dependent currents in Gymnotus electrocytes may be targets for the modifications of the electric organ discharge mediated by environmental and physiological factors.  相似文献   

11.
Selective suppression of hyperactive sensory neurons is an attractive strategy for managing pathological pain. Blocking Na+ channels to eliminate action potentials and desensitizing transduction channels can both reduce sensory neuron excitability. The novel synthetic vanilloid ligand cap-ET preserves agonist activation of intracellular Ca2+ signals and large organic cation transport but loses effective electric current induction. Cap-ET can therefore be used to deliver the membrane impermeable Na+ channel blocker QX-314 to substantially inhibit voltage-activated Na+ currents. We explored, besides facilitating entry of organic cationic therapeutics, whether cap-ET can also produce receptor desensitization similar to the natural agonist capsaicin. Using the YO-PRO-1 based fluorescent dye uptake assay, we found that cap-ET effectively triggered Ca2+ dependent desensitization of TRPV1 when the receptor was pre-sensitized with the surrogate oxidative chemical phenylarsine oxide (PAO), suggesting an alternative use of permanently charged cationic capsaicinoids in differential neuronal silencing.  相似文献   

12.
The ionic requirement for generating action potentials in ventral longitudinal muscle fibers dissected from beetle larvae was examined by conventional electrophysiological techniques. Muscle fibers that generated only graded responses in physiological saline were able to generate an all-or-none action potential when the potassium permeability of the membrane was inhibited by tetraethylammonium+ added to the saline. The peak of the action potential thus elicited was intimately related to the external Ca++ concentration. The action potential was blocked by Co++ which is known as a competitive inhibitor of Ca-spikes. Neither tetrodotoxin (3 μM) nor a Na-free condition effectively blocked the generation of the action potential. Mg++ induced a shift in the peak of the action potential; this was, however, due to the stabilizing action of Mg++ but not due to the penetration of Mg++ through the muscle membrane. No action potential was elicited in the muscle fiber when immersed in a Ca-free, EGTA saline even when a high concentration of either Mg++, Na+, or tetraethylammonium+ was present. The action potential of the larval muscle fiber was thus concluded to be a Ca-spike, through the channel of which Na+ or Mg++ did not penetrate.  相似文献   

13.
Summary Substitution of extracellular Na+ by Li+ causes depression of junctional membrane permeability inChironomus salivary gland cells; within 3 hr, permeability falls to so low a level that neither fluorescein nor the smaller inorganic ions any longer traverse the junctional membrane in detectable amounts (uncoupling). The effect is Li-specific: if choline+ is the Na+ substitute, coupling is unchanged. The Li-produced uncoupling is not reversed by restitution of Na+. Long-term exposure (>1 hr) of the cells to Ca, Mg-free medium leads also to uncoupling. This uncoupling is fully reversible by early restitution of Ca++ or Mg++. Coupling is maintained in the presence of either Ca++ or Mg++, so long as the total divalent concentration is about 12mm. The uncoupling in Ca, Mg-free medium ensues regardless of whether the main monovalent cation is Na, Li or choline.The uncouplings are accompanied by cell depolarization. Repolarization of the cells by inward current causes restoration of coupling; the junctional conductance rises again to its normal level. The effect was shown for Li-produced uncoupling, for uncoupling by prolonged absence of external Ca++ and Mg++, and for uncoupling produced by dinitrophenol. In all cases, the recoupling has the same features: (1) it develops rapidly upon application of the polarizing current; (2) it is cumulative; (3) it is transient, but outlasts the current; and (4) it appears not to depend on the particular ions carrying the current from the electrodes to the cell. The recoupling is due to repolarization of nonjunctional cell membrane; recoupling can be produced at zero net currernt through the junctional membrane. Recoupling takes place also as a result of chemically produced repolarization; restoration of theK gradients in uncoupled cells causes partial recoupling during the repolarization phase.An explanation of the results on coupling is proposed in terms of known mechanisms of regulation of Ca++ flux in cells. The uncouplings are explained by actions raising the Ca++ level in the cytoplasmic environment of the junctional membranes; the recoupling is explained by actions lowering this Ca++ level.  相似文献   

14.
The contribution of Na+ ions to the nonsynaptic electrogenesis was studied in the larval muscle fibers of mealworm, Tenebrio molitor, using currentclamp and voltage-clamp techniques. Na-dependent graded responses were generated by depolarizing current stimuli in Ca2+-free solutions. These responses were insensitive to tetrodotoxin and were blocked by Co2+. Large inward-going currents were elicited by step depolarizations in Ca2+-free solutions under voltage-clamp conditions. The inward currents were totally eliminated by removal of Na+ from the bathing solution. These results indicate that the calcium channel of mealworm muscle is permeable to Na+.  相似文献   

15.
Fast-2, a membrane mutant of Paramecium aurelia, is due to a single-gene mutation and has behavioral abnormalities. Intracellular recordings through changes of external solutions were made. The mutant membrane hyperpolarized when it encountered solutions with low K+ concentration. This hyperpolarization and other associated activities were best observed in Ca- or Na-solutions devoid of K+. Membrane potential was plotted against the concentration of K+ (0.5 to 16 mM) in solutions of fixed Na+ or Ca++ concentration. The slopes of the curves for the mutant membrane were steeper than those for the wild type at the lower concentrations of K+. Inclusion of 2 mM tetraethylammonium chloride (TEA-Cl) counteracted the mutational effects. Spontaneous action potentials in Ba-solution and the electrically evoked action potentials in various solutions are normal in this mutant. We conclude that the resting permeability to K+ relative to the permeabilities to Na+ and Ca++ has been increased by the mutation.  相似文献   

16.
Ca++ fluxes in resealed synaptic plasma membrane vesicles   总被引:5,自引:0,他引:5  
The effect of the monovalent cations Na+, Li+, and K+ on Ca++ fluxes has been determined in resealed synaptic plasma membrane vesicle preparations from rat brain. Freshly isolated synaptic membranes, as well as synaptic membranes which were frozen (?80°C), rapidly thawed, and passively loaded with K2/succinate and 45CaCl2, rapidly released approximately 60% of the intravesicular Ca++ when exposed to NaCl or to the Ca++ ionophore A 23187. Incubation of these vesicles with LiCl caused a lesser release of Ca++. The EC50 for Na+ activation of Ca++ efflux from the vesicles was approximately 6.6mM. exposure of the Ca++-loaded vesicles to 150 mM KCl produced a very rapid (?1 sec) loss of Ca++ from the vesicles, but the Na+-induced efflux could still be detected above this K+ - sensitive effect. Vesicles pre-loaded with NaCl (150 mM) exhibited rapid 45Ca uptake with an estimated EC50 for Ca++ of 7–10 μM. This Ca++ uptake was blocked by dissipation of the Na+ gradient. These observations are suggestive of the preservation in these purified frozen synaptic membrane preparations of the basic properties of the Na+Ca++ exchange process and of a K+ - sensitive Ca++ flux across the membranes.  相似文献   

17.
We performed experiments to elucidate the calcium influx pathways in freshly dispersed rabbit corneal epithelial cells. Three possible pathways were considered: voltage-gated Ca++ channels, Na+/Ca++ exchange, and nonvoltage-dependent Ca++-permeable channels. Whole cell inward currents carrying either Ca++ or Ba++ were not detected using voltage clamp techniques. We also used imaging technology and the Ca++-sensitive ratiometric dye fura 2 to measure changes in intracellular Ca++ concentration ([Ca]i). Bath perfusion with NaCl Ringer's solution containing the calcium channel agonist Bay-K-8644 (1 m), or Ni++ (40 m), a blocker of many voltage-dependent calcium channels, did not affect [Ca++]i. Membrane depolarization with a KCl Ringer's bath solution resulted in a decrease in [Ca++]i. These results are inconsistent with the presence of voltage gated Ca++ channels. Nonvoltage gated Ca++ entry, on the other hand, would be reduced by membrane depolarization and enhanced by membrane hyperpolarization. Agents which hyperpolarize via stimulation of K+ current, such as flufenamic acid, resulted in an increase in ratio intensity. The cells were found to be permeable to Mn++ and bath perfusion with 5 mm Ni++ decreased [Ca++]i suggesting that the Ca++ conductance was blocked. These results are most consistent with a nonvoltage gated Ca++ influx pathway. Finally, replacing extracellular Na+ with Li+ resulted in an increase in [Ca++]i if the cells were first Na+-loaded using the Na+ ionophore monensin and ouabain, a Na+-K+-ATPase inhibitor. These results suggest that Na+/Ca++ exchange may also regulate [Ca++] in this cell type.The authors are grateful to Chris Bartling for expert technical assistance with the imaging experiments, Helen Hendrickson for cell preparation, and Jonathon Monck for helpful discussions regarding imaging technology. This work was supported by National Institutes of Health grants EYO3282, EYO6005, DK08677, and an unrestricted award from Research to Prevent Blindness.  相似文献   

18.
During intracellular iontophoretic injection of Ca++ into Limulus ventral photoreceptor cells, there is a progressive diminution of the light response. Following Ca++ injection, the size of the light response slowly recovers. Similarly, there is a progressive diminution of the light response during intracellular injection of Na+ and recovery after the injection is stopped. The rate of diminution during Na+ injection is greater for higher [Ca++]out. In solutions which contain 0.1 mM Ca++, there is nearly no progressive decrease in the size of the light response during Na+ injection. Intracellular injections of Li+ or K+ do not progressively decrease the size of the light response. We propose that an increase in [Na+]in leads to an increase in [Ca++]in and that an increase in [Ca++]in by any means leads to a reduction in responsiveness to light.  相似文献   

19.
An electrogenic sodium pump in Limulus ventral photoreceptor cells   总被引:13,自引:11,他引:2  
A hyperpolarization can be recorded intracellularly following either a single bright light stimulus or the intracellular injection of Na+. This after-hyperpolarization is abolished by bathing in 5 x 10-6 M strophanthidin or removal of extracellular K+. Both treatments also lead to a small, rapid depolarization of the dark-adapted cell. When either treatment is prolonged, light responses can still be elicited, although with repetitive stimuli the responses are slowly and progressively diminished in size. The rate of diminution is greater for higher values of [Ca++]out; with [Ca++]out = 0.1 mM, there is almost no progressive diminution of repetitive responses produced by either K+-free seawater or strophanthidin. We propose that an electrogenic Na+ pump contributes directly to dark-adapted membrane voltage and also generates the after-hyperpolarizations, but does not directly generate the receptor potential. Inhibition of this pump leads to intracellular accumulation of sodium ions, which in turn leads to an increase in intracellular Ca++ (provided there is sufficient extracellular Ca++). This increase in intracellular calcium probably accounts for the progressive decrease in the size of the receptor potential seen when the pump is inhibited.  相似文献   

20.
In the fungiform papilla of Rana esculenta (Anura Ranidae), the Ca++-ATPase is mainly distributed on the basolateral membrane of the sensory area cells (i.e., neuroepithelial, supporting, and mucous cells). Apical membranes of all cells facing the surface present a slight enzymatic activity. Lateral wall cells have a strong Ca++-ATPase activity on basolateral and apical membranes. Strong Na+, K+-ATPase activity occurs on the apical surface of neuroepithelial cells. Ca++-ATPase activity is absent on the surface of endothelial cells of the capillaries located under the sensory area. These observations lead us to conclude that the sensory area of fungiform papilla is the selective way for calcium influx. Furthermore the absence of ATPase activity on the surface of the endothelial cells indicates that there is no functional barrier to calcium influx into capillary, and that calcium can be removed by vessels from the sensory area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号