首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular and Cellular Biochemistry - More than 50% of colorectal cancer (CRC) deaths are attributed to metastasis, and the liver is the most common distant metastatic site of CRC. The molecular...  相似文献   

2.
3.
In this study, we aimed to uncover genes that drive the pathogenesis of liver metastasis in colorectal cancer (CRC), and identify effective genes that could serve as potential therapeutic targets for treating with colorectal liver metastasis patients based on two GEO datasets. Several bioinformatics approaches were implemented. First, differential expression analysis screened out key differentially expressed genes (DEGs) across the two GEO datasets. Based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we identified the enrichment functions and pathways of the DEGs that were associated with liver metastasis in CRC. Second, immune infiltration analysis identified key immune signature gene sets associated with CRC liver metastasis, among which two key immune gene families (CD and CCL) identified as key DEGs were filtered by protein-protein interaction (PPI) network. Some of the members in these gene families were associated with disease free survival (DFS) or overall survival (OS) in two subtypes of CRC, namely COAD and READ. Finally, functional enrichment analysis of the two gene families and their neighboring genes revealed that they were closely associated with cytokine, leukocyte proliferation and chemotaxis. These results are valuable in comprehending the pathogenesis of liver metastasis in CRC, and are of seminal importance in understanding the role of immune tumor infiltration in CRC. Our study also identified potentially effective therapeutic targets for liver metastasis in CRC including CCL20, CCL24 and CD70.  相似文献   

4.
Wang LG  Gu J 《Cancer epidemiology》2012,36(1):e61-e67
Background: Colorectal cancer (CRC) metastasis occurs in various organs, most frequently in liver. Serological examination including tumor and biochemical markers for liver function evaluation is routinely performed, though its accuracy is not high. MicroRNAs (miRNAs) have been implicated in a variety of human diseases including cancer, and have many characteristics of an ideal biomarker most notably their inherent stability and resilience. Recently, several studies have indicated that circulating miRNAs hold much potential as novel noninvasive biomarkers for cancer and other disease processes. The objective of this study was to investigate the potential of serum miRNAs as novel biomarkers for CRC with liver metastasis. Methods: This study was divided into three phases: (I) 3 candidate serum miRNAs were detected by using real-time RT-PCR, corresponding 38 CRC patients with liver metastasis and 36 CRC patients without metastasis. (II) Marker validation by real-time RT-PCR on a similar cohort of age- and sex-matched CRC patients without (n = 20) and with liver metastasis (n = 20). (III) We examined the correlation between the expressions of candidate serum miRNAs with clinical parameters of CRC patients. Results: Serum miR-29a was significantly higher in colorectal liver metastasis (CRLM) patients than in CRC patients. This marker yielded a receiver operating characteristic curve area of 80.3%. At a cutoff value of 0.155, the sensitivity was 75% and the specificity was 75% in discriminating metastatic from non-metastatic patients. In addition, increased levels of miR-29a expression were also observed in colorectal tumors from CRLM patients compared with CRC patients. No significant difference was observed in the levels of serum miR-92a between metastatic and non-metastatic patients. Conclusions: These findings suggest that serum miR-29a has strong potential as a novel noninvasive biomarker for early detection of CRC with liver metastasis.  相似文献   

5.
Colorectal cancer (CRC) is a leading cause of cancer death. This study was conducted to investigate the functions and mechanisms of Zyxin (ZYX) in CRC. Multiomics analysis associated ZYX with CRC metastasis. ZYX expression levels were increased in human CRC tissues and related to shorter recurrence-free survival. Knockdown of ZYX expression resulted in inhibition of cell growth, invasion, and migration in vitro and in vivo. Comprehensive analysis of gene microarray analysis showed that ZYX may activate the pathway of NUPR1 and JNK, inhibit CST5, regulate focal adhesion (FA), and affect epithelial–mesenchymal transition in CRC cells. Results of gene microarray and membrane protein isobaric tags with relative and absolute quantitation labeling mass spectrometry found ten differentially expressed genes, which were associated with ZYX activity. Furthermore, real-time polymerase chain reaction was used to validate the expression patterns of selected genes in the integrative analysis. Taken together, our findings provide the first evidence that decreased expression level of ZYX impairs CRC cell proliferation and metastasis probably via the FA pathway.  相似文献   

6.
Fluorescence spectroscopy Excitation Emission Matrix (EEM) measurements were applied on human blood plasma samples from a case control study on colorectal cancer. Samples were collected before large bowel endoscopy and included patients with colorectal cancer or with adenomas, and from individuals with other non malignant findings or no findings (N = 308). The objective of the study was to explore the possibilities for applying fluorescence spectroscopy as a tool for detection of colorectal cancer. Parallel Factor Analysis (PARAFAC) was applied to decompose the fluorescence EEMs into estimates of the underlying fluorophores in the sample. Both the pooled score matrix from PARAFAC, holding the relative concentrations of the derived components, and the raw unfolded spectra were used as basis for discrimination models between cancer and the various controls. Both methods gave test set validated sensitivity and specificity values around 0.75 between cancer and controls, and poor discriminations between the various controls. The PARAFAC solution gave better options for analyzing the chemical mechanisms behind the discrimination, and revealed a blue shift in tryptophan emission in the cancer patients, a result that supports previous findings. The present findings show how fluorescence spectroscopy and chemometrics can help in cancer diagnostics, and with PARAFAC fluorescence spectroscopy can be a potential metabonomic tool.  相似文献   

7.

Fluorescence spectroscopy Excitation Emission Matrix (EEM) measurements were applied on human blood plasma samples from a case control study on colorectal cancer. Samples were collected before large bowel endoscopy and included patients with colorectal cancer or with adenomas, and from individuals with other non malignant findings or no findings (N = 308). The objective of the study was to explore the possibilities for applying fluorescence spectroscopy as a tool for detection of colorectal cancer. Parallel Factor Analysis (PARAFAC) was applied to decompose the fluorescence EEMs into estimates of the underlying fluorophores in the sample. Both the pooled score matrix from PARAFAC, holding the relative concentrations of the derived components, and the raw unfolded spectra were used as basis for discrimination models between cancer and the various controls. Both methods gave test set validated sensitivity and specificity values around 0.75 between cancer and controls, and poor discriminations between the various controls. The PARAFAC solution gave better options for analyzing the chemical mechanisms behind the discrimination, and revealed a blue shift in tryptophan emission in the cancer patients, a result that supports previous findings. The present findings show how fluorescence spectroscopy and chemometrics can help in cancer diagnostics, and with PARAFAC fluorescence spectroscopy can be a potential metabonomic tool.

  相似文献   

8.
9.
Cell adhesion molecules (CAMs) play a significant role in the metastatic potential of colorectal cancer and thus mediate the prognosis of this common malignancy. The downregulation of cadherins and catenins facilitates tumour cell detachment from the primary site, while the expression of selectins, integrins and members of the immunoglobulin superfamily may support neoplastic progression, intravasation and malignant cell attachment to foreign tissue, leading to the development of metastases. The liver is the main host organ of colorectal metastatic lesions. The process of hepatic invasion originates in the sinusoids, where non-parenchymal cells interact with metastasising ones, through the expression of numerous CAMs, following complex molecular pathways. Concurrently, the selective expression of cell adhesion molecules on different organs and endothelia, in conjunction with the presence of dissimilar adhesion ligands on various colorectal cancer cell lines, suggest that CAMs may also mediate the selection of the host organ, for the development of distant colorectal metastases.  相似文献   

10.
Colorectal cancer is currently the third in cancer incidence worldwide and the fourth most common cause of cancer deaths. Mortality in colorectal cancer is often ascribed to liver metastasis. In an effort to elucidate the proteins involved in colorectal cancer liver metastasis, we compared the proteome profiles of the human colon adenocarcinoma cell line HCT‐116 with its metastatic derivative E1, using the iTRAQ labelling technology, coupled to 2D‐LC and MALDI‐TOF/TOF MS. A total of 547 proteins were identified, of which 31 of them were differentially expressed in the E1 cell line. Among these proteins, the differential expressions of translationally controlled tumour protein 1, A‐kinase anchor protein 12 and Drebrin (DBN1) were validated using Western blot. In particular, DBN1, a protein not previously known to be involved in colorectal cancer metastasis, was found to be overexpressed in E1 as compared to HCT‐116 cells. The overexpression of DBN1 was further validated using immunohistochemistry on colorectal cancer tissue sections with matched lymph node and liver metastasis tissues. DBN1 is currently believed to be involved in actin cytoskeleton reorganisation and suppresses actin filament cross‐linking and bundling. Since actin reorganisation is an important process for tumour cell migration and invasion, DBN1 may have an important role during colorectal cancer metastasis.  相似文献   

11.
12.
Background and ObjectivesColorectal cancer (CRC) is one of the most common malignant tumors worldwide with high incidence and mortality rate, while colorectal liver metastasis (CRLM) is one of the major causes of cancer-related deaths. Therefore, the present study aims to identify the hub gene associated with CRC carcinogenesis and liver metastasis, and then explore its diagnostic and prognostic value as well as the potential regulation mechanism.MethodsThe overlapping differential co-expression genes among CRC, CRLM, and normal tissues were explored on the GSE49355 and GSE81582 datasets from the Gene Expression Omnibus (GEO) database by integrated bioinformatics analysis. Then, the hub prognostic genes were selected from the overlapping genes by univariate Cox proportional hazard analysis and online database Gene Expression Profiling Interactive Analysis 2 (GEPIA2). Subsequently, the clinical value of the hub genes was evaluated in the TCGA and GSE39582 cohorts. Finally, the underlying mechanisms of the hub gene regulating CRC carcinogenesis and metastasis were explored by Gene function annotation and DNA methylation analysis.ResultsInositol mono-phosphatase 2 (IMPA2) was identified as the hub gene associated with CRC carcinogenesis and liver metastasis. IMPA2 had an excellent diagnostic efficiency, and its expression was significantly decreased in CRC and liver metastasis samples, being positively correlated with poor prognosis. Moreover, its low expression was associated with AJCC stage III+IV, T4, N1+2, and M1. In addition, our results revealed that the potential mechanisms used by IMPA2 to mediate CRC carcinogenesis and metastasis could be associated with lipid metabolism and epithelial mesenchymal transition (EMT). Finally, IMPA2 expression could be regulated by DNA methylation.ConclusionsIMPA2 was identified and reported for the first time as a hub gene biomarker in the diagnosis and prognosis of CRC, which could regulate CRC carcinogenesis and liver metastasis through the regulation of lipid metabolism, EMT, and DNA methylation.  相似文献   

13.
An abundance of microfibril-associated glycoprotein 3-like (MFAP3L) significantly correlates with distant metastasis in colorectal cancer (CRC), although the mechanism has yet to be explained. In this study, we observed that MFAP3L knock-down resulted in reduced CRC cell invasion and hepatic metastasis. We evaluated the cellular location and biochemical functions of MFAP3L and found that this protein was primarily localized in the nucleus of CRC cells and acted as a protein kinase. When EGFR translocated into the nucleus upon stimulation with EGF, MFAP3L was phosphorylated at Tyr287 within its SH2 motif, and the activated form of MFAP3L phosphorylated ERK2 at Thr185 and Tyr187. Moreover, the metastatic behavior of CRC cells in vitro and in vivo could be partially explained by activation of the nuclear ERK pathway through MFAP3L phosphorylation. Hence, we experimentally demonstrated for the first time that MFAP3L likely participates in the nuclear signaling of EGFR and ERK2 and acts as a novel nuclear kinase that impacts CRC metastasis.  相似文献   

14.
Kuo TY  Hsi E  Yang IP  Tsai PC  Wang JY  Juo SH 《PloS one》2012,7(2):e31587
Colorectal cancer (CRC) is one of the leading malignant cancers with a rapid increase in incidence and mortality. The recurrences of CRC after curative resection are sometimes unavoidable and often take place within the first year after surgery. MicroRNAs may serve as biomarkers to predict early recurrence of CRC, but identifying them from over 1,400 known human microRNAs is challenging and costly. An alternative approach is to analyze existing expression data of messenger RNAs (mRNAs) because generally speaking the expression levels of microRNAs and their target mRNAs are inversely correlated. In this study, we extracted six mRNA expression data of CRC in four studies (GSE12032, GSE17538, GSE4526 and GSE17181) from the gene expression omnibus (GEO). We inferred microRNA expression profiles and performed computational analysis to identify microRNAs associated with CRC recurrence using the IMRE method based on the MicroCosm database that includes 568,071 microRNA-target connections between 711 microRNAs and 20,884 gene targets. Two microRNAs, miR-29a and miR-29c, were disclosed and further meta-analysis of the six mRNA expression datasets showed that these two microRNAs were highly significant based on the Fisher p-value combination (p = 9.14 × 10(-9) for miR-29a and p = 1.14 × 10(-6) for miR-29c). Furthermore, these two microRNAs were experimentally tested in 78 human CRC samples to validate their effect on early recurrence. Our empirical results showed that the two microRNAs were significantly down-regulated (p = 0.007 for miR-29a and p = 0.007 for miR-29c) in the early-recurrence patients. This study shows the feasibility of using mRNA profiles to indicate microRNAs. We also shows miR-29a/c could be potential biomarkers for CRC early recurrence.  相似文献   

15.
Matrix metallproteinases (MMP)-2 and -9 are associated with cancer invasion and metastasis. MMP-2 and MMP-9 activities have never been assayed in bile. In the present study we investigated whether MMP-2 and -9 activities in the bile could be a marker for evaluation of liver metastasis in colorectal cancer. Fifty-three patients underwent colorectal resection for histologically verified adenocarcinoma. Twenty-six patients had colorectal cancer without liver metastasis and 27 patients had metastatic liver tumor. Six patients were studied as carcinoma-free control. MMP-2 and MMP-9 activities were assayed in bile using gelatin zymography and quantitated. Active MMP-2 activity of colorectal cancer with liver metastasis group (24.1 +/- 2.5 pixel count) was significantly higher than that of colorectal cancer without liver metastasis group (11.4 +/- 1.3 pixel count) (P < 0.001) or of control group (6.4 +/- 1.0 pixel count) (P < 0.001). Active MMP-9 was not detected in bile. ProMMP-9 activity of colorectal cancer with liver metastasis group (530.3 +/- 127.5 pixel count) was significantly higher than that of colorectal cancer without liver metastasis group (213.9 +/- 33.2 pixel count) (P = 0.008). This is the first report showing that the levels of active MMP-2 and proMMP-9 in bile were significantly higher in liver metastasis of colorectal cancer than in metastasis-free colorectal cancer. The results suggest that activities of active MMP-2 and proMMP-9 in the bile may be useful markers for predicting liver metastasis in colorectal cancer.  相似文献   

16.
MicroRNAs (miRNAs) have recently emerged as regulators of metastasis. We provide insight into the behavior of miR-221 in colorectal cancer (CRC) metastasis by showing that miR-221 is significantly upregulated in metastatic CRC cell lines and tissues. miR-221 overexpression enhances, whereas miR-221 depletion reduces CRC cell migration and invasion in vitro and metastasis in vivo. We identify RECK as a direct target of miR-221, reveal its expression to be inversely correlated with miR-221 in CRC samples and show that its re-introduction reverses miR-221-induced CRC invasiveness. Collectively, miR-221 is an oncogenic miRNA which may regulate CRC migration and invasion through targeting RECK.  相似文献   

17.
Circular RNAs (circRNAs) are important regulators in cancer growth and progression. Exosomes carry various molecules including RNA, protein, and lipid from one cell to another cell. But the role of circRNAs from the exosomes from prostate cancer patients are not elucidated. In this study, circ_0044516 was found upregulated in prostate cancer and the roles and molecular mechanism of Hsa_circ_0044516 (circ_0044516) was investigated. Firstly, the exosomes of prostate cancer patients were collected for human circRNAs microarray to screen the circRNA expression profile. There were 35 significantly expressed circRNAs with more than fivefolds from microarray analysis. Circ_0044516 was verified to be significantly upregulated in the exosomes from prostate cancer patients and the cell lines. Further investigation demonstrated that circ_0044516 downregulation inhibited the proliferation and metastasis of prostate cancer cells. By bioinformatics and luciferase reporter assays, circ_0044516 was verified to downregulate miR-29a-3p expression and negatively related to miR-29a-3p expression levels in prostate cancer. In a summary, the study indicated that circ_0044516 played an important role in prostate cancer cell survival and metastasis, which suggested that an oncogenic role of circ_0044516 in prostate cancer.  相似文献   

18.
Colorectal cancer (CRC) is a prevalent disease and a major cause of mortality in the world. Several factors including population aging, poor dietary habits, obesity, insufficient physical activity, and smoking can explain its increased prevalence. CRC is a heterogeneous disease both histopathologically and in term of its molecular and genetic aspects. Melatonin a derivative of tryptophan, is synthesized and released from pineal gland but it is also found in numerous extrapineal tissues including retina, testes, lymphocytes, Harderian gland, gastrointestinal tract, etc. This molecule has several tasks which enhance physiological functions such as antioxidant, antiaging, immunomodulatory, and tumor inhibition. Multiple immunocytochemical studies reported melatonin in the intestinal mucosa where its concentration is greater than in the blood. These findings suggest that melatonin may have a potential inhibitory role in CRC progression. The purpose of this review is to examine the effects of melatonin in molecular pathogenesis and signaling pathways of CRC.  相似文献   

19.
The presence of the carcinoembryonic antigen (CEA) gene and CEA expression in the liver was tested to identify their possible roles in the liver metastasis of colorectal carcinoma. The CEA gene in the liver was identified by amplifying the CEA-specific N-terminal domain exon with digoxigenin-dUTP labeling in 16 colorectal carcinomas with liver metastases. Next, CEA expression was tested by immunostaining using the anti-CEA monoclonal antibody (T84.66, ATCC). Liver tissues from 13 stomach cancer patients and 12 colorectal cancer patients without liver metastasis were also tested as control groups. Three grades (<25%, 25-50%, and 50%< or =) were given according to the proportion of positive cells. The CEA gene was amplified in the metastatic tumor cells of the liver (2.6 +/- 0.2, mean grade +/- SEM) and their surrounding hepatocytes (1.5 +/- 0.2) in all cases. CEA expression was found in all metastatic tumor cells and 14 cases of the surrounding hepatocytes. Among the control groups, the CEA gene of the hepatocytes was found in 9 cases each of the colorectal and the stomach cancers that did not exhibit CEA expression. The level of serum CEA was related with the numbers and volume of liver metastases, but not with CEA expression in tumor cells and surrounding hepatocytes. The CEA gene in the metastatic tumor cells, not in the hepatocytes, was closely associated with CEA expression in the surrounding hepatocytes (p<0.01). Although the precise mechanism of CEA gene regulation in hepatocytes remains to be proven, the CEA gene in the metastatic tumor of the liver seems to affect CEA expression in the surrounding hepatocytes facilitating liver metastasis in colorectal carcinoma.  相似文献   

20.

Background

Depletion of tryptophan and the accumulation of tryptophan metabolites mediated by the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1), trigger immune cells to undergo apoptosis. However, cancer cells in the same microenvironment appear not to be affected. Mechanisms whereby cancer cells resist accelerated tryptophan degradation are not completely understood. We hypothesize that cancer cells co-opt IMPACT (the product of IMPrinted and AnCienT gene), to withstand periods of tryptophan deficiency.

Methods

A range of bioinformatic techniques including correlation and gene set variation analyses was applied to genomic datasets of cancer (The Cancer Genome Atlas) and normal (Genotype Tissue Expression Project) tissues to investigate IMPACT’s role in cancer. Survival of IMPACT-overexpressing GL261 glioma cells and their wild type counterparts cultured in low tryptophan media was assessed using fluorescence microscopy and MTT bio-reduction assay. Expression of the Integrated Stress Response proteins was measured using Western blotting.

Results

We found IMPACT to be upregulated and frequently amplified in a broad range of clinical cancers relative to their non-malignant tissue counterparts. In a subset of clinical cancers, high IMPACT expression associated with decreased activity of pathways and genes involved in stress response and with increased activity of translational regulation such as the mTOR pathway. Experimental studies using the GL261 glioma line showed that cells engineered to overexpress IMPACT, gained a survival advantage over wild-type lines when cultured under limiting tryptophan concentrations. No significant difference in the expression of proteins in the Integrated Stress Response pathway was detected in tryptophan-deprived GL261 IMPACT-overexpressors compared to that in wild-type cells. IMPACT-overexpressing GL261 cells but not their wild-type counterparts, showed marked enlargement of their nuclei and cytoplasmic area when stressed by tryptophan deprivation.

Conclusions

The bioinformatics data together with our laboratory studies, support the hypothesis that IMPACT mediates a protective mechanism allowing cancer cells to overcome microenvironmental stresses such as tryptophan deficiency.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号