首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
We examined the partitioning of the nonionic detergent Triton X-100 at subsolubilizing concentrations into bilayers of either egg sphingomyelin (SM), palmitoyl SM, or dipalmitoylphosphatidylcholine. SM is known to require less detergent than phosphatidylcholine to achieve the same extent of solubilization, and for all three phospholipids solubilization is temperature dependent. In addition, the three lipids exhibit a gel-fluid phase transition in the 38-41 degrees C temperature range. Experiments have been performed at Triton X-100 concentrations well below the critical micellar concentration, so that only detergent monomers have to be considered. Lipid/detergent mol ratios were never <10:1, thus ensuring that the solubilization stage was never reached. Isothermal titration calorimetry, DSC, and infrared, fluorescence, and (31)P-NMR spectroscopies were applied in the 5-55 degrees C temperature range. The results show that, irrespective of the chemical nature of the lipid, DeltaG degrees of partitioning remained in the range of -27 kJ/mol lipid in the gel phase and of -30 kJ/mol lipid in the fluid phase. This small difference cannot account for the observed phase-dependent differences in solubilization. Such virtually constant DeltaG degrees occurred as a result of the compensation of enthalpic and entropic components, which varied with both temperature and lipid composition. Consequently, the observed different susceptibilities to solubilization cannot be attributed to differential binding but to further events in the solubilization process, e.g., bilayer saturability by detergent or propensity to form lipid-detergent mixed micelles. The data here shed light on the relatively unexplored early stages of membrane solubilization and open new ways to understand the phenomenon of membrane resistance toward detergent solubilization.  相似文献   

2.
Deuterium nuclear magnetic resonance spectroscopy was used to study the thermotropic phase behavior of dilauroylphosphatidylcholine (DLPC) bilayers at pressures up to 221 MPa. Pressure was found to separate the liquid crystal to gel transition from the gel to ordered crystalline phase transition. The jump in chain order observed on cooling through the transition into the gel phase was found to be small and thus consistent with the trend in longer chain saturated diacyl phosphatidylcholines. On cooling, DLPC was observed to enter an unusual state above the transition into the gel phase. This unusual state displayed fluid-like conformational order but short transverse relaxation times. It was found to be much better pronounced and to span a broader temperature range at elevated pressure than at lower pressures. Transverse relaxation measurements of deuterons on the chain alpha-carbons revealed a substantial slowing of molecular motions within the temperature range of the unusual fluid phase. The observation of such a phase at high pressure appears to be consistent with recent reports of an unusual fluid phase, Lx, in DLPC at ambient pressure.  相似文献   

3.
We have studied the effects of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior of large multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylethanolamine (DMPE) and dimyristoyl phosphatidylglycerol (DMPG) by high-sensitivity differential scanning calorimetry. We find that the effect of GS on the lamellar gel to liquid-crystalline phase transition of these phospholipids varies markedly with the structure and charge of their polar headgroups. Specifically, the presence of even large quantities of GS has essentially no effect on the main phase transition of zwitterionic DMPE vesicles, even after repeating cycling through the phase transition, unless these vesicles are exposed to high temperatures, after which a small reduction in the temperature, enthalpy and cooperativity of the gel to liquid-crystalline phase transitions is observed. Similarly, even large amounts of GS produce similar modest decreases in the temperature, enthalpy and cooperativity of the main phase transition of DMPC vesicles, although the pretransition is abolished at low peptide concentrations. However, exposure to high temperatures is not required for these effects of GS on DMPC bilayers to be manifested. In contrast, GS has a much greater effect on the thermotropic phase behavior of anionic DMPG vesicles, substantially reducing the temperature, enthalpy and cooperativity of the main phase transition at higher peptide concentrations, and abolishing the pretransition at lower peptide concentrations as compared to DMPC. Moreover, the relatively larger effects of GS on the thermotropic phase behavior of DMPG vesicles are also manifest without cycling through the phase transition or exposure to high temperatures. Furthermore, the addition of GS to DMPG vesicles protects the phospholipid molecules from the chemical hydrolysis induced by their repeated exposure to high temperatures. These results indicate that GS interacts more strongly with anionic than with zwitterionic phospholipid bilayers, probably because of the more favorable net attractive electrostatic interactions between the positively charged peptide and the negatively charged polar headgroup in such systems. Moreover, at comparable reduced temperatures, GS appears to interact more strongly with zwitterionic DMPC than with zwitterionic DMPE bilayers, probably because of the more fluid character of the former system. In addition, the general effects of GS on the thermotropic phase behavior of zwitterionic and anionic phospholipids suggest that it is located at the polar/apolar interface of liquid-crystalline bilayers, where it interacts primarily with the polar headgroup and glycerol-backbone regions of the phospholipid molecules and only secondarily with the lipid hydrocarbon chains. Finally, the considerable lipid specificity of GS interactions with phospholipid bilayers may prove useful in the design of peptide analogs with stronger interactions with microbial as opposed to eucaryotic membrane lipids.  相似文献   

4.
Effect of tryptophan derivatives on the phase properties of bilayers   总被引:1,自引:0,他引:1  
Binding of several tryptophan derivatives and tryptophan-containing peptides to bilayers is examined by monitoring fluorescence enhancement as a function of lipid concentration. The thermodynamic and spectral parameters of the solutes in the bilayers of vesicles and liposomes do not exhibit any anomalous dependence upon the gel or the liquid-crystalline phase state of the bilayer. Effects of these solutes on the phase-transition profiles of the bilayers of liposomes and vesicles are examined, and the lowering of the phase-transition temperature is correlated with the mole fraction of the solute in the bilayer. The partition coefficients do not change at the main phase-transition temperature. These observations contradict the thermodynamic explanation of the solute-induced lowering of the phase-transition temperature which is based on the Van't Hoff relationship for distribution of the solute in the two coexisting phases at the phase-transition temperature. It is postulated that solute molecules bound to defect sites in bilayers modulate the phase properties of bilayers. These defect sites are induced in the gel phase of bilayers of liposomes above the subtransition temperature.  相似文献   

5.
The effect of temperature on the lateral structure of lipid bilayers composed of porcine brain ceramide and 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC), with and without addition of cholesterol, were studied using differential scanning calorimetry, Fourier transformed infrared spectroscopy, atomic force microscopy, and confocal/two-photon excitation fluorescence microscopy (which included LAURDAN generalized polarization function images). A broad gel/fluid phase coexistence temperature regime, characterized by the presence of micrometer-sized gel-phase domains with stripe and flowerlike shapes, was observed for different POPC/ceramide mixtures (up to approximately 25 mol % ceramide). This observed phase coexistence scenario is in contrast to that reported previously for this mixture, where absence of gel/fluid phase coexistence was claimed using bulk LAURDAN generalized polarization (GP) measurements. We demonstrate that this apparent discrepancy (based on the direct comparison between the LAURDAN GP data obtained in the microscope and the fluorometer) disappears when the additive property of the LAURDAN GP function is taken into account to examine the data obtained using bulk fluorescence measurements. Addition of cholesterol to the POPC/ceramide mixtures shows a gradual transition from a gel/fluid to gel/liquid-ordered phase coexistence scenario as indicated by the different experimental techniques used in our experiments. This last result suggests the absence of fluid-ordered/fluid-disordered phase coexistence in the ternary mixtures studied in contrast to that observed at similar molar concentrations with other ceramide-base-containing lipid mixtures (such as POPC/sphingomyelin/cholesterol, which is used as a canonical raft model membrane). Additionally, we observe a critical cholesterol concentration in the ternary mixtures that generates a peculiar lateral pattern characterized by the observation of three distinct regions in the membrane.  相似文献   

6.
The biological membrane surrounding milk fat globules (MFGM) exhibits lateral phase separation of lipids, interpreted as gel or liquid-ordered phase sphingomyelin-rich (milk SM) domains dispersed in a fluid continuous lipid phase. The objective of this study was to investigate whether changes in the phase state of milk SM-rich domains induced by temperature (T < Tm or T > Tm) or cholesterol affected the Young modulus of the lipid membrane. Supported lipid bilayers composed of MFGM polar lipids, milk SM or milk SM/cholesterol (50:50 mol) were investigated at 20 °C and 50 °C using atomic force microscopy (AFM) and force spectroscopy. At 20 °C, gel-phase SM-rich domains and the surrounding fluid phase of the MFGM polar lipids exhibited Young modulus values of 10–20 MPa and 4–6 MPa, respectively. Upon heating at 50 °C, the milk SM-rich domains in MFGM bilayers as well as pure milk SM bilayers melted, leading to the formation of a homogeneous membrane with similar Young modulus values to that of a fluid phase (0–5 MPa). Upon addition of cholesterol to the milk SM to reach 50:50 mol%, membranes in the liquid-ordered phase exhibited Young modulus values of a few MPa, at either 20 or 50 °C. This indicated that the presence of cholesterol fluidized milk SM membranes and that the Young modulus was weakly affected by the temperature. These results open perspectives for the development of milk polar lipid based vesicles with modulated mechanical properties.  相似文献   

7.
Lipid bilayers composed of two phospholipids with significant acyl-chain mismatch behave as nonideal mixtures. Although many of these systems are well characterized from the equilibrium point of view, studies concerning their nonequilibrium dynamics are still rare. The kinetics of lipid demixing (phase separation) was studied in model membranes (large unilamellar vesicles of 1:1 dilauroylphosphatidylcholine (C(12) acyl chain) and distearoylphosphatidylcholine (C(18) acyl chain)). For this purpose, photophysical techniques (fluorescence intensity, anisotropy, and fluorescence resonance energy transfer) were applied using suitable probes (gel phase probe trans-parinaric acid and fluid phase probe N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dilauroylphosphatidylethanolamine). The nonequilibrium situation was induced by a sudden thermal quench from a one-fluid phase equilibrium situation (higher temperature) to the gel/fluid coexistence range (lower temperature). We verified that the attainment of equilibrium is a very slow process (occurs in a time scale of hours), leading to large domains at infinite time. The nonequilibrium structure stabilization is due essentially to temporarily rigidified C(12) chains in the interface between gel/fluid domains, which decrease the interfacial tension by acting as surfactants. The relaxation process becomes faster with the increase of the temperature drop. In addition, heterogeneity is already present in the supposed homogeneous fluid mixture at the higher temperature.  相似文献   

8.
Käsbauer M  Bayerl TM 《Biochemistry》1999,38(46):15258-15263
The electrostatic binding strength of water-soluble proteins having either an excess positive (cytochrome c) or negative (beta-lactoglobulin) electric charge to oppositely charged supported planar bilayers (SPBs) was studied as a function of the bilayer phase state (fluid or gel phase) by IR-ATR spectroscopy. The bilayer consisted of mixtures of zwitterionic DEPC with either cationic DMTAP or anionic DMPG. We observed drastic differences in the binding strength of both proteins for the two bilayer phase states, with the gel phase exhibiting a higher binding strength than the fluid phase, under conditions where the two lipid components had different hydrophobic chain lengths resulting in a nonideal mixing behavior. In addition, for beta-lactoglobulin we observed a strong binding to a gel phase SPB comprising DEPC/DMTAP, while raising the temperature of the SPB above the chain melting transition temperature of the mixture resulted in a complete unbinding of the protein. In contrast, for DMPC/DMTAP having the same cationic charge content but no hydrophobic chain mismatch, no phase-dependent coupling strength of the protein to the SPB was observed. Our results suggest that the formation of charge-enriched domains by partial demixing of the bilayer lipids at the transition to the gel state is crucial for modulation of the protein binding strength to the SPB, while the intrinsic charge of the solid support surface is of minor importance.  相似文献   

9.
Simple lipid binary systems are intensively used to understand the formation of domains in biological membranes. The size of individual domains present in the gel/fluid coexistence region of single supported bilayers, determined by atomic force microscopy (AFM), generally exceeds by two to three orders of magnitude that estimated from multibilayers membranes by indirect spectroscopic methods. In this article, the topography of equimolar dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) multibilayers, made of two superimposed bilayers supported on mica surface, was studied by AFM in a temperature range from room temperature to 45 degrees C. In the gel/fluid phase coexistence region the size of domains, between approximately 100 nm and a few micrometers, was of the same order for the first bilayer facing the mica and the top bilayer facing the buffer. The gel to fluid phase separation temperature of the first bilayer, however, could be increased by up to 8 degrees C, most likely as a function of the buffer layer thickness that separated it from the mica. Topography of the top bilayer revealed the presence of lipids in ripple phase up to 38-40 degrees C. Above this temperature, a pattern characteristic of the coexistence of fluid and gel domains was observed. These data show that difference in the size of lipid domains given by AFM and spectroscopy can hardly be attributed to the use of multibilayers models in spectroscopy experiments. They also provide a direct evidence for metastable ripple phase transformation into a gel/fluid phase separated structure upon heating.  相似文献   

10.
《Biophysical journal》2022,121(13):2550-2556
The (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) moiety tethered to the headgroup of phosphatidylcholine (PC) lipid is employed in spin labeling electron paramagnetic resonance spectroscopy to probe the water dynamics near lipid bilayer interfaces. Due to its amphiphilic character, however, TEMPO spin label could partition between aqueous and lipid phases, and may even be stabilized in the lipid phase. Accurate assessment of the TEMPO-PC configuration in bilayer membranes is essential for correctly interpreting the data from measurements. Here, we carry out all-atom molecular dynamics (MD) simulations of TEMPO-PC probe in single-component lipid bilayers at varying temperatures, using two standard MD force fields. We find that, for a dipalmitoylphosphatidylcholine (DPPC) membrane whose gel-to-fluid lipid phase transition occurs at 314 K, while the TEMPO spin label is stabilized above the bilayer interface in the gel phase, there is a preferential location of TEMPO below the membrane interface in the fluid phase. For bilayers made of unsaturated lipids, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which adopt the fluid phase at ambient temperature, TEMPO is unequivocally stabilized inside the bilayers. Our finding of membrane phase-dependent positioning of the TEMPO moiety highlights the importance of assessing the packing order and fluidity of lipids under a given measurement condition.  相似文献   

11.
Trehalose is believed to have the ability to protect some organisms against low temperatures. To clarify the cryoprotective mechanism of trehalose, the structure and the phase behavior of fully hydrated dihexadecylphosphatidylcholine (DHPC) membranes in the presence of various concentrations of trehalose were studied by means of differential scanning calorimetry (DSC), static x-ray diffraction, and simultaneous x-ray diffraction and DSC measurements. The temperature of the interdigitated gel (Lbeta(i))-to-ripple (Pbeta') phase transition of DHPC decreases with a rise in trehalose concentration up to approximately 1.0 M. Above a trehalose concentration of approximately 1.0 M, no Lbeta(i) phase is observed. In this connection, the electron density profile calculated from the lamellar diffraction data in the presence of 1.6 M trehalose indicates that DHPC forms noninterdigitated bilayers below the P beta' phase. It was concluded that trehalose destabilizes the Lbeta(i) phase of DHPC bilayers. This suggests that trehalose reduces the area at the interface between the lipid and water. The relation between this effect of trehalose and a low temperature tolerance was discussed from the viewpoint of cold-induced denaturation of proteins.  相似文献   

12.
The structure and thermotropic phase behaviour of a fully hydrated binary mixture of dipalmitoylphosphatidylcholine and a branched-chain phosphatidylcholine, 1, 2-di(4-dodecyl-palmitoyl)-sn-glycero-3-phosphocholine, were examined using differential scanning calorimetry, synchrotron X-ray diffraction and freeze-fracture electron microscopy. The branched-chain lipid forms a nonlamellar phase when dispersed alone in aqueous medium. Mixed aqueous dispersions of the two phospholipids containing less than 33 mol% of the branched-chain lipid form lamellar phases over the whole temperature range were studied (4 degrees C to 60 degrees C). When present in proportions greater than 33 mol% it induces a hexagonal phase in mixed aqueous dispersions with dipalmitoylphosphatidylcholine at temperatures above the fluid phase transition. At temperatures below 35 degrees C a hexagonal phase coexists with a gel bilayer phase. The lamellar<-->nonlamellar transition can be explained satisfactorily on the basis of the shape of the molecule expressed in terms of headgroup and chain cross-sectional areas. At temperatures below 35 degrees C macroscopic phase separation of two gel phases takes place. Freeze-fracture electron microscopy revealed that one gel phase consists of bilayers with a highly regular, periodic superstructure (macro-ripples) whereas the other phase forms flat, planar bilayers. The macro-ripple phase appears to represent a relaxation structure required to adapt to the packing constraints imposed by the incorporation of the branched-chain lipid into the dipalmitoylphosphatidylcholine host bilayer. The data suggest that structural changes that take place on cooling the mixed dispersion below the lamellar<-->nonlamellar phase transition temperature cannot be adequately described using the molecular form concept. Instead it is necessary to take into account the detailed molecular form of the guest lipid as well as its physical properties.  相似文献   

13.
In this work, we present the first characterization of the cell lysing mechanism of MSI-78, an antimicrobial peptide. MSI-78 is an amphipathic alpha-helical peptide designed by Genaera Corporation as a synthetic analog to peptides from the magainin family. (31)P-NMR of mechanically aligned samples and differential scanning calorimetry (DSC) were used to study peptide-containing lipid bilayers. DSC showed that MSI-78 increased the fluid lamellar to inverted hexagonal phase transition temperature of 1,2-dipalmitoleoyl-phosphatidylethanolamine indicating the peptide induces positive curvature strain in lipid bilayers. (31)P-NMR of lipid bilayers composed of MSI-78 and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine demonstrated that the peptide inhibited the fluid lamellar to inverted hexagonal phase transition of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, supporting the DSC results, and the peptide did not induce the formation of nonlamellar phases, even at very high peptide concentrations (15 mol %). (31)P-NMR of samples containing 1-palmitoyl-2-oleoyl-phosphatidylcholine and MSI-78 revealed that MSI-78 induces significant changes in the bilayer structure, particularly at high peptide concentrations. At lower concentrations (1-5%), the peptide altered the morphology of the bilayer in a way consistent with the formation of a toroidal pore. Higher concentrations of peptide (10-15%) led to the formation of a mixture of normal hexagonal phase and lamellar phase lipids. This work shows that MSI-78 induces significant changes in lipid bilayers via positive curvature strain and presents a model consistent with both the observed spectral changes and previously published work.  相似文献   

14.
Mixed vesicles of dimyristoylphosphatidylcholine (DMPC) and a polymerizable lipid containing one diene group per chain are studied by freeze fracture electron microscopy and by the photobleaching (fluorescence recovery after photobleaching) technique. Large thin-walled vesicles of some micron in diameter become more stable after photochemical polymerization. Before polymerization bilayers of the diene lipid exhibit a liquid crystal-to-gel transition at Tg = 31 degrees C. Upon polymerization the transition remains but shifts to a slightly higher temperature (Tg* = 34 degrees C). The transitions in both cases are accompanied by a freezing in of the lateral mobilities. The mixed vesicle exhibits lateral phase separation after polymerization. Before polymerization the two lipids appear miscible at all compositions in the fluid state and at DMPC concentrations at or below 50 mol % in the solid state. After polymerization a two-dimensional solution of the polymer in DMPC is obtained at T greater than Tg*, while lateral phase segregation into DMPC-rich domains and patches of the polymer is observed at T less than Tg*. The domain structure appears identical irrespective of whether polymerization is performed at T greater than Tg or at T less than Tg. A typical value of the diameter of the polymerized lipid domains (approximately 400 A) indicates a rather small aggregation number (N less than 100 monomers). The lateral diffusion coefficient in butadiene-lipid bilayers only decreases from D1 = 3.10(-7) cm2/s to D1 = 8.10(-8) cm2/s (that is by a factor of 4) upon polymerization. This is consistent with the freeze fracture finding of a small aggregation number.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We performed differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopic measurements to study the effects of lathosterol (Lath) on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes and compared our results with those previously reported for cholesterol (Chol)/DPPC binary mixtures. Lath is the penultimate intermediate in the biosynthesis of Chol in the Kandutsch-Russell pathway and differs from Chol only in the double bond position in ring B, which is between C7 and C8 in Lath and between C5 and C6 in Chol. Our DSC studies indicate that the incorporation of Lath is more effective than Chol in reducing the temperature and enthalpy of the DPPC pretransition. At lower sterol concentrations (≤10 mol %), incorporation of both Lath and Chol decreases the temperature, enthalpy, and cooperativity of the sharp component of the main phase transition of DPPC to a similar extent, but at higher sterol concentrations, Lath is more effective at decreasing the phase transition temperature, enthalpy, and cooperativity than Chol. These results indicate that at higher concentrations, Lath is more disruptive of DPPC gel-state bilayer packing than Chol is. Moreover, incorporation of Lath decreases the temperature of the broad component of the main phase transition of DPPC, whereas Chol increases it; this difference in the direction and magnitude of the temperature shift is accentuated at higher sterol concentrations. Although at sterol concentrations of ≤20 mol % Lath and Chol are almost equally effective at reducing the enthalpy and cooperativity of the broad component of the main phase transition, at higher sterol levels Lath is less effective than Chol in these regards and does not completely abolish the cooperative hydrocarbon chain melting phase transition at 50 mol %, as does Chol. These latter results indicate that Lath both is more disruptive with respect to the low-temperature state of the sterol-enriched domains of DPPC bilayers and has a lower lateral miscibility in DPPC bilayers than Chol. Our FTIR spectroscopic studies suggest that Lath incorporation produces a less tightly packed bilayer than does Chol at both low (gel state) and high (liquid-crystalline state) temperatures, which is characterized by increased H-bonding between water and the carbonyl groups of the fatty acyl chains in the DPPC bilayer. Overall, our studies indicate that Lath and Chol incorporation can have rather different effects on the thermotropic phase behavior and organization of DPPC bilayers and thus that the position of the double bond in ring B of a sterol molecule can have an appreciable effect on the physical properties of sterol molecules.  相似文献   

16.
High-sensitivity differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the interaction of a synthetic alpha-helical hydrophobic transmembrane peptide, acetyl-Lys(2)-(Leu-Ala)(12)-Lys(2)-amide [(LA)(12)], and members of a homologous series of n-saturated diacylphosphatidylethanolamines (PEs). In the lower range of peptide mole fractions, the DSC endotherms exhibited by the lipid/peptide mixtures consist of two components. The temperature and cooperativity of the sharper, higher temperature component are very similar to those of pure PE bilayers and are almost unaffected by variations in the protein/lipid ratio. However, the fractional contribution of this component to the total enthalpy changes decreases with increases in peptide concentration, and this component completely disappears at higher protein mole fractions. The other component, which is less cooperative and occurs at a lower temperature, predominates at higher protein concentrations. These two components of the DSC endotherm have been assigned to the chain-melting phase transitions of peptide-nonassociated and peptide-associated PE molecules, respectively. Although the temperature at which the peptide-associated PE molecules melt is progressively decreased by increases in (LA)(12) concentration, the magnitude of this downward shift is progressively greater as the length of the PE hydrocarbon chain decreases. As well, mixtures of (LA)(12) with the longer chain PEs exhibit unusual biomodal enthalpy variations, suggesting peptide immiscibility in thicker gel state bilayers. Moreover, the enthalpy of the chain-melting transition of the peptide-associated PE does not decrease to zero even at high peptide concentrations, indicating that (LA)(12) attenuates but does not abolish the cooperative gel/liquid-crystalline phase transition of the lipids with which it is in contact. Our FTIR spectroscopic data indicate that (LA)(12) remains in a predominantly alpha-helical conformation in liquid-crystalline PE bilayers of various hydrophobic thickness but that the helical conformation is altered in gel-state PE bilayers generally, probably due to peptide lateral aggregation. These data also suggest that (LA)(12) significantly disorders the hydrocarbon chains of adjacent PE molecules in both the gel and liquid-crystalline states, relatively independently of lipid hydrocarbon chain length. Many aspects of PE/(LA)(12) interactions exhibit a different dependence on the hydrophobic thickness of the host bilayer than was observed in our previous study of (LA)(12)-phosphatidylcholine (PC) model membranes [Zhang et al. (1995) Biochemistry 34, 2362-2371]. The differing effects of (LA)(12) incorporation on PE and PC bilayers is ascribed primarily to the much stronger lipid polar headgroup interactions characteristic of the former system. Finally, the considerable differences observed in the behavior of (LA)(12) and the related polyleucine-based peptide P(24) in both PC and PE bilayers indicate that the structure of the hydrophobic core of alpha-helical transmembrane peptides can affect their conformational plasticity and state of aggregation and thus the nature of their interactions with different phospholipid bilayers.  相似文献   

17.
Bilayer structure and interbilayer repulsive pressure were measured from 5 to 50 degrees C by the osmotic stress/x-ray diffraction method for both gel and liquid crystalline phase lipid bilayers. For gel phase dibehenoylphosphatidylcholine (DBPC) the bilayer thickness and pressure-distance relations were nearly temperature-independent, and at full hydration the equilibrium fluid spacing increased approximately 1 A, from 10 A at 5 degrees C to 11 A at 50 degrees C. In contrast, for liquid crystalline phase egg phosphatidylcholine (EPC), the bilayer thickness, equilibrium fluid spacing, and pressure-distance relation were all markedly temperature-dependent. As the temperature was increased from 5 to 50 degrees C the EPC bilayer thickness decreased approximately 4 A, and the equilibrium fluid spacing increased from 14 to 21 A. Over this temperature range there was little change in the pressure-distance relation for fluid spacings less than approximately 10 A, but a substantial increase in the total pressure for fluid spacings greater than 10 A. These data show that for both gel and liquid crystalline bilayers there is a short-range repulsive pressure that is nearly temperature-independent, whereas for liquid crystalline bilayers there is also a longer-range pressure that increases with temperature. From analysis of the energetics of dehydration we argue that the temperature-independent short-range pressure is consistent with a hydration pressure due to polarization or electrostriction of water molecules by the phosphorylcholine moiety. For the liquid crystalline phase, the 7 A increase in equilibrium fluid spacing with increasing temperature can be predicted by an increase in the undulation pressure as a consequence of a temperature-dependent decrease in bilayer bending modulus.  相似文献   

18.
M D King  D Marsh 《Biochemistry》1989,28(13):5643-5647
The polymorphic phase behavior of 1-palmitoyl-2-lyso-sn-glycero-3-phosphocholine dispersions in excess water has been studied as a function of temperature and poly(ethylene glycol) (PEG) concentration, using proton dipolar-decoupled 31P NMR spectroscopy and turbidity measurements. The phase behavior was found to depend on both lipid concentration and PEG concentration, and most of the NMR experiments were conducted at a lipid concentration of 15 mg/mL. At low PEG concentrations (0-12 wt %), a thermotropic transition occurs at 3-5 degrees C with increasing temperature, from an interdigitated lamellar gel (L beta i) phase to a normal micellar phase. At intermediate PEG concentrations (12-20 wt %), thermotropic transitions take place with increasing temperature, first from the lamellar gel phase to a fluid cubic (Q alpha) phase and then at higher temperatures from the cubic phase to the micellar phase. At intermediate PEG concentrations above the former range (20-30 wt %), thermotropic transitions take place with increasing temperature, first from the lamellar gel phase to the cubic phase, then from the cubic phase to a normal hexagonal (HI) phase, and finally from the hexagonal phase to the micellar phase. At high PEG concentrations (greater than 30 wt %), a thermotropic transition takes place with increasing temperature from the lamellar gel phase directly to the fluid hexagonal phase. At these high PEG concentrations, the micellar phase is not attained within the accessible temperature range (less than or equal to 90 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The transformation between a gel and a fluid phase in dipalmitoyl-phosphatidylcholine (DPPC) bilayers has been simulated using a coarse grained (CG) model by cooling bilayer patches composed of up to 8000 lipids. The critical step in the transformation process is the nucleation of a gel cluster consisting of 20-80 lipids, spanning both monolayers. After the formation of the critical cluster, a fast growth regime is entered. Growth slows when multiple gel domains start interacting, forming a percolating network. Long-lived fluid domains remain trapped and can be metastable on a microsecond time scale. From the temperature dependence of the rate of cluster growth, the line tension of the fluid-gel interface was estimated to be 3+/-2 pN. The reverse process is observed when heating the gel phase. No evidence is found for a hexatic phase as an intermediate stage of melting. The hysteresis observed in the freezing and melting transformation is found to depend both on the system size and on the time scale of the simulation. Extrapolating to macroscopic length and time scales, the transition temperature for heating and cooling converges to 295+/-5 K, in semi-quantitative agreement with the experimental value for DPPC (315 K). The phase transformation is associated with a drop in lateral mobility of the lipids by two orders of magnitude, and an increase in the rotational correlation time of the same order of magnitude. The lipid headgroups, however, remain fluid. These observations are in agreement with experimental findings, and show that the nature of the ordered phase obtained with the CG model is indeed a gel rather than a crystalline phase. Simulations performed at different levels of hydration furthermore show that the gel phase is stabilized at low hydration. A simulation of a small DPPC vesicle reveals that curvature has the opposite effect.  相似文献   

20.
Dimethylsuberimidate was reacted with aqueous dispersions of dipalmitoylphosphatidylethanolamine, dimyristoylphosphatidylethanolamine, dilauroylphosphatidylethanolamine, and dielaidoylphosphatidylethanolamine at pH 10 and at pH 8. The amount of amidine dimer formation was about four times greater above the gel-to-fluid phase transition of each lipid than below the transition. The transition temperature of each phosphatidylethanolamine, measured by steady-state fluorescence anisotropy of cis-parinaric acid, was lower at pH 10 than at pH 8 or in water. The ability of dimethylsuberimidate to discriminate between phosphatidylethanolamines in the fluid and gel phases should allow use of this reagent to identify phosphatidylethanolamine species within the gel or fluid lipid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号