首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Massively Parallel Sequencing (MPS) allows sequencing of entire exomes and genomes to now be done at reasonable cost, and its utility for identifying genes responsible for rare Mendelian disorders has been demonstrated. However, for a complex disease, study designs need to accommodate substantial degrees of locus, allelic, and phenotypic heterogeneity, as well as complex relationships between genotype and phenotype. Such considerations include careful selection of samples for sequencing and a well-developed strategy for identifying the few "true" disease susceptibility genes from among the many irrelevant genes that will be found to harbor rare variants. To examine these issues we have performed simulation-based analyses in order to compare several strategies for MPS sequencing in complex disease. Factors examined include genetic architecture, sample size, number and relationship of individuals selected for sequencing, and a variety of filters based on variant type, multiple observations of genes and concordance of genetic variants within pedigrees. A two-stage design was assumed where genes from the MPS analysis of high-risk families are evaluated in a secondary screening phase of a larger set of probands with more modest family histories. Designs were evaluated using a cost function that assumes the cost of sequencing the whole exome is 400 times that of sequencing a single candidate gene. Results indicate that while requiring variants to be identified in multiple pedigrees and/or in multiple individuals in the same pedigree are effective strategies for reducing false positives, there is a danger of over-filtering so that most true susceptibility genes are missed. In most cases, sequencing more than two individuals per pedigree results in reduced power without any benefit in terms of reduced overall cost. Further, our results suggest that although no single strategy is optimal, simulations can provide important guidelines for study design.  相似文献   

2.
An individual's disease risk is determined by the compounded action of both common variants, inherited from remote ancestors, that segregated within the population and rare variants, inherited from recent ancestors, that segregated mainly within pedigrees. Next-generation sequencing (NGS) technologies generate high-dimensional data that allow a nearly complete evaluation of genetic variation. Despite their promise, NGS technologies also suffer from remarkable limitations: high error rates, enrichment of rare variants, and a large proportion of missing values, as well as the fact that most current analytical methods are designed for population-based association studies. To meet the analytical challenges raised by NGS, we propose a general framework for sequence-based association studies that can use various types of family and unrelated-individual data sampled from any population structure and a universal procedure that can transform any population-based association test statistic for use in family-based association tests. We develop family-based functional principal-component analysis (FPCA) with or without smoothing, a generalized T(2), combined multivariate and collapsing (CMC) method, and single-marker association test statistics. Through intensive simulations, we demonstrate that the family-based smoothed FPCA (SFPCA) has the correct type I error rates and much more power to detect association of (1) common variants, (2) rare variants, (3) both common and rare variants, and (4) variants with opposite directions of effect from other population-based or family-based association analysis methods. The proposed statistics are applied to two data sets with pedigree structures. The results show that the smoothed FPCA has a much smaller p value than other statistics.  相似文献   

3.
Familial combined hyperlipidemia (FCHL) is a complex trait leading to cardiovascular disease (CVD) risk. Elevated levels and size of apolipoprotein B (apoB) and low-density lipoprotein (LDL) are associated with FCHL, which is genetically heterogeneous and is likely caused by rare variants. We carried out a linkage-based genome scan of four large FCHL pedigrees for apoB level that is independent of LDL: apoB level that is adjusted for LDL level and size. Follow-up included SNP genotyping in the region with the strongest evidence of linkage. Several regions with the evidence of linkage in individual pedigrees support the rare variant model. Evidence of linkage was strongest on chromosome 4q, with multipoint analysis in one pedigree giving LOD = 3.1 with a parametric model, and a log Bayes Factor = 1.5 from a Bayesian oligogenic approach. Of the 293 SNPs spanning the implicated region on 4q, rs6829588 completely explained the evidence of linkage. This SNP accounted for 39% of the apoB phenotypic variance, with heterozygotes for this SNP having a trait value that was ~30% higher than that of the high-frequency homozygote, thus identifying and considerably refining a strong candidate region. These results illustrate the advantage of using large pedigrees in the search for rare variants: reduced genetic heterogeneity within single pedigrees coupled with the large number of individuals segregating otherwise-rare single variants leads to high power to implicate such variants.  相似文献   

4.

Background

Both common and rare genetic variants have been shown to contribute to the etiology of complex diseases. Recent genome-wide association studies (GWAS) have successfully investigated how common variants contribute to the genetic factors associated with common human diseases. However, understanding the impact of rare variants, which are abundant in the human population (one in every 17 bases), remains challenging. A number of statistical tests have been developed to analyze collapsed rare variants identified by association tests. Here, we propose a haplotype-based approach. This work inspired by an existing statistical framework of the pedigree disequilibrium test (PDT), which uses genetic data to assess the effects of variants in general pedigrees. We aim to compare the performance between the haplotype-based approach and the rare variant-based approach for detecting rare causal variants in pedigrees.

Results

Extensive simulations in the sequencing setting were carried out to evaluate and compare the haplotype-based approach with the rare variant methods that drew on a more conventional collapsing strategy. As assessed through a variety of scenarios, the haplotype-based pedigree tests had enhanced statistical power compared with the rare variants based pedigree tests when the disease of interest was mainly caused by rare haplotypes (with multiple rare alleles), and vice versa when disease was caused by rare variants acting independently. For most of other situations when disease was caused both by haplotypes with multiple rare alleles and by rare variants with similar effects, these two approaches provided similar power in testing for association.

Conclusions

The haplotype-based approach was designed to assess the role of rare and potentially causal haplotypes. The proposed rare variants-based pedigree tests were designed to assess the role of rare and potentially causal variants. This study clearly documented the situations under which either method performs better than the other. All tests have been implemented in a software, which was submitted to the Comprehensive R Archive Network (CRAN) for general use as a computer program named rvHPDT.  相似文献   

5.
Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.  相似文献   

6.
B Markus  I Alshafee  O S Birk 《Heredity》2014,112(2):182-189
The Bedouin Israeli population is highly inbred and structured with a very high prevalence of recessive diseases. Many studies in the past two decades focused on linkage analysis in large, multiple consanguineous pedigrees of this population. The advent of high-throughput technologies motivated researchers to search for rare variants shared between smaller pedigrees, integrating data from clinically similar yet seemingly non-related sporadic cases. However, such analyses are challenging because, without pedigree data, there is no prior knowledge regarding possible relatedness between the sporadic cases. Here, we describe models and techniques for the study of relationships between pedigrees and use them for the inference of tribal co-ancestry, delineating the complex social interactions between different tribes in the Negev Bedouins of southern Israel. Through our analysis, we differentiate between tribes that share many yet small genomic segments because of co-ancestry versus tribes that share larger segments because of recent admixture. The emergent pattern is well correlated with the prevalence of rare mutations in the different tribes. Tribes that do not intermarry, mostly because of social restrictions, hold private mutations, whereas tribes that do intermarry demonstrate a genetic flow of mutations between them. Thus, social structure within an inbred community can be delineated through genomic data, with implications to genetic counseling and genetic mapping.  相似文献   

7.
Linkage analysis identifies markers that appear to be co-inherited with a trait within pedigrees. The inheritance of a chromosomal segment may be probabilistically reconstructed, with missing data complicating inference. Inheritance patterns are further obscured in the analysis of complex traits, where variants in one or more genes may contribute to phenotypic variation within a pedigree. In this case, determining which relatives share a trait variant is not simple. We describe how to represent these patterns of inheritance for marker loci. We summarize how to sample patterns of inheritance consistent with genotypic and pedigree data using gl_auto, available in MORGAN v3.0. We describe identification of classes of equivalent inheritance patterns with the program IBDgraph. We finally provide an example of how these programs may be used to simplify interpretation of linkage analysis of complex traits in general pedigrees. We borrow information across loci in a parametric linkage analysis of a large pedigree. We explore the contribution of each equivalence class to a linkage signal, illustrate estimated patterns of identity-by-descent sharing, and identify a haplotype tagging the chromosomal segment driving the linkage signal. Haplotype carriers are more likely to share the linked trait variant, and can be prioritized for subsequent DNA sequencing.  相似文献   

8.
Genomic variants such as Single Nucleotide Polymorphisms and animal pedigree are now used widely in routine genetic evaluations of livestock in many countries. The use of genomic information not only can be used to enhance the accuracy of prediction but also to verify pedigrees for animals that are extensively managed using natural mating and enabling multiple-sire mating groups to be used. By so doing, the rate of genetic gain is enhanced, and any bias associated with incorrect pedigrees is removed. This study used a set of 8 764 sheep genotypes to verify the pedigree based on both the conventional opposing homozygote method as well as a novel method when combined with the inclusion of the genomic relationship matrix (GRM). The genomic relationship coefficients between verified pairs of animals showed on average a relationship of 0.50 with parent, 0.25 with grandparent, 0.13 with great grandparent, 0.50 with full-sibling and 0.27 with half-sibling. Minimum obtained values from these verified pairs were then used as thresholds to determine the pedigree for unverified pairs of animals, to detect potential errors in the pedigree. Using a case study from a population partially genotyped UK sheep, the results from this study illustrate a powerful way to resolve parentage inconsistencies, when combining the conventional ‘opposing homozygote’ method using genomic information together with GRM for pedigree checking. In this way, previously undetected pedigree errors can be resolved.  相似文献   

9.
Sequencing family DNA samples provides an attractive alternative to population based designs to identify rare variants associated with human disease due to the enrichment of causal variants in pedigrees. Previous studies showed that genotype calling accuracy can be improved by modeling family relatedness compared to standard calling algorithms. Current family-based variant calling methods use sequencing data on single variants and ignore the identity-by-descent (IBD) sharing along the genome. In this study we describe a new computational framework to accurately estimate the IBD sharing from the sequencing data, and to utilize the inferred IBD among family members to jointly call genotypes in pedigrees. Through simulations and application to real data, we showed that IBD can be reliably estimated across the genome, even at very low coverage (e.g. 2X), and genotype accuracy can be dramatically improved. Moreover, the improvement is more pronounced for variants with low frequencies, especially at low to intermediate coverage (e.g. 10X to 20X), making our approach effective in studying rare variants in cost-effective whole genome sequencing in pedigrees. We hope that our tool is useful to the research community for identifying rare variants for human disease through family-based sequencing.  相似文献   

10.
Breeding programs aimed at conserving genetic diversity in populations of wildlife or rare domestic breeds rely on detailed pedigree analysis for selection of breeders that will minimize the loss of alleles, reduce the accumulation of inbreeding, and maintain gene diversity. Commonly, techniques use a matrix of kinship coefficients to derive measures of genetic variation, inbreeding, and the value of individuals as breeders. Although these techniques were first developed for use on known pedigrees of diploid individuals, the concepts and methods can be extended to apply to any entity that contains genes derived from definable sources (e.g., individual parents, social groups, colonies, gene banks) via a definable mechanism of heredity (e.g., sexual reproduction between separate sexes, hermaphroditic selfing, autozygous production of homozygous or haploid offspring, cloning). Individuals with partly unknown ancestry or multiple possible parents can also be incorporated into kinship calculations, based on probabilistic assignment of parental contributions. This paper presents the algorithms used in new PMx software to extend traditional pedigree analysis techniques used for complete pedigrees of sexually reproducing, diploid species to deal with missing information due to unknown or uncertain parentage, and other breeding systems such as clones, selfing hermaphrodites, and haploid offspring or autogamy.  相似文献   

11.
Genome-wide association studies are routinely conducted to identify genetic variants that influence complex disorders. It is well known that failure to properly account for population or pedigree structure can lead to spurious association as well as reduced power. We propose a method, ROADTRIPS, for case-control association testing in samples with partially or completely unknown population and pedigree structure. ROADTRIPS uses a covariance matrix estimated from genome-screen data to correct for unknown population and pedigree structure while maintaining high power by taking advantage of known pedigree information when it is available. ROADTRIPS can incorporate data on arbitrary combinations of related and unrelated individuals and is computationally feasible for the analysis of genetic studies with millions of markers. In simulations with related individuals and population structure, including admixture, we demonstrate that ROADTRIPS provides a substantial improvement over existing methods in terms of power and type 1 error. The ROADTRIPS method can be used across a variety of study designs, ranging from studies that have a combination of unrelated individuals and small pedigrees to studies of isolated founder populations with partially known or completely unknown pedigrees. We apply the method to analyze two data sets: a study of rheumatoid arthritis in small UK pedigrees, from Genetic Analysis Workshop 15, and data from the Collaborative Study of the Genetics of Alcoholism on alcohol dependence in a sample of moderate-size pedigrees of European descent, from Genetic Analysis Workshop 14. We detect genome-wide significant association, after Bonferroni correction, in both studies.  相似文献   

12.
The genetic management of captive populations to conserve genetic variation is currently based on analyses of individual pedigrees to infer inbreeding and kinship coefficients and values of individuals as breeders. Such analyses require that individual pedigrees are known and individual pairing (mating) can be controlled. Many species in captivity, however, breed in groups due to various reasons, such as space constraints and fertility considerations for species living naturally in social groups, and thus have no pedigrees available for the traditional genetic analyses and management. In the absence of individual pedigree, such group breeding populations can still be genetically monitored, evaluated and managed by suitable population genetics models using population level information (such as census data). This article presents a simple genetic model of group breeding populations to demonstrate how to estimate the genetic variation maintained within and among populations and to optimise management based on these estimates. A numerical example is provided to illustrate the use of the proposed model. Some issues relevant to group breeding, such as the development and robustness evaluation of the population genetics model appropriate for a particular species under specific management and recording systems and the genetic monitoring with markers, are also briefly discussed.  相似文献   

13.
Abney M 《Genetics》2008,179(3):1577-1590
Computing identity-by-descent sharing between individuals connected through a large, complex pedigree is a computationally demanding task that often cannot be done using exact methods. What I present here is a rapid computational method for estimating, in large complex pedigrees, the probability that pairs of alleles are IBD given the single-point genotype data at that marker for all individuals. The method can be used on pedigrees of essentially arbitrary size and complexity without the need to divide the individuals into separate subpedigrees. I apply the method to do qualitative trait linkage mapping using the nonparametric sharing statistic S(pairs). The validity of the method is demonstrated via simulation studies on a 13-generation 3028-person pedigree with 700 genotyped individuals. An analysis of an asthma data set of individuals in this pedigree finds four loci with P-values <10(-3) that were not detected in prior analyses. The mapping method is fast and can complete analyses of approximately 150 affected individuals within this pedigree for thousands of markers in a matter of hours.  相似文献   

14.
Having found evidence for segregation at a major locus for a quantitative trait, a logical next step is to identify those pedigrees in which major-locus segregation is occurring. If the quantitative trait is a risk factor for an associated disease, identifying such segregating pedigrees can be important in classifying families by etiology, in risk assessment, and in suggesting treatment modalities. Identifying segregating pedigrees can also be helpful in selecting pedigrees to include in a subsequent linkage study to map the major locus. Here, we describe a strategy to identify pedigrees segregating at a major locus for a quantitative trait. We apply this pedigree selection strategy to simulated data generated under a major-locus or mixed model with a rare dominant allele and sampled according to one of several fixed-structure or sequential sampling designs. We demonstrate that for the situations considered, the pedigree selection strategy is sensitive and specific and that a linkage study based only on the pedigrees classified as segregating extracts essentially all the linkage information in the entire sample of pedigrees. Our results suggest that for large-scale linkage studies involving many genetic markers, the savings from this strategy can be substantial and that, compared with fixed-structure sampling, sequential sampling of pedigrees can greatly improve the efficiency for linkage analysis of a quantitative trait.  相似文献   

15.
We report here the clinical, genetic, and molecular characterization of two Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects. Penetrances of hearing loss in BJ105 and BJ106 pedigrees are 67% and 33%, respectively. In particular, three of 10 affected matrilineal relatives of BJ105 pedigree had aminoglycoside-induced hearing loss, while seven affected matrilineal relatives in BJ105 pedigree and six affected matrilineal relatives in BJ106 pedigree did not have a history of exposure to aminoglycosides. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the identical homoplasmic A1555G mutation and distinct sets of mtDNA variants belonging to haplogroups F3 and M7b. These variants showed no evolutionary conservation, implying that mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycosides and nuclear backgrounds appear to be major modifier factors for the phenotypic manifestation of the A1555G mutation in these Chinese families.  相似文献   

16.
A method for estimating genotypic and identity-by-descent probabilities in complex pedigrees is described. The method consists of an algorithm for drawing independent genotype samples which are consistent with the pedigree and observed genotype. The probability distribution function for samples obtained using the algorithm can be evaluated up to a normalizing constant, and combined with the likelihood to produce a weight for each sample. Importance sampling is then used to estimate genotypic and identity-by-descent probabilities. On small but complex pedigrees, the genotypic probability estimates are demonstrated to be empirically unbiased. On large complex pedigrees, while the algorithm for obtaining genotype samples is feasible, importance sampling may require an infeasible number of samples to estimate genotypic probabilities with accuracy.  相似文献   

17.
This paper describes a non-iterative, recursive method to compute the likelihood for a pedigree without loops, and hence an efficient way to compute genotype probabilities for every member of the pedigree. The method can be used with multiple mates and large sibships. Scaling is used in calculations to avoid numerical problems in working with large pedigrees.  相似文献   

18.
19.
A heuristic algorithm for finding gene transmission patterns on large and complex pedigrees with partially observed genotype data is proposed. The method can be used to generate an initial point for a Markov chain Monte Carlo simulation or to check that the given pedigree and the genotype data are consistent. In small pedigrees, the algorithm is exact by exhaustively enumerating all possibilities, but, in large pedigrees, with a considerable amount of unknown data, only a subset of promising configurations can actually be checked. For that purpose, the configurations are ordered by combining the approximative conditional probability distribution of the unknown genotypes with the information on the relationships between individuals. We also introduce a way to divide the task into subparts, which has been shown to be useful in large pedigrees. The algorithm has been implemented in a program called APE (Allelic Path Explorer) and tested in three different settings with good results.  相似文献   

20.
Hypertriglyceridemia (HTG) is a heritable risk factor for cardiovascular disease. Investigating the genetics of HTG may identify new drug targets. There are ∼35 known single-nucleotide variants (SNVs) that explain only ∼10% of variation in triglyceride (TG) level. Because of the genetic heterogeneity of HTG, a family study design is optimal for identification of rare genetic variants with large effect size because the same mutation can be observed in many relatives and cosegregation with TG can be tested. We considered HTG in a five-generation family of European American descent (n = 121), ascertained for familial combined hyperlipidemia. By using Bayesian Markov chain Monte Carlo joint oligogenic linkage and association analysis, we detected linkage to chromosomes 7 and 17. Whole-exome sequence data revealed shared, highly conserved, private missense SNVs in both SLC25A40 on chr7 and PLD2 on chr17. Jointly, these SNVs explained 49% of the genetic variance in TG; however, only the SLC25A40 SNV was significantly associated with TG (p = 0.0001). This SNV, c.374A>G, causes a highly disruptive p.Tyr125Cys substitution just outside the second helical transmembrane region of the SLC25A40 inner mitochondrial membrane transport protein. Whole-gene testing in subjects from the Exome Sequencing Project confirmed the association between TG and SLC25A40 rare, highly conserved, coding variants (p = 0.03). These results suggest a previously undescribed pathway for HTG and illustrate the power of large pedigrees in the search for rare, causal variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号