首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.

Background

Shape complementarity and non-covalent interactions are believed to drive protein-ligand interaction. To date protein-protein, protein-DNA, and protein-RNA interactions were systematically investigated, which is in contrast to interactions with small ligands. We investigate the role of covalent and non-covalent bonds in protein-small ligand interactions using a comprehensive dataset of 2,320 complexes.

Methodology and Principal Findings

We show that protein-ligand interactions are governed by different forces for different ligand types, i.e., protein-organic compound interactions are governed by hydrogen bonds, van der Waals contacts, and covalent bonds; protein-metal ion interactions are dominated by electrostatic force and coordination bonds; protein-anion interactions are established with electrostatic force, hydrogen bonds, and van der Waals contacts; and protein-inorganic cluster interactions are driven by coordination bonds. We extracted several frequently occurring atomic-level patterns concerning these interactions. For instance, 73% of investigated covalent bonds were summarized with just three patterns in which bonds are formed between thiol of Cys and carbon or sulfur atoms of ligands, and nitrogen of Lys and carbon of ligands. Similar patterns were found for the coordination bonds. Hydrogen bonds occur in 67% of protein-organic compound complexes and 66% of them are formed between NH- group of protein residues and oxygen atom of ligands. We quantify relative abundance of specific interaction types and discuss their characteristic features. The extracted protein-organic compound patterns are shown to complement and improve a geometric approach for prediction of binding sites.

Conclusions and Significance

We show that for a given type (group) of ligands and type of the interaction force, majority of protein-ligand interactions are repetitive and could be summarized with several simple atomic-level patterns. We summarize and analyze 10 frequently occurring interaction patterns that cover 56% of all considered complexes and we show a practical application for the patterns that concerns interactions with organic compounds.  相似文献   

2.
Sacrificial bonds and hidden length in structural molecules and composites have been found to greatly increase the fracture toughness of biomaterials by providing a reversible, molecular-scale energy-dissipation mechanism. This mechanism relies on the energy, of order 100 eV, needed to reduce entropy and increase enthalpy as molecular segments are stretched after being released by the breaking of weak bonds, called sacrificial bonds. This energy is relatively large compared to the energy needed to break the polymer backbone, of order a few eV. In many biological cases, the breaking of sacrificial bonds has been found to be reversible, thereby additionally providing a "self-healing" property to the material. Due to the nanoscopic nature of this mechanism, single molecule force spectroscopy using an atomic force microscope has been a useful tool to investigate this mechanism. Especially when investigating natural molecular constructs, force versus distance curves quickly become very complicated. In this work we propose various types of sacrificial bonds, their combination, and how they appear in single molecule force spectroscopy measurements. We find that by close analysis of the force spectroscopy curves, additional information can be obtained about the molecules and their bonds to the native constructs.  相似文献   

3.
Gas vesicles are organelles that provide buoyancy to the aquatic microorganisms that harbor them. The gas vesicle shell consists almost exclusively of the hydrophobic 70-residue gas vesicle protein A, arranged in an ordered array. Solid-state NMR spectra of intact collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae show duplication of certain gas vesicle protein A resonances, indicating that specific sites experience at least two different local environments. Interpretation of these results in terms of an asymmetric dimer repeat unit can reconcile otherwise conflicting features of the primary, secondary, tertiary, and quaternary structures of the gas vesicle protein. In particular, the asymmetric dimer can explain how the hydrogen bonds in the β-sheet portion of the molecule can be oriented optimally for strength while promoting stabilizing aromatic and electrostatic side-chain interactions among highly conserved residues and creating a large hydrophobic surface suitable for preventing water condensation inside the vesicle.  相似文献   

4.
We assess the cross-reactivity of both cellular as well as recombinant E- and N-cadherins using functionalized bead arrays assembled on atomic-force-microscope cantilevers. This new approach builds upon and enhances the utility of a recently developed force probe that integrates a custom-built, horizontal atomic force microscope with micropipette manipulation. It enables us to test multiple biomolecular interactions of the same cell in a swift sequential or cyclic manner and thus to resolve subtle differences between individual interactions that otherwise would be obscured by cell-cell baseline variability. For each cell, we contrast heterophilic E:N-cadherin binding with the respective homophilic bonds and with a suitable control. Clarifying previous literature reports, we establish that specific bonds between E- and N-cadherins form readily, albeit less frequently than homophilic bonds of either cadherin. We support this assessment with a rough estimate of the ratio of on-rate constants of E/N-cadherin binding.  相似文献   

5.
The interaction of Ca2+ and Mg2+ with phosphatidylserine (PS) vesicles in 0.1 M NaCl aqueous solution was studied by equilibrium dialysis binding, X-ray diffraction, batch microcalorimetry, kinetics of cation-induced vesicle aggregation, release of vesicle contents, and fusion. Addition of either cation causes aggregation of PS vesicles and produces complexes with similar stoichiometry (1:2 cation/PS) at saturating concentrations, although the details of the interactions and the resulting complexes are quite different. Addition of Ca2+ to PS vesicles at T greater than or equal to 25 degrees C induces the formation of an "anhydrous" complex of closely apposed membranes with highly ordered crystalline acyl chains and a very high transition temperature (Tc greater than 100 degrees C). The formation of this complex is accompanied by a release of heat (5.5 kcal/mol), rapid release of vesicle contents, and fusion of the vesicles into larger membranous structures. By contrast, addition of Mg2+ produces a complex with PS which is much more hydrated, has no crystallization of the acyl chains at T greater than or equal to 20 degrees C, and has comparatively little fusion. Studies with both Ca2+ and Mg2+ added simultaneously indicate that there is a synergistic effect between the two cations, which results in an enhancement of the ability of Ca2+ to form its specific complex with PS at lower concentrations. The presence of the erythrocyte protein "spectrin" inhibits this synergism and interferes with the formation of the specific PS/Ca complex. It also inhibits the fusion of PS vesicles. It is proposed that the unique PS/Ca complex, which involves close apposition of vesicle membranes, is an intermembrane "trans" complex. We further propose that such a complex is a key step for the resultant phase transition and fusion of PS vesicles. By contrast, the PS/Mg complex is proposed to be a "cis" complex with respect to each membrane. The results are discussed in terms of the mechanism of membrane fusion.  相似文献   

6.
Non-covalent bonds of the same type as antibody-antigen bonds--"affinity bonds"--are one of the most important types of structural bonds on the cellular level, mediating interactions such as cell-cell and cell-extracellular matrix adhesion, providing the integrity of such structures as microtubules and actin filaments, and producing force in muscle, flagella and cilia. The affinity bonds in these and many other interactions are subject to forces during the life of the cell. However, the tensile strength of these bonds, and how this determines the strength of the interactions on the cellular level, is largely unknown. We have attempted to calculate the tensile strength of an affinity bond by modelling binding as a multistep process in which the binding molecules first diffuse together, overcome an activation energy, and then bind. By calculating the energies associated with each step, the energy actually contained in the bond can be determined, yielding the bond strength. The "average" affinity bond is thus found to have a tensile strength of about 40 mu dyn. However, the temporal nature of affinity bonds (thermal fluctuations will eventually break them) causes the strength of the interactions to be actually somewhat weaker, with the outcome of putting tension on a group of bonds depending strongly on the conditions.  相似文献   

7.
Lin L  Wang H  Liu Y  Yan H  Lindsay S 《Biophysical journal》2006,90(11):4236-4238
We have used a DNA-aptamer tethered to an atomic force microscope probe to carry out recognition imaging of IgE molecules attached to a mica substrate. The recognition was efficient (approximately 90%) and specific, being blocked by injection of IgE molecules in solution, and not being interfered with by high concentrations of a second protein. The signal/noise ratio of the recognition signal was better than that obtained with antibodies, despite the fact that the average force required to break the aptamer-protein bonds was somewhat smaller.  相似文献   

8.
Membrane fusion during exocytosis and throughout the cell is believed to involve members of the SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) family of proteins. The assembly of these proteins into a four-helix bundle may be part of the driving force for bilayer fusion. Regulated exocytosis in neurons and related cell types is specialized to be fast and Ca(2+)-dependent suggesting the involvement of other regulatory proteins specific for regulated exocytosis. Among these are the complexins, two closely related proteins that bind only to the assembled SNARE complex. We have investigated the function of complexin by analysis of single vesicle release events in adrenal chromaffin cells using carbon fiber amperometry. These cells express complexin II, and overexpression of this protein modified the kinetics of vesicle release events so that their time course was shortened. This effect depended on complexin interaction with the SNARE complex as introduction of a mutation of Arg-59, a residue that interacts with synaptobrevin in the SNARE complex, abolished its effects. The data are consistent with a function for complexin in stabilizing an intermediate of the SNARE complex to allow kiss-and-run recycling of the exocytosed vesicle.  相似文献   

9.
In biological adhesion, the biophysical mechanism of specific biomolecular interaction can be divided in slip and catch bonds, respectively. Conceptually, slip bonds exhibit a reduced bond lifetime under increased external force and catch bonds, in contrast, exhibit an increased lifetime (for a certain force interval). Since 2003, a handful of biological systems have been identified to display catch bond properties. Upon investigating the specific interaction between the unique hydrophilic domain (HD) of the human cell-surface sulfatase Sulf1 against its physiological glycosaminoglycan (GAG) target heparan sulfate (HS) by single molecule force spectroscopy (SMFS), we found clear evidence of catch bond behavior in this system. The HD, ∼320 amino acids long with dominant positive charge, and its interaction with sulfated GAG-polymers were quantitatively investigated using atomic force microscopy (AFM) based force clamp spectroscopy (FCS) and dynamic force spectroscopy (DFS). In FCS experiments, we found that the catch bond character of HD against GAGs could be attributed to the GAG 6-O-sulfation site whereas only slip bond interaction can be observed in a GAG system where this site is explicitly lacking. We interpreted the binding data within the theoretical framework of a two state two path model, where two slip bonds are coupled forming a double-well interaction potential with an energy difference of ΔE ≈ 9 kBT and a compliance length of Δx ≈ 3.2 nm. Additional DFS experiments support this assumption and allow identification of these two coupled slip-bond states that behave consistently within the Kramers-Bell-Evans model of force-mediated dissociation.  相似文献   

10.
Dynamic force spectroscopy probes the kinetic properties of molecules interacting with each other such as antibody-antigen, receptor-ligand, etc. In this article, a statistical model for the dissociation of such cooperative systems is presented. The partner molecules are assumed to be linked by a number of relatively weak bonds that can be grouped together into cooperative units. Single bonds are assumed to open and close statistically. Our model was used to analyze molecular recognition experiments of single receptor-ligand pairs in which the two molecules are brought into contact using an atomic force microscope, which leads to the formation of a strong and specific bond. Then a prescribed time-dependent force is applied to the complex and the statistical distribution of forces needed to pull the molecules completely apart is measured. This quantity is also calculated from our model. Furthermore, its dependence on the model parameters, such as binding free energy, number of bonds and groups, number of cooperative elementary bonds and degree of cooperativity within a group, influence of the force on the binding free energy, and the rate of change of the pulling force, is determined.  相似文献   

11.
Some recently studied biological noncovalent bonds have shown increased lifetime when stretched by mechanical force. In each case these counterintuitive "catch-bonds" have transitioned into ordinary "slip-bonds" that become increasingly shorter lived as the tensile force on the bond is further increased. We describe analytically how these results are supported by a physical model whereby the ligand escapes the receptor binding site via two alternative routes, a catch-pathway that is opposed by the applied force and a slip-pathway that is promoted by force. The model predicts under what conditions and at what critical force the catch-to-slip transition would be observed, as well as the degree to which the bond lifetime is enhanced at the critical force. The model is applied to four experimentally studied systems taken from the literature, involving the binding of P- and L-selectins to sialyl Lewis(X) oligosaccharide-containing ligands. Good quantitative fit to the experimental data is obtained, both for experiments with a constant force and for experiments where the force increases linearly with time.  相似文献   

12.
The regulated release of neurotransmitters at synapses is mediated by the fusion of neurotransmitter-filled synaptic vesicles with the plasma membrane. Continuous synaptic activity relies on the constant recycling of synaptic vesicle proteins into newly formed synaptic vesicles. At least two different mechanisms are presumed to mediate synaptic vesicle biogenesis at the synapse as follows: direct retrieval of synaptic vesicle proteins and lipids from the plasma membrane, and indirect passage of synaptic vesicle proteins through an endosomal intermediate. We have identified a vesicle population with the characteristics of a primary endocytic vesicle responsible for the recycling of synaptic vesicle proteins through the indirect pathway. We find that synaptic vesicle proteins colocalize in this vesicle with a variety of proteins known to recycle from the plasma membrane through the endocytic pathway, including three different glucose transporters, GLUT1, GLUT3, and GLUT4, and the transferrin receptor. These vesicles differ from "classical" synaptic vesicles in their size and their generic protein content, indicating that they do not discriminate between synaptic vesicle-specific proteins and other recycling proteins. We propose that these vesicles deliver synaptic vesicle proteins that have escaped internalization by the direct pathway to endosomes, where they are sorted from other recycling proteins and packaged into synaptic vesicles.  相似文献   

13.
The bacterial adhesive protein, FimH, is the most common adhesin of Escherichia coli and mediates weak adhesion at low flow but strong adhesion at high flow. There is evidence that this occurs because FimH forms catch bonds, defined as bonds that are strengthened by tensile mechanical force. Here, we applied force to single isolated FimH bonds with an atomic force microscope in order to test this directly. If force was loaded slowly, most of the bonds broke up at low force (<60 piconewtons of rupture force). However, when force was loaded rapidly, all bonds survived until much higher force (140-180 piconewtons of rupture force), behavior that indicates a catch bond. Structural mutations or pretreatment with a monoclonal antibody, both of which allosterically stabilize a high affinity conformation of FimH, cause all bonds to survive until high forces regardless of the rate at which force is applied. Pretreatment of FimH bonds with intermediate force has the same strengthening effect on the bonds. This demonstrates that FimH forms catch bonds and that tensile force induces an allosteric switch to the high affinity, strong binding conformation of the adhesin. The catch bond behavior of FimH, the amount of force needed to regulate FimH, and the allosteric mechanism all provide insight into how bacteria bind and form biofilms in fluid flow. Additionally, these observations may provide a means for designing antiadhesive mechanisms.  相似文献   

14.
Selectin-ligand interactions mediate the tethering and rolling of circulating leukocytes on vascular surfaces during inflammation and immune surveillance. To support rolling, these interactions are thought to have rapid off-rates that increase slowly as wall shear stress increases. However, the increase of off-rate with force, an intuitive characteristic named slip bonds, is at odds with a shear threshold requirement for selectin-mediated cell rolling. As shear drops below the threshold, fewer cells roll and those that do roll less stably and with higher velocity. We recently demonstrated a low force regime where the off-rate of P-selectin interacting with P-selectin glycoprotein ligand-1 (PSGL-1) decreased with increasing force. This counter-intuitive characteristic, named catch bonds, might partially explain the shear threshold phenomenon. Because L-selectin-mediated cell rolling exhibits a much more pronounced shear threshold, we used atomic force microscopy and flow chamber experiments to determine off-rates of L-selectin interacting with their physiological ligands and with an antibody. Catch bonds were observed at low forces for L-selectin-PSGL-1 interactions coinciding with the shear threshold range, whereas slip bonds were observed at higher forces. These catch-slip transitional bonds were also observed for L-selectin interacting with endoglycan, a newly identified PSGL-1-like ligand. By contrast, only slip bonds were observed for L-selectin-antibody interactions. These findings suggest that catch bonds contribute to the shear threshold for rolling and are a common characteristic of selectin-ligand interactions.  相似文献   

15.
Two types of phospholipid vesicles capable of mutual recognition have been tailor-made to serve as a model system for the study of carbohydrate-mediated cellular adhesion. One of the vesicles contained a fatty acid conjugate of a galactose specific lectin (lectin vesicle) and the other an asialoganglioside with a reactive terminal galactose residue (galactose vesicle). The kinetics of aggregation of these two types of vesicles was followed by monitoring time-dependent change in turbidity. A 10-100-fold enhancement in the forward rate constant (kf ranging from 7.1 x 10(5) to 4.5 x 10(7) M-1.s-1 at 27 degrees C) was observed when compared with that for the lectin-galactose system in solution (kf being 4.5 x 10(5) M-1.s-1), reported in the literature. A study of the influence of vesicle size on the rate of aggregation showed that enhancement depended on the curvature of the galactose vesicle rather than the density of asialoganglioside suggesting a possible diffusion in the plane of the membrane. The ratio, kf/kd is found to be approx. 10(10) M-1 indicating that the formation of multiple bonds plays a role for stable adhesion.  相似文献   

16.
We have developed a new method for obtaining information about protein sequences that uses an approach analogous to that used to determine DNA sequences. In essence, three steps are involved. First, a detectable label is attached exclusively to the amino terminus of a polypeptide. Next, the labeled chain is subjected to partial specific cleavage in a way that produces roughly equimolar amounts of fragments of different sizes. Cleavages for methionine, tryptophan, arginine, aspartyl-proline bonds, and asparaginyl-glycine bonds have been employed. Lastly, the labeled fragments are separated according to size by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The distribution of target amino acids along the polypeptide chain can be deduced from the specific pattern of labeled bands by reading the "ladder" in the same way that DNA sequencing gels are read. Although the method can be conducted with a radioactive label, we have chosen to use a fluorescent label. We have applied the method successfully to the three subunit chains of two different fibrinogens.  相似文献   

17.
Recent observations indicate that it is possible to form tethers from large phospholipid vesicles. The process of tether formation is analyzed using a continuum mechanical approach to obtain the surface viscosity of the bilayer in terms of experimentally measurable parameters. The membrane is treated as a two-dimensional isotropic material which deforms a constant area. The constitutive equation relates the maximum surface shear resultant to the rate of deformation via the surface viscosity coefficient. The force which acts to increase the tether length is generated by fluid moving past the vesicle. The magnitude of the force is estimated from Stoke's drag equation. The analysis predicts that there is a critical force necessary to produce an increase in the tether length. A dimensionless tether growth parameter is defined, and its value is obtained as a function of the ratio of the applied force on the vesicle to the critical force. This relationship is independent of both the size of the vesicle and the radius of the tether. Knowing the force on the vesicle, the critical force, and the rate of tether growth, the surface viscosity can be calculated.  相似文献   

18.
Identifying the kinesin motors that interact with different vesicle populations is a longstanding and challenging problem with implications for many aspects of cell biology. Here we introduce a new live-cell assay to assess kinesin-vesicle interactions and use it to identify kinesins that bind to vesicles undergoing dendrite-selective transport in cultured hippocampal neurons. We prepared a library of "split kinesins," comprising an axon-selective kinesin motor domain and a series of kinesin tail domains that can attach to their native vesicles; when the split kinesins were assembled by chemical dimerization, bound vesicles were misdirected into the axon. This method provided highly specific results, showing that three Kinesin-3 family members-KIF1A, KIF13A, and KIF13B-interacted with dendritic vesicle populations. This experimental paradigm allows a systematic approach to evaluate motor-vesicle interactions in living cells.  相似文献   

19.
When pulling a vesicle adhered on a substrate, both the force-displacement profile and the maximum force at pull-off are sensitively dependent upon the substrate shape. Here we consider the adhesion between a two-dimensional vesicle and a rigid substrate via long-range molecular interactions. For a given contact area, the theoretical pull-off force of the vesicle is obtained by multiplying the theoretical strength of adhesion and the contact area. It is shown that one may design an optimal substrate shape to achieve the theoretical pull-off force.  相似文献   

20.
Cellular structures are shaped by hydrogen and ionic bonds, plus van der Waals and hydrophobic forces. In cells crowded with macromolecules, a little-known and distinct force-the "depletion attraction"-also acts. We review evidence that this force assists in the assembly of a wide range of cellular structures, ranging from the cytoskeleton to chromatin loops and whole chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号