首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular accumulation of toxic concentrations of glutamate (Glu) is a hallmark of many neurodegenerative diseases, often accompanied by hypoxia and impaired metabolism of this neuromediator. To address the question whether the multifunctional neuroprotective action of erythropoietin (EPO) extends to the regulation of extracellular Glu-level and is age-related, young and culture-aged rat astroglial primary cells (APC) were simultaneously treated with 1mM Glu and/or human recombinant EPO under normoxic and hypoxic conditions (NC and HC). EPO increased the Glu uptake by astrocytes under both NC and especially upon HC in culture-aged APC (by 60%). Moreover, treatment with EPO up-regulated the activity of glutamine synthetase (GS), the expression of glutamate-aspartate transporter (GLAST) and the level of EPO mRNA. EPO alleviated the Glu- and hypoxia-induced LDH release from astrocytes. These protective EPO effects were concentration-dependent and they were strongly intensified with age in culture. More than a 4-fold increase in apoptosis and a 2-fold decrease in GS enzyme activity was observed in APC transfected with EPO receptor (EPOR)-siRNA. Our in vivo data show decreased expression of EPO and a strong increase of EPOR in brain homogenates of APP/PS1 mice and their wild type controls during aging. Comparison of APP/PS1 and age-matched WT control mice revealed a stronger expression of EPOR but a weaker one of EPO in the Alzheimer’s disease (AD) model mice. Here we show for the first time the direct correlation between the extent of differentiation (age) of astrocytes and the efficacy of EPO in balancing extracellular glutamate clearance and metabolism in an in-vitro model of hypoxia and Glu-induced astroglial injury. The clinical relevance of EPO and EPOR as markers of brain cells vulnerability during aging and neurodegeneration is evidenced by remarkable changes in their expression levels in a transgenic model of AD and their WT controls.  相似文献   

2.
ObjectiveThe objective of this study is to explore the protective effect of erythropoietin (EPO) on brain injury induced by intrauterine infection in premature infants and its related mechanism, so as to provide reference for clinical medication.MethodsIntrauterine infection model is established by injecting lipopolysaccharide into pregnant mice, and HE staining of mouse placenta is used to judge whether the model of intrauterine infection is successful or not. Fifteen female rats are successfully pregnant and divided into intrauterine infection group (10 rats) and control group (5 rats). The mice in the intrauterine infection group are intraperitoneally injected with lipopolysaccharide (LPS) at a dose of 0.3 mg/kg. After delivery, 16 newborn mice in the control group are randomly selected as blank control group. 32 newborn mice in the intrauterine infection group are selected as model group, and then divided into infection group and EPO treatment group, 16 mice in each group. After birth, mice in the blank control group are intraperitoneally injected with 0.2 mL saline daily. The infected mice are intraperitoneally injected with 0.2 mL saline daily. The mice in the EPO treatment group are intraperitoneally injected with recombinant human erythropoietin (rhEPO) 5000 IU/kg daily. HE staining results, EPOR protein and NMDAR1 mRNA expression in brain tissue of three groups of neonatal mice were compared.ResultsFirstly, the blood vessels of the mice in the intrauterine infection group are markedly hyperemic and edematous, and the infiltration of neutrophils is increased. The white matter structure of the neonatal mice in the intrauterine infection group is loose and stained lightly. The nerve fibers in the brain are different in thickness and disordered in arrangement. The nucleus is small and dark stained. The number of glial cells in brain tissue increases significantly. Secondly, the EPOR protein expression and physiological level of neonatal mice in intrauterine infection group increase significantly at 3, 7 and 14 days after birth. Compared with the blank control group, the difference is statistically significant (P < 0.05). On the 3rd day after birth, the expression level of EPOR protein in the EPO treated group is significantly higher than that in the intrauterine infection group (P < 0.05). Thirdly, the expression level of NMDA R1mRNA in brain tissue of neonatal mice at birth, on the 3rd and 7th day after EPO treatment is significantly lower than that of intrauterine infection group (P < 0.05).ConclusionEPO can promote the proliferation and differentiation of brain endogenous neural stem cells, and has a certain therapeutic effect on brain injury of premature mice caused by intrauterine infection.  相似文献   

3.
STAT3 upregulates expression of HIF-1 induced EPO. Receptor EPOR was reported to activate STAT3. Our study was aimed at demonstration of tissue immunoreactivities of those proteins and determination of their relationships in reference to clinicopathological variables of breast cancers. We detected STAT3, HIF-1alpha, EPO and EPOR in specimens of 76 human, female, ductal breast cancers by immunohistochemistry. STAT3 was detected in 38 of 76 cancers (50%). HIF-1alpha was found in 55 cases (72%). EPO positive tumors comprised 89% of all the cancers (68 cases). EPOR was also visualized in 55 cases (72%). Anti-HIF-1alpha and anti-STAT3 stained nuclei and cytoplasm of breast cancer cells in diffuse and finely granular fashion. Strong membranous expressions of EPO and EPOR were distributed in cytoplasmic and membranous granularity or diffuse staining. STAT3 correlated with HIF-1 in general (r=0.4012, p<0.0001) and in different patients' subgroups. STAT3 was significantly associated with EPO and EPOR in all the cancers (r=0.2370, p=0.039 and r=0.3336, p=0.003, respectively). Besides a correlation between STAT3 and EPOR in node negative ones, STAT3 wasn't related to EPO and EPOR in remaining subgroups. HIF-1alpha correlated with EPO and EPOR in most of analyzed groups. Immunoreactivity to EPO generally was associated with EPOR (r=0.3520, p=0.002). Statistically analyzed distributions of the proteins reflected functional dependences among STAT3, HIF-1alpha, EPO and EPOR in cellular signal conduction.  相似文献   

4.
5.
6.
7.
8.
Aims Recent studies have showed that erythropoietin (EPO) is a neuroprotectant for central nerve system neurons in addition to being a hematopoietic cytokine in response to hypoxia. In this study, we investigate the role of the EPO/EPO receptor (EPOR) system in the rat retina after ocular hypertension injury that mimics glaucoma. Methods Elevated intraocular pressure was induced by laser coagulation of the episcleral and limbal veins. Expression of EPO and EPOR in the normal and glaucomous retinas was investigated by immunohistochemistry and Western blot. To examine the effects of endogenous EPO on the survival of retinal ganglion cells (RGCs) subjected to hypertensive injury, soluble EPOR was directly injected into the vitreous body. Recombinant human EPO was both intravitreally and systemically administrated to study the effect of exogenous EPO on the survival of RGCs after ocular hypertension injury. Results Immunohistochemistry studies identified Müller cells as the main source of EPO in the normal retina. Expression of EPO and EPOR proteins was increased significantly 2 weeks after ocular hypertension. RGCs, amacrine and bipolar cells all demonstrated an increased expression of EPOR after ocular hypertension. Neutralization of endogenous EPO with soluble EPOR exacerbated ocular hypertensive injury, suggesting a role of the EPO/EPOR system in the survival of RGCs after injury. Similarly, topical and systemic administration of recombinant human EPO rescues RGCs after chronic ocular hypertension. Conclusions These results indicate that an endogenous EPO/EPOR system participates in intrinsic recovery mechanisms after retina injury and RGCs might be rescued by exogenous administration of EPO.  相似文献   

9.
目的:研究促红细胞生成素(erythropoietin, EPO)及其受体(EPOR)在非小性细胞肺癌中的生物学作用。方法:收集27 例非小 性细胞肺癌(NSCLC),免疫组织化学方法检测肺癌组织中EPO 和EPOR的表达;观察人源重组EPO(rhEPO)对HCC15 和 HCC1819 细胞活力和细胞周期的影响;分析缺氧对NSCLC细胞EPO 及EPOR 表达的影响。结果:27例非小细胞肺癌的组织标 本中13 例表达EPO,表达率为48 %,25 例表达EPOR,表达率为92 %。rhEPO明显增加了高表达EPOR 的HCC1819 细胞克隆 数,而对低表达EPOR 的HCC15 细胞的克隆形成没有影响。rhEPO增强了HCC1819 的细胞活力,但以siRNA干涉HCC1819 EPOR后,EPO对HCC1819 细胞活力增强作用消失。rhEPO 明显增加了HCC1819 细胞的细胞周期。缺氧促进了HCC1819 细胞的 EPO 的表达,增强了细胞活力。结论:EPO 和EPOR在非小性细胞肺癌中表达增高,EPO 通过EPOR 促进了NSCLC 细胞的增殖, 缺氧诱导了NSCLC 细胞EPO的表达。  相似文献   

10.
In this study, plasma and red blood cell (RBC) antioxidant status and plasma lipid peroxidation were investigated in 46 hemodialysis patients. In addition, the effect of erythropoietin (EPO) and EPO-vitamin E combination therapy on plasma and RBC antioxidant status, and plasma lipid peroxidation were examined.

There were 10 healthy subjects in the control group and 10 hemodialysis patients in the untreated group. The third group included 36 hemodialysis patients that were given EPO (100 U/kg) for 3 months, 3 times per week. The fourth group included 36 hemodialysis-patients from the EPO group that were given EPO at a 50% decreased dose + vitamin E (300 mg/day) for 3 months.

MDA levels in the untreated group, the EPO group and the EPO + vitamin E groups were found to be higher than the control group (p<0.001, in both). Furthermore, MDA levels in both of the treatment groups were lower when compared to the untreated group (p<0.001, in both). Plasma vitamin E levels in the untreated, the EPO group and EPO + vitamin E groups were lower than the control group (p<0.001). In contrast, plasma vitamin E levels in the treatment groups were higher in comparison with the control group (p<0.05). SOD activities in the untreated, the EPO group and the EPO + vitamin E groups were found to be lower than the control group (p<0.001). SOD activities in the treatment groups were higher than the control group (p<0.001). The SOD activities in the EPO + vitamin E group increased when compared to the EPO group (p<0.001). CAT activities in the untreated, the EPO group and the EPO + vitamin E groups were found to be lower than the control group (p<0.001 in untreated and EPO groups, p<0.01 in EPO + vitamin E group). CAT activities in EPO and EPO + vitamin E groups were increased when compared to the untreated group (p<0.01).

In conclusion, our findings have shown that antioxidant status decreased and lipid peroxidation increased in hemodialysis patients. EPO has an antioxidant effect on the RBC and plasma antioxidant status, and plasma lipid peroxidation. These effects were moderately increased by the combination of vitamin E and EPO.  相似文献   

11.
Beyond its role in the regulation of red blood cell proliferation, the glycoprotein erythropoietin (EPO) has been shown to promote cell regeneration and angiogenesis in a variety of different tissues. In addition, EPO has been indicated to share significant functional and structural homologies with the vascular endothelial growth factor (VEGF), a cytokine essential in the process of fracture healing. However, there is complete lack of information on the action of EPO in bone repair and fracture healing. Therefore, we investigated the effect of EPO treatment on bone healing in a murine closed femur fracture model using radiological, histomorphometric, immunohistochemical, biomechanical and protein biochemical analysis. Thirty-six SKH1-hr mice were treated with daily i.p. injections of 5000 U/kg EPO from day 1 before fracture until day 4 after fracture. Controls received equivalent amounts of the vehicle. After 2 weeks of fracture healing, we could demonstrate expression of the EPO-receptor (EPOR) in terminally differentiating chondrocytes within the callus. At this time point EPO-treated animals showed a higher torsional stiffness (biomechanical analysis: 39.6+/-19.4% of the contralateral unfractured femur) and an increased callus density (X-ray analysis (callus density/spongiosa density): 110.5+/-7.1%) when compared to vehicle-treated controls (14.3+/-8.2% and 105.9+/-6.6%; p<0.05). Accordingly, the histomorphometric examination revealed an increased fraction of mineralized bone and osteoid (33.0+/-3.0% versus 28.5+/-3.6%; p<0.05). Of interest, this early effect of the initial 6-day EPO treatment had vanished at 5 weeks after fracture. We conclude that EPO-EPOR signaling is involved in the process of early endochondral ossification, enhancing the transition of soft callus to hard callus.  相似文献   

12.
为研究跑台运动对APP/PS1小鼠海马线粒体融合、分裂作用的影响,将遗传背景为C57BL/6的3月龄APP/PS1小鼠和野生小鼠各42只分别随机分为APP/PS1安静对照组(ADC,n=21)和运动组(ADE,n=21),野生安静对照组(WTC,n=21)和运动组(WTE,n=21)。ADE、WTE组进行12周跑台运动,同时ADC、WTC组置于安静跑台环境。水迷宫实验检测小鼠的空间学习记忆能力,RT-PCR法检测线粒体功能关键酶的mRNA水平,Western印迹检测海马融合、分裂及线粒体关键酶的蛋白质表达情况,透射电镜观察海马线粒体融合、分裂状态。结果发现,6月龄APP/PS1小鼠学习记忆能力降低(P<0.05);海马线粒体融合蛋白质Mfn1、Mfn2、Opa1表达降低(P<0.05),线粒体分裂蛋白质Drp1、Mff表达增高(P<0.05);线粒体膜结构模糊,嵴不明显,线粒体碎片增多,空泡化线粒体增多;线粒体呼吸关键酶COX IV及ATP合酶表达均下调(P<0.05)。12周跑台运动可逆转APP/PS1小鼠的上述变化,改善海马线粒体结构和功能,提高学习记忆能力。综上提示:12周跑台运动改善APP/PS1小鼠学习记忆能力的机制可能与其对线粒体结构与功能的改善有关。  相似文献   

13.

Background

Erythropoietin (EPO) is a hypoxia-inducible stimulator of erythropoiesis. Besides its traditional application in anemia therapy, it offers an effective treatment in the cancer patients, especially those who receive chemotherapy. Several reports indicated that it could promote the tumor cell proliferation through its specific receptor (EPOR). Unfortunately, the role of EPO/EPOR in hepatocellular carcinoma (HCC) progressing is still uncertain.

Methods

Protein in tumor tissue from HCC patients or H22 tumor-bearing mice was detected with immunohistochemistry. Cells were cultured under 1% oxygen to establish hypoxia. RT-PCR and western blotting were used to measure mRNA and protein of EPO/EPOR, respectively. MTT, flow cytometry and PCNA staining were used to detect cell proliferation. Immunofluorescence staining was applied to study the expression and location of cellular EPOR. The EPOR binding studies were performed with 125I-EPO radiolabeling assay.

Results

EPO and EPOR protein were up-regulated in HCC tissue of patients and H22-bearing mice. These were positively correlated with hypoxia-inducible factor -1 α and ki-67. Hypoxia up-regulated the expression of EPO and EPOR in HepG2 cells. It also induced the proliferation and increased the percentage of divided cells after 24, 48 and 72 h treatment. These were inhibited in cells pre-treated with 0.5 μg/mL soluble-EPOR. Immunofluorescence staining presented that EPOR was obviously translocated from nucleus to cytoplasm and membrane under hypoxia. EPOR binding activity was also increased after exposure to hypoxia. Recombinant human erythropoietin obviously elevated cell proliferation rate and the percentage of divided under hypoxia but not normoxia, which were also inhibited by soluble-EPOR.

Conclusions

Our result indicated for the first time that EPO promoted the proliferation of HCC cells through hypoxia induced translocation of it specific receptor. Trial registration TJC20141113, retrospectively registered
  相似文献   

14.
15.
Most skin pathologies are characterized by unbalanced synthesis of major histocompatability complex II (MHC-II) proteins. Healthy skin keratinocytes simultaneously produce large amounts of MHC-II and regeneration-supporting proteins, e.g. erythropoietin (EPO), EPO receptor (EPOR), glutamine synthetase (GS) and metallothionein (MT). To investigate the level of regeneration-supporting proteins in the skin during misbalanced production of MHC-II, skin sections from nonobese diabetic/severe combined immunodeficient (NOD/SCID)/γcnull and or Foxn1 nu/nu mice which are a priory known to under- and over-express MHC II, respectively, were used. Double immunofluorescence analysis of NOD/SCID/γcnull skin sections showed striking decrease in expression of MHC-II, EPO, GS and MT. In Foxn1 nu/nu mouse skin, GS was strongly expressed in epidermis and in hair follicles (HF), which lacked EPO. In nude mouse skin EPO and MHC-II were over-expressed in dermal fibroblasts and they were completely absent from cortex, channel, medulla and keratinocytes surrounding the HF, suggest a role for EPO in health and pathology of hair follicle. The level of expression of EPO and GS in both mutant mice was confirmed by results of Western blot analyses. Strong immunoresponsiveness of EPOR in the hair channels of NOD/SCID/γcnull mouse skin suggests increased requirements of skin cells for EPO and possible benefits of exogenous EPO application during disorders of immune system accompanied by loss MHC-II in skin cells.  相似文献   

16.
姜黄素对APPswe/PS1dE9双转基因小鼠Aβ生成和降解的影响   总被引:1,自引:0,他引:1  
目的观察姜黄素对APPswe/PS1dE9双转基因小鼠β淀粉样蛋白(βamyloid,Aβ)生成酶早老素2(presenilin2,PS2)和Aβ降解酶胰岛素降解酶(insulin degrading enzyme,IDE)表达的影响,探讨姜黄素在AD防治中的机制。方法将3月龄的APPswe/PS1dE9双转基因小鼠随机分为模型组、阳性对照组[罗格列酮组,0.92mg/(kg·d)]、姜黄素大[400mg/(kg·d)]、中[200mg/(kg·d)]、小[100mg/(kg·d)]剂量组,每组10只;并以同月龄遗传背景相同的C57BL/6J小鼠作为正常对照组10只。每天灌胃给药1次,模型组和正常对照组用等体积0.5%羧甲基纤维素(carboxymethyl cellulose,CMC)灌胃。灌胃3个月后,应用Morris水迷宫、免疫组织化学等方法,检测动物的学习记忆能力、海马Aβ生成酶PS2和降解酶IDE表达变化。结果行为学检测,模型组小鼠的游泳轨迹多为边缘型,而正常对照组、阳性对照组、姜黄素各组小鼠的游泳轨迹多为趋向型和直线型。Aβ生成酶PS2和降解酶IDE的免疫组织化学染色结果,模型组小鼠海马CA1区PS2阳性细胞较正常对照组明显增加(P0.01),与模型组相比,姜黄素各组小鼠海马CA1区PS2阳性细胞减少(P0.01)。模型组小鼠海马CA1区PS2阳性细胞平均灰度值较正常对照组降低(P0.05),姜黄素小剂量组阳性细胞平均灰度值同模型组相比明显增加(P0.01)。模型组小鼠海马CA1区IDE阳性细胞较正常对照组明显减少(P0.01),与模型组相比,姜黄素中剂量组小鼠海马CA1区IDE阳性细胞明显增加(P0.05)。模型组小鼠海马CA1区IDE阳性细胞平均灰度值较正常对照组明显增加(P0.01),姜黄素各组小鼠海马CA1区IDE阳性细胞平均灰度值同模型组相比均明显降低(P0.01)。结论姜黄素能通过减少Aβ生成酶和增加Aβ降解酶的表达,降低Aβ蛋白的表达进而改善APPswe/PS1dE9双转基因小鼠的学习记忆能力。  相似文献   

17.
The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα+) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.  相似文献   

18.
L Xiao  Z Li  P Xu  Z Li  J Xu  Z Yang 《PloS one》2012,7(7):e41993
Erythropoietin (EPO), known for its role in erythroid differentiation, has been shown to be an important growth factor for brain and heart. EPO is synthesized by fibroblast-like cells in the renal cortex. Prompted by this anatomical relationship and its significant impact on the maturation process of brain and heart, we asked whether EPO could play a role during the development of renal cortex. The relationship between the development of renal cortex and the change of EPO receptor (EPOR), through which EPO could act as a renotropic cytokine, became interesting to us. In this study, the day of birth was recorded as postnatal day 0(P0). P7, P14, P21, P28, P35, P42 and mature mice (postnatal days>56) were used as the animal model of different developmental stages. Immunohistochemistry and Western blotting were used to detect the expression of EPOR in mouse renal cortex. Results showed that expression of EPOR decreased with the development of renal cortex and became stable when kidney became mature. The expression of EPOR was detected at the renal tubule of all developmental stages and a relatively higher expression was observed at P14. However, at the renal corpuscle the expression was only observed at P7 and quickly became undetectable after that. All these suggested that a translocation of EPOR from renal corpuscle to renal tubule may take place during the developmental process of renal cortex. Also, EPO may be an essential element for the maturation of renal cortex, and the requirement for EPO was changed during postnatal development process.  相似文献   

19.
Liu SM  Li XZ  Huo Y  Lu F 《Phytomedicine》2012,19(7):631-638
To study the neuroprotective effect of extract of Acanthopanax senticosus Harms against MPTP-induced mice model of Parkinson's disease and its mechanism. The Parkinson's disease mice model was induced by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Hydrochloride (MPTP-HCl, 30mg/kg daily for 5 days). High dose group and low dose group were medicated with extract of Acanthopanax senticosus Harms for 20 days, dose amounted to 182mg/kg and 45.5mg/kg daily respectively. The behavioral testing of mice was assessed using pole-climbing test. The levels of Dopamine (DA) and Homovanillic acid (HVA) in striatum were determined by Ultra-performance liquid chromatography combined with time-of-flight mass spectrometry (UPLC-ToF-MS). The levels of dopamine receptor 1 and 2 in striatum were assayed simultaneously with the help of immunohistochemical method. The level of Caspase-3 protein in substantia nigra was analyzed by Western Blot. From Day 5 during the administration of extract of Acanthopanax senticosus Harms, pole-climbing time in low and high dose group were significantly less than model group (p<0.05). Compared with model group, the DA level of striatum in low dose group was significantly higher (p<0.01), the number of dopamine receptor 1 and dopamine receptor 2-positive cells in low and high dose group were significantly less (p<0.05), the Caspase-3 protein level of substantia nigra in low and high dose group were significantly less (p<0.05). The neuroprotective effect of extract of Acanthopanax senticosus Harms may be able to protect C57BL/6 mice against MPTP-induced dopaminergic neuronal damage.  相似文献   

20.
Erythropoietin (EPO) and its receptor (EPOR) are required for development of erythrocytes. It has been shown that the ectopic expression of EPOR confers EPO-dependent proliferation on an interleukin 3 (IL3)-dependent cell line, Ba/F3, whereas the IL2-dependent T cell line, CTLL-2 expressing the EPOR (T-ER), fails to proliferate in response to EPO. However, the molecular basis of the EPO unresponsiveness in CTLL-2 has not been clarified. We found that the expression level of JAK2 in T-ER cells was much lower than that in Ba/F3 cells. Therefore, we examined the effects of forced expression of JAK2 in T-ER cells. In T-ER transformants expressing JAK2 (T-JER), EPO induced tyrosine phosphorylation of the EPOR, JAK2, and STAT5, and consequently STAT5-responsive genes including bcl-X and cis1 were normally induced. Furthermore, T-JER cells were resistant to apoptosis until at least 72 h after switching from IL2 to EPO. Although T-JER cells could not continuously proliferate in the presence of EPO, additional expression of JAK2 in T-JER (T-JJER) to a level similar to that in Ba/F3 cells supported long term proliferation in response to EPO. JAK2 was equally co-immunoprecipitated with the EPOR among T-JER, T-JJER, and Ba/F3 cells expressing the EPOR (BF-ER). However, EPO-dependent mitogen-activated protein (MAP) kinase activation was observed in T-JJER and BF-ER cells but not in T-JER cells. EPO-dependent long term proliferation of T-JER cells was conferred by expression of the constitutively activated form of MEK1. Our results suggest that MAP kinase activation is, at least in part, an important component for mitotic signal from the EPOR, and CTLL-2 cells probably lack signaling molecule(s) in JAK2 and the Ras-MAP kinase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号