首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Blood-stage malaria of Plasmodium chabaudi is characterized by its responsiveness to testosterone (T): T suppresses development of protective immunity, whereas once acquired immunity is T-unresponsive. Here, we have analyzed the liver, a T target and lymphoid organ with anti-malaria activity, for its T-responsiveness of gene expression in immune mice. Using Affymetrix microarray technology, in combination with quantitative RT-PCR, we have identified (i) T-unresponsive expression of newly acquired mRNAs encoding diverse sequences of IgG- and IgM-antibodies, (ii) 24 genes whose expression has become T-unresponsive including those encoding the T(H)2 response promoting EHMT2 and the erythrocyte membrane protein band 7.2 STOM, (iii) T-unresponsive expression of mRNAs for the cytokines IL-1β, IL-6, TNFα, and IFNγ, as well as iNOS, which are even not inducible by infection, and (iv) 35 genes retaining their T-responsiveness, which include those encoding the infection-inducible acute phase proteins SAA1, SAA2, and ORM2 as well as those of liver metabolism which encode the T-downregulated female-prevalent enzymes CYP2B9, CYP2B13, CYP3A41, CYP7A1, and SULT2A2 and the T-upregulated male-prevalent enzymes CYP2D9, CYP7B1, UGT2B1, HSD3B2, HSD3B5, respectively. The mRNA of the latter T-metabolizing enzyme is even 5-fold increased by T, suggesting a decrease in the effective T concentrations in the liver of immune mice. Collectively, our data suggest that the liver, which has acquired a selective T-unresponsiveness of gene expression, contributes to the acquired T-unresponsive, antibody-mediated protective immunity to blood-stage malaria of P. chabaudi.  相似文献   

2.
Mapping and association studies of diabetes related genes in the pig   总被引:3,自引:0,他引:3  
The mitogen-activated protein kinase 8 (MAPK8), resistin (RETN), 11 beta hydroxysteroid dehydrogenase isoform 1 (HSD11B1) and protein kinase B Akt2 (AKT2) genes are all genes known to affect insulin signalling and have been implicated in the progression of obesity and type 2 diabetes in humans. In this study, polymorphisms in the porcine diabetes related MAPK8, RETN, HSD11B1 and AKT2 genes were identified, mapped and their associations with phenotypic measurements in swine were analysed. Polymorphisms detected in the MAPK8, RETN and HSD11B1 loci were used to genotype a Berkshire-Yorkshire pig breed reference family. Using linkage analysis, RETN, HSD11B1 and MAPK8 genes were mapped to pig chromosomes 2, 9 and 14, respectively, while the AKT2 gene was physically mapped to pig chromosome 6q21. Results presented here suggest associations between the polymorphisms in the MAPK8, RETN and HSD11B1 genes with several phenotypic measurements, including fat deposition traits in the pig. Because these genes have been implicated in obesity and diabetes in humans, and this study suggests associations with fat related traits, further research on these genes in swine may provide useful information on genetic factors underlying lean pork production.  相似文献   

3.
Both CYP17 and UGT2B17 are suggested to be potential risk factors of prostate cancer (PCa). To date, many studies have evaluated the relationship between CYP17 T-34C and UGT2B17 Del polymorphisms and Prostate cancer with conflicting results. Here, we performed comprehensive meta-analyses of over 25 studies, including results from about 17,000 subjects on the association of CYP17 T-34C and UGT2B17 Del polymorphisms with Prostate cancer. Overall, no significant associations between CYP17 T-34C polymorphism and Prostate cancer risk were found for T versus C (P=0.63), TT versus CC (P=0.52), TT+TC versus CC (P=0.40) or TT versus TC+CC (P=0.98), though there was a marginally significant association with the UGT2B17 Del polymorphism under Del/Del versus Ins/Ins +Ins/Del (P=0.05). In an analysis of various subgroups, there were no substantially significant associations with the CYP17 T-34C polymorphism; while there was a significant association for the UGT2B17 Del/Del genotype in a subgroup of men-based controls (P < 0.0001). The current meta-analysis results suggest that the CYP17 T-34C polymorphism may not be associated with Prostate cancer, while the UGT2B17 Del polymorphism may significantly contribute to prostate cancer susceptibility in men. These findings also support the idea that CYP17 has no significant effects on androgen levels, while UGT2B17 does.  相似文献   

4.
傅芳  王利  字向东 《兽类学报》2022,42(1):85-94
为探讨牦牛肝脏生长过程中基因的表达特征,采用Illumina高通量测序平台(HiSeqTM2500)对1日龄组(LD)、15月龄组(LM)和5岁龄组(LY)的健康麦洼牦牛肝脏进行转录组测序,并以qRT-PCR验证差异表达基因(differentially expressed genes,DEGs)的表达量.结果 显示,...  相似文献   

5.
Dysregulation of hormone metabolism is implicated in human breast cancer. 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) catalyzes the conversion of estradiol (E2) to estrone (E1), and is associated with the pathogenesis and development of various cancers. Here we show that E1 upregulates HSD17B4 acetylation at lysine 669 (K669) and thereby promotes HSD17B4 degradation via chaperone-mediated autophagy (CMA), while a single mutation at K669 reverses the degradation and confers migratory and invasive properties to MCF7 cells upon E1 treatment. CREBBP and SIRT3 dynamically control K669 acetylation level of HSD17B4 in response to E1. More importantly, K669 acetylation is inversely correlated with HSD17B4 in human breast cancer tissues. Our study reveals a crosstalk between acetylation and CMA degradation in HSD17B4 regulation, and a critical role of the regulation in the malignant progression of breast cancer.  相似文献   

6.
7.

Background

Boar taint is the unpleasant odour and flavour of the meat of uncastrated male pigs that is primarily caused by high levels of androstenone and skatole in adipose tissue. Androstenone is a steroid and its levels are mainly genetically determined. Studies on androstenone metabolism have, however, focused on a limited number of genes. Identification of additional genes influencing levels of androstenone may facilitate implementation of marker assisted breeding practices. In this study, microarrays were used to identify differentially expressed genes and pathways related to androstenone metabolism in the liver from boars with extreme levels of androstenone in adipose tissue.

Results

Liver tissue samples from 58 boars of the two breeds Duroc and Norwegian Landrace, 29 with extreme high and 29 with extreme low levels of androstenone, were selected from more than 2500 individuals. The samples were hybridised to porcine cDNA microarrays and the 1% most significant differentially expressed genes were considered significant. Among the differentially expressed genes were metabolic phase I related genes belonging to the cytochrome P450 family and the flavin-containing monooxygenase FMO1. Additionally, phase II conjugation genes including UDP-glucuronosyltransferases UGT1A5, UGT2A1 and UGT2B15, sulfotransferase STE, N-acetyltransferase NAT12 and glutathione S-transferase were identified. Phase I and phase II metabolic reactions increase the water solubility of steroids and play a key role in their elimination. Differential expression was also found for genes encoding 17beta-hydroxysteroid dehydrogenases (HSD17B2, HSD17B4, HSD17B11 and HSD17B13) and plasma proteins alpha-1-acid glycoprotein (AGP) and orosomucoid (ORM1). 17beta-hydroxysteroid dehydrogenases and plasma proteins regulate the availability of steroids by controlling the amount of active steroids accessible to receptors and available for metabolism. Differences in the expression of FMO1, NAT12, HSD17B2 and HSD17B13 were verified by quantitative real competitive PCR.

Conclusion

A number of genes and pathways related to metabolism of androstenone in liver were identified, including new candidate genes involved in phase I oxidation metabolism, phase II conjugation metabolism, and regulation of steroid availability. The study is a first step towards a deeper understanding of enzymes and regulators involved in pathways of androstenone metabolism and may ultimately lead to the discovery of markers to reduce boar taint.
  相似文献   

8.
9.
The interrenal gland (adrenocortical homolog) of elasmobranchs produces a unique steroid, 1α-hydroxycorticosterone (1α-B). The synthesis of this and most other steroids requires both cholesterol side chain cleavage (CYP11A) and 3β-hydroxysteroid dehydrogenase (HSD3). To facilitate the study of elasmobranch steroidogenesis, we isolated complementary DNAs encoding CYP11A and HSD3 from the freshwater stingray Potamotrygon motoro. The P. motoro CYP11A (2182 bp total length) and HSD3 (2248 bp total length) cDNAs harbor open reading frames that encode proteins of 542 and 376 amino acids (respectively) that are similar (CYP11A: 39–61% identical; HSD3: 36–53% identical) to their homologs from other vertebrates. In molecular phylogenetic analysis, P. motoro CYP11A segregates with CYP11A proteins (and not with related CYP11B proteins) and P. motoro HSD3 segregates with steroidogenic HSD3 proteins from other fishes. CYP11A and HSD3 mRNA is found only in interrenal and gonadal tissues, indicating de novo steroidogenesis is restricted to these tissues. Because 1α-B is thought to act in the elasmobranch response to hydromineral disturbances, we examined the effect of adapting P. motoro to 10 ppt seawater on mRNAs encoding steroidogenic genes. The P. motoro response to this salinity challenge does not include interrenal hypertrophy or an increase in the levels of interrenal CYP11A, HSD3 or steroidogenic acute regulatory protein (StAR) mRNA. This study is the first to isolate full length cDNAs encoding elasmobranch CYP11A and HSD3 and the first to examine the regulation of steroidogenic genes in elasmobranch interrenal cells.  相似文献   

10.
An increasing number of patients are being diagnosed with primary aldosteronism (PA) due to aldosterone-producing macroadenoma (APA). However, there are only limited data available on the clinical characteristics of PA that are associated with adrenal microadenoma. Of the 55 patients that were diagnosed with PA in our study, 22 patients showed a unilateral adrenal over-production of aldosterone. The histopathology of the surgically removed adrenal tissues led to six patients being diagnosed with microadenoma, and the clinical features of microadenoma, macroadenoma and idiopathic hyperaldosteronism (IHA) were studied. The expression levels of CYP11B2, CYP17, CYP21 and 3β-hydroxysteroid dehydrogenase 2 (HSD3B2) mRNA in the adrenal cortices (n = 5 and 6, respectively) that remained attached to the adrenal microadenomas or macroadenomas were examined by real time-PCR and then compared to the expression levels in the adrenal cortices (n = 5) of non-functioning adrenal adenomas (NF). The patients with microadenoma (n = 6) had significantly higher diastolic blood pressure than the patients with macroadenoma (n = 16) or IHA (n = 33) (p < 0.05). The systolic blood pressure, plasma aldosterone concentration, serum potassium level and renal function did not differ between the PA sub-groups. The levels of CYP11B2 and CYP17 mRNA were significantly increased in the adjacent tissues of microadenomas, as compared with macroadenomas or NF (p < 0.05), whereas no significant differences in the CYP21 and HSD3B2 mRNA levels were found between the PA sub-groups. The tumor size did not influence the clinical characteristics of APA. The non-tumor portions of the microadenomas showed marked and sustained CYP11B2 mRNA expression under the suppressed renin-angiotensin system. We suggest that an increased number of microadenomas should be sampled, and the immunohistochemistry for steoridogenic enzymes should be investigated to clarify the etiology of microadenoma.  相似文献   

11.
The Wnt family molecules Dickkopf-3 (DKK3) and WNT4 are present at higher concentrations in the zona glomerulosa than in the rest of the adrenal cortex. In order to study direct effects of these proteins on adrenocortical cell function, we created adenoviruses encoding human DKK3 and WNT4. When added to cultured human adrenocortical cells, DKK3 inhibited aldosterone and cortisol biosynthesis, either alone or together with cyclic AMP. WNT4 increased steroidogenesis when added alone but decreased it in the presence of cyclic AMP. A control adenovirus encoding GFP had no effect. RNA was prepared from cultured cells and was assayed by real-time PCR. CYP11A1 (cholesterol side-chain cleavage enzyme), HSD3B2 (3beta-hydroxysteroid dehydrogenase type II), CYP17 (17alpha-hydroxylase), CYP21 (21-hydroxylase) and CYP11B1 (11beta-hydroxylase) mRNAs were all increased by cyclic AMP, whereas CYP11B2 (aldosterone synthase) was unaffected. DKK3 decreased cyclic AMP-stimulated CYP17. WNT4 increased both CYP17 and CYP21 in the absence of cyclic AMP. Both DKK3 and WNT4 increased the level of CYP11B2. These data show that these Wnt signaling molecules have multiple actions on steroidogenesis in adrenocortical cells, including effects on overall steroidogenesis (aldosterone and cortisol biosynthesis) and distinct effects on steroidogenic enzyme mRNA levels. The co-localization of DKK3 and WNT4 in the glomerulosa and their stimulation of CYP11B2 imply an action on glomerulosa-specific function.  相似文献   

12.
13.
14.
Ovarian and placental steroids are essential for the maintenance of pregnancy. In some mammals it is evident that the placenta is responsible for the production of steroids. However, in the domestic cat, steroid secretion from the placenta has not yet been elucidated. Our study aimed to find out whether feline placentae are able to produce steroids. Placentae from different pregnancy stages were analyzed for mRNA expression of five steroidogenic enzymes (HSD3B1, CYP11A1, CYP17A1, HSD17B1 and CYP19A1) and for tissue concentrations of progesterone and estradiol. Steroidogenic enzymes responsible for the final steps of estradiol (CYP19A1) and progesterone synthesis (HSD3B) were expressed at very high levels and followed almost the same pattern over pregnancy as the intraplacental hormones themselves. By contrast, the other enzymes were found in very low quantities suggesting that biosynthesis occurs via extra-placental steroid precursors. The plasma steroid profiles measured by other groups differ from the placental hormone courses determined by us; therefore we conclude that the feline placenta can produce progesterone and estradiol.  相似文献   

15.
The widely expressed steroid hydroxylase CYP7B1 is involved in metabolism of a number of steroids reported to influence estrogen and androgen signaling. Several studies by us and other investigators have linked this enzyme to effects on estrogen receptor activation. In a previous report we examined the effect of CYP7B1-mediated hormone metabolism for estrogen-mediated response in kidney-derived HEK293 cells. In the current study we used an androgen response element (ARE) reporter system to examine androgen-dependent response of some CYP7B1 substrates and CYP7B1-formed metabolites in several cell lines derived from different tissues. The results indicate significantly lower androgen receptor activation by CYP7B1-formed steroid metabolites than by the corresponding steroid substrates, suggesting that CYP7B1-mediated catalysis may decrease some androgenic responses. Thus, CYP7B1-dependent metabolism may be of importance not only for estrogenic signaling but also for androgenic. This finding, that CYP7B1 activity may be a regulator of androgenic signaling by converting AR ligands into less active metabolites, is also supported by real-time RT-PCR experiment where a CYP7B1 substrate, but not the corresponding product, was able to stimulate known androgen-sensitive genes. Furthermore, our data indicate that the effects of some steroids on hormone response element reporter systems are cell line-specific. For instance, despite transfection of the same reporter systems, 5-androstene-3β,17β-diol strongly activates an androgen-dependent response element in prostate cancer cells whereas it elicits only ER-dependent responses in kidney HEK293 cells. Potential roles of cell-specific metabolism or comodulator expression for the observed differences are discussed.  相似文献   

16.
17.
The current study presents data indicating that 1α,25-dihydroxyvitamin D3 affects the production of hormones and expression of crucial steroidogenic enzymes in the human adrenocortical cell line NCI-H295R. This cell line is widely used as a model for adrenal steroidogenesis. Treatment of the cells with 1α,25-dihydroxyvitamin D3 suppressed the levels of corticosterone, aldosterone, DHEA, DHEA-sulfate and androstenedione in the culture medium. In order to study the mechanisms behind this suppression of hormone production, we investigated the effects of 1α,25-dihydroxyvitamin D3 on important genes and enzymes controlling the biosynthesis of adrenal hormones. The mRNA levels were decreased for CYP21A2 while they were increased for CYP11A1 and CYP17A1. No significant changes were observed in mRNA for CYP11B1, CYP11B2 or 3β-hydroxysteroid dehydrogenase (3βHSD). In similarity with the effects on mRNA levels, also the endogenous enzyme activity of CYP21A2 decreased after treatment with 1α,25-dihydroxyvitamin D3. Interestingly, the two CYP17A1-mediated activities were influenced reciprocally — the 17α-hydroxylase activity increased whereas the 17,20-lyase activity decreased. The current data indicate that the 1α,25-dihydroxyvitamin D3-mediated decrease in corticosterone and androgen production is due to suppression of the 21-hydroxylase activity by CYP21A2 and the 17,20-lyase activity by CYP17A1, respectively. In conclusion, the current study reports novel findings on 1α,25-dihydroxyvitamin D3-mediated effects on hormone production and regulation of genes and enzymes involved in steroidogenesis in the adrenocortical NCI-H295R cell line, a model for human adrenal cortex.  相似文献   

18.
Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison’s disease (AAD) or autoimmune polyendocrine syndrome (APS), circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH), CYP17A1 (17-hydroxylase; 17-OH), CYP11A1 (P450 side-chain cleavage enzyme; P450scc) and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD) were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation). Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016). Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037). Significant associations with breed (p = 0.015) and DLA-type (DQA1*006:01 allele; p = 0.017) were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism.  相似文献   

19.
Glucuronidation is a major pathway of androgen metabolism and is catalyzed by UDP-glucuronosyltransferase (UGT) enzymes. UGT2B15 and UGT2B17 are 95% identical in primary structure, and are expressed in steroid target tissues where they conjugate C19 steroids. Despite the similarities, their regulation of expression are different; however, the promoter region and genomic structure of only the UGT2B17 gene have been characterizedX to date. To isolate the UGT2B15 gene and other novel steroid-conjugating UGT2B genes, eight P-1-derived artificial chromosomes (PAC) clones varying in length from 30 kb to 165 kb were isolated. The entire UGT2B15 gene was isolated and characterized from the PAC clone 21598 of 165 kb. The UGT2B15 and UGT2B17 genes are highly conserved, are both composed of six exons spanning approximately 25 kb, have identical exon sizes and have identical exon-intron boundaries. The homology between the two genes extend into the 5'-flanking region, and contain several conserved putative cis-acting elements including Pbx-1, C/EBP, AP-1, Oct-1 and NF/kappaB. However, transfection studies revealed differences in basal promoter activity between the two genes, which correspond to regions containing non-conserved potential elements. The high degree of homology in the 5'-flanking region between the two genes is lost upstream of -1662 in UGT2B15, and suggests a site of genetic recombination involved in duplication of UGT2B genes. Fluorescence in situ hybridization mapped the UGT2B15 gene to chromosome 4q13.3-21.1. The other PAC clones isolated contain exons from the UGT2B4, UGT2B11 and UGT2B17 genes. Five novel exons, which are highly homologous to the exon 1 of known UGT2B genes, were also identified; however, these exons contain premature stop codons and represent the first recognized pseudogenes of the UGT2B family. The localization of highly homologous UGT2B genes and pseudogenes as a cluster on chromosome 4q13 reveals the complex nature of this gene locus, and other novel homologous UGT2B genes encoding steroid conjugating enzymes are likely to be found in this region of the genome.  相似文献   

20.
Six loci containing genes involved in the dioxin metabolism (ARNT, AHR, CYP1A1, CYP1A2, CYP1B1 and AHRR) were assigned, for the first time, to cattle (Bos taurus, 2n = 60, BTA), river buffalo (Bubalus bubalis, 2n = 50, BBU), sheep (Ovis aries, 2n = 54, OAR) and goat (Capra hircus, 2n = 60, CHI) chromosomes by comparative FISH-mapping and R-banding using bovine BAC-clones. The following chromosome locations were found: ARNT to BTA3q21, BBU6q21, OAR1p21 and CHI3q21, AHR to BTA4q15, BBU8q15, OAR4q15 and CHI4q15; CYP1A1 and CYP1A2 to BTA21q17, BBU20q17, OAR18q17 and CHI21q17; CYP1B1 to BTA11q16, BBU12q22, OAR3p16 and CHI11q16, AHRR to BTA20q24, BBU19q24, OAR16q24 and CHI20q24. All loci were mapped at the same homoeologous chromosomes and chromosome bands of the four bovid species. Comparisons with corresponding human locations were also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号