首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细胞壁在细胞极性建立和胚胎发生中的作用   总被引:1,自引:0,他引:1  
植物细胞壁是一个活性的动态结构,其结构层次与组分随着发育进程而发生变化,且广泛参与细胞的各项生命活动,特别是在参与细胞命运决定、充当细胞发育信使、调控植物胚胎早期极性建立以及模式建成等方面发挥重要作用。  相似文献   

2.
3.
The yeast cyclin-dependent kinase Cdc28p regulates bud morphogenesis and cell cycle progression via the antagonistic activities of Cln and Clb cyclins. Cln G1 cyclins direct polarized growth and bud emergence, whereas Clb G2 cyclins promote isotropic growth of the bud and chromosome segregation. Using colony morphology as a screen to dissect regulation of polarity by Cdc28p, we identified nine point mutations that block the apical-isotropic switch while maintaining other functions. Like a clb2 Delta mutation, each confers tubular bud shape, apically polarized actin distribution, unipolar budding, and delayed anaphase. The mutations are all suppressed by CLB2 overexpression and are synthetically lethal with a CLB2 deletion. However, defects in multiple independent pathways may underlie their common phenotype, because the mutations are scattered throughout the CDC28 sequence, complement each other, and confer diverse biochemical properties. Glu12Gly, a mutation that alters a residue involved in Swe1p inhibition of Cdc28p, was unique in being suppressed by deficiency of SWE1 or CLN1. With wild-type CDC28, filament formation induced by CLN1 overexpression was markedly decreased in a SWE1 deletion. These results suggest that Swe1p, via inhibition of Clb2p/Cdc28p, may mediate much of the effect of Cln1p on filamentous morphogenesis.  相似文献   

4.
The term polarity refers to the differential distribution of the macromolecular elements of a cell, resulting in its asymmetry in function, shape and/or content. Polarity is a fundamental property of all metazoan cells in at least some stages, and is pivotal to processes such as epithelial differentiation (apical/basal polarity), coordinated cell activity within the plane of a tissue (planar cell polarity), asymmetric cell division, and cell migration. In the last case, an apparently symmetric cell responds to directional cues provided by chemoattractants, creating a polarity axis that runs from the cell anterior, or leading edge, in which actin polymerization takes place, to the cell posterior (termed uropod in leukocytes), in which acto-myosin contraction occurs. Here we will review some of the molecular mechansisms through which chemoattractants break cell symmetry to trigger directed migration, focusing on cells of the immune system. We briefly highlight some common or apparently contradictory pathways reported as important for polarity in other cells, as this suggests conserved or cell type-specific mechanisms in eukaryotic cell chemotaxis.  相似文献   

5.
The term polarity refers to the differential distribution of the macromolecular elements of a cell, resulting in its asymmetry in function, shape and/or content. Polarity is a fundamental property of all metazoan cells in at least some stages, and is pivotal to processes such as epithelial differentiation (apical/basal polarity), coordinated cell activity within the plane of a tissue (planar cell polarity), asymmetric cell division, and cell migration. In the last case, an apparently symmetric cell responds to directional cues provided by chemoattractants, creating a polarity axis that runs from the cell anterior, or leading edge, in which actin polymerization takes place, to the cell posterior (termed uropod in leukocytes), in which acto-myosin contraction occurs. Here we will review some of the molecular mechanisms through which chemoattractants break cell symmetry to trigger directed migration, focusing on cells of the immune system. We briefly highlight some common or apparently contradictory pathways reported as important for polarity in other cells, as this suggests conserved or cell type-specific mechanisms in eukaryotic cell chemotaxis.Key Words: chemotaxis, polarization, lipid rafts, signaling, cytoskeleton  相似文献   

6.
Localization of mRNA is a well-described mechanism to account for the asymmetric distribution of proteins in polarized somatic cells and embryos of animals. In zygotes of the brown alga Fucus, F-actin is localized at the site of polar growth and accumulates at the cell plates of the first two divisions of the embryo. We used a nonradioactive, whole-mount in situ hybridization protocol to show the pattern of actin mRNA localization. Until the first cell division, the pattern of actin mRNA localization is identical to that of total poly(A)+ RNA, that is, a symmetrical distribution in the zygote followed by an actin-dependent accumulation at the thallus pole at the time of polar axis fixation. At the end of the first division, actin mRNA specifically is redistributed from the thallus pole to the cell plates of the first two divisions in the rhizoid. This specific pattern of localization in the zygote and embryo involves the redistribution of previously synthesized actin mRNA. The initial asymmetry of actin mRNA at the thallus pole of the zygote requires polar axis fixation and microfilaments but not microtubules, cell division, or polar growth. However, redistribution of actin mRNA from the thallus pole to the first cell plate is insensitive to cytoskeletal inhibitors but is dependent on cell plate formation. The F-actin that accumulates at the rhizoid tip is not accompanied by the localization of actin mRNA. However, maintenance of an accumulation of actin protein at the cell plates of the rhizoid could be explained, at least partially, by a mechanism involving localization of actin mRNA at these sites. The pattern and requirements for actin mRNA localization in the Fucus embryo may be relevant to polarization of the embryo and asymmetric cell divisions in higher plants as well as in other tip-growing plant cells.  相似文献   

7.
Summary: The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.  相似文献   

8.
Here we describe the identification of a novel 37-kD actin monomer binding protein in budding yeast. This protein, which we named twinfilin, is composed of two cofilin-like regions. In our sequence database searches we also identified human, mouse, and Caenorhabditis elegans homologues of yeast twinfilin, suggesting that twinfilins form an evolutionarily conserved family of actin-binding proteins. Purified recombinant twinfilin prevents actin filament assembly by forming a 1:1 complex with actin monomers, and inhibits the nucleotide exchange reaction of actin monomers. Despite the sequence homology with the actin filament depolymerizing cofilin/actin-depolymerizing factor (ADF) proteins, our data suggests that twinfilin does not induce actin filament depolymerization. In yeast cells, a green fluorescent protein (GFP)–twinfilin fusion protein localizes primarily to cytoplasm, but also to cortical actin patches. Overexpression of the twinfilin gene (TWF1) results in depolarization of the cortical actin patches. A twf1 null mutation appears to result in increased assembly of cortical actin structures and is synthetically lethal with the yeast cofilin mutant cof1-22, shown previously to cause pronounced reduction in turnover of cortical actin filaments. Taken together, these results demonstrate that twinfilin is a novel, highly conserved actin monomer-sequestering protein involved in regulation of the cortical actin cytoskeleton.  相似文献   

9.
Sister chromatid cohesion is established during S phase and maintained until anaphase. The cohesin complex (Mcd1p/Scc1p, Smc1p, Smc3p Irr1p/Scc3p in budding yeast) serves a structural role as it is required at all times when cohesion exists. Pds5p co-localizes temporally and spatially with cohesin on chromosomes but is thought to serve as a regulator of cohesion maintenance during mitosis. In contrast, Ctf7p/Eco1p is required during S phase for establishment but is not required during mitosis. Here we provide genetic and biochemical evidence that the pathways of cohesion establishment and maintenance are intimately linked. Our results show that mutants in ctf7 and pds5 are synthetically lethal. Moreover, over-expression of either CTF7 or PDS5 exhibits reciprocal suppression of the other mutant’s temperature sensitivity. The suppression by CTF7 is specific for pds5 mutants as CTF7 over-expression increases the temperature sensitivity of an mcd1 mutant but has no effect on smc1 or smc3 mutants. Three additional findings provide new insights into the process of cohesion establishment. First, over-expression of ctf7 alleles deficient in acetylase activity exhibit significantly reduced suppression of the pds5 mutant but exacerbated toxicity to the mcd1 mutant. Second, using chromosome spreads and chromatin immuno-precipitation, we find neither cohesin complex nor Pds5p chromosomal localization is altered in ctf7 mutants. Finally, biochemical analysis reveals that Ctf7p and Pds5p co-immunoprecipitate, which physically links these regulators of cohesion establishment and maintenance. We propose a model whereby Ctf7p and Pds5p co-operate to facilitate efficient establishment by mediating changes in cohesin complex on chromosomes after its deposition.  相似文献   

10.
Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement.  相似文献   

11.
The retinal pigment epithelium (RPE) forms a monolayer sheet separating the retina and choroid in vertebrate eyes. The polarized nature of RPE is maintained by distributing membrane proteins differentially along apico-basal axis. We found the distributions of these proteins differ in embryonic, post-natal, and mature mouse RPE, suggesting developmental regulation of protein trafficking. Thus, we deleted tumor susceptibility gene 101 (Tsg101), a key component of endosomal sorting complexes required for transport (ESCRT), in embryonic and mature RPE to determine whether ESCRT-mediated endocytic protein trafficking correlated with the establishment and maintenance of RPE polarity. Loss of Tsg101 severely disturbed the polarity of RPE, which forms irregular aggregates exhibiting non-polarized distribution of cell adhesion proteins and activation of epidermal growth factor receptor signaling. These findings suggest that ESCRT-mediated protein trafficking is essential for the development and maintenance of RPE cell polarity.  相似文献   

12.
Cell polarization occurs along a single axis that is generally determined in response to spatial cues. In budding yeast, the Rsr1 GTPase and its regulators direct the establishment of cell polarity at the proper cortical location in response to cell type–specific cues. Here we use a combination of in vivo and in vitro approaches to understand how Rsr1 polarization is established. We find that Rsr1 associates with itself in a spatially and temporally controlled manner. The homotypic interaction and localization of Rsr1 to the mother-bud neck and to the subsequent division site are dependent on its GDP-GTP exchange factor Bud5. Analyses of rsr1 mutants suggest that Bud5 recruits Rsr1 to these sites and promotes the homodimer formation. Rsr1 also exhibits heterotypic interaction with the Cdc42 GTPase in vivo. We show that the polybasic region of Rsr1 is necessary for the efficient homotypic and heterotypic interactions, selection of a proper growth site, and polarity establishment. Our findings thus suggest that dimerization of GTPases may be an efficient mechanism to set up cellular asymmetry.  相似文献   

13.
Yeast verprolin, encoded by VRP1, is implicated in cell growth, cytoskeletal organization, endocytosis and mitochondrial protein distribution and function. We show that verprolin is also required for bipolar bud-site selection. Previously we reported that additional actin suppresses the temperature-dependent growth defect caused by a mutation in VRP1. Here we show that additional actin suppresses all known defects caused by vrp1-1 and conclude that the defects relate to an abnormal cytoskeleton. Using the two-hybrid system, we show that verprolin binds actin. An actin-binding domain maps to the LKKAET hexapeptide located in the first 70 amino acids. A similar hexapeptide in other acting-binding proteins was previously shown to be necessary for actin-binding activity. The entire 70– amino acid motif is conserved in novel higher eukaryotic proteins that we predict to be actin-binding, and also in the actin-binding proteins, WASP and N-WASP. Verprolin-GFP in live cells has a cell cycle-dependent distribution similar to the actin cortical cytoskeleton. In fixed cells hemagglutinin-tagged Vrp1p often co-localizes with actin in cortical patches. However, disassembly of the actin cytoskeleton using Latrunculin-A does not alter verprolin's location, indicating that verprolin establishes and maintains its location independent of the actin cytoskeleton. Verprolin is a new member of the actin-binding protein family that serves as a polarity development protein, perhaps by anchoring actin. We speculate that the effects of verprolin upon the actin cytoskeleton might influence mitochondrial protein sorting/function via mRNA distribution.  相似文献   

14.
We have determined the structural organization and dynamic behavior of actin filaments in entire primary locomoting heart fibroblasts by S1 decoration, serial section EM, and photoactivation of fluorescence. As expected, actin filaments in the lamellipodium of these cells have uniform polarity with barbed ends facing forward. In the lamella, cell body, and tail there are two observable types of actin filament organization. A less abundant type is located on the inner surface of the plasma membrane and is composed of short, overlapping actin bundles (0.25–2.5 μm) that repeatedly alternate in polarity from uniform barbed ends forward to uniform pointed ends forward. This type of organization is similar to the organization we show for actin filament bundles (stress fibers) in nonlocomoting cells (PtK2 cells) and to the known organization of muscle sarcomeres. The more abundant type of actin filament organization in locomoting heart fibroblasts is mostly ventrally located and is composed of long, overlapping bundles (average 13 μm, but can reach up to about 30 μm) which span the length of the cell. This more abundant type has a novel graded polarity organization. In each actin bundle, polarity gradually changes along the length of the bundle. Actual actin filament polarity at any given point in the bundle is determined by position in the cell; the closer to the front of the cell the more barbed ends of actin filaments face forward.

By photoactivation marking in locomoting heart fibroblasts, as expected in the lamellipodium, actin filaments flow rearward with respect to substrate. In the lamella, all marked and observed actin filaments remain stationary with respect to substrate as the fibroblast locomotes. In the cell body of locomoting fibroblasts there are two dynamic populations of actin filaments: one remains stationary and the other moves forward with respect to substrate at the rate of the cell body.

This is the first time that the structural organization and dynamics of actin filaments have been determined in an entire locomoting cell. The organization, dynamics, and relative abundance of graded polarity actin filament bundles have important implications for the generation of motile force during primary heart fibroblast locomotion.

  相似文献   

15.
The study of gene and protein interaction networks has improved our understanding of the multiple, systemic levels of regulation found in eukaryotic and prokaryotic organisms. Here we carry out a large-scale analysis of the protein-protein interaction (PPI) network of fission yeast (Schizosaccharomyces pombe) and establish a method to identify ‘linker’ proteins that bridge diverse cellular processes - integrating Gene Ontology and PPI data with network theory measures. We test the method on a highly characterized subset of the genome consisting of proteins controlling the cell cycle, cell polarity and cytokinesis and identify proteins likely to play a key role in controlling the temporal changes in the localization of the polarity machinery. Experimental inspection of one such factor, the polarity-regulating RNB protein Sts5, confirms the prediction that it has a cell cycle dependent regulation. Detailed bibliographic inspection of other predicted ‘linkers’ also confirms the predictive power of the method. As the method is robust to network perturbations and can successfully predict linker proteins, it provides a powerful tool to study the interplay between different cellular processes.  相似文献   

16.
Proteins targeted to the plasma membrane (PM) of cells are degraded at different rates. Sorting motifs contained within the cytoplasmic domains of transmembrane proteins, post-translational modifications (e.g. ubiquitination), and assembly into multiprotein or protein-lipid complexes all may affect the efficiency of endocytosis and recycling and influence the delivery to degradative compartments. Using the SNAP-tag labeling system, we examined the turnover of a model PM protein, the α chain of the interleukin-2 receptor (Tac). The surface lifetimes of SNAP-Tac fusions were influenced by their mode of entry into cells (clathrin-dependent versus clathrin-independent), their orientation in the PM (transmembrane versus glycosylphosphatidylinositol-anchored), and ubiquitination in their cytosolic domains. In addition, shedding of SNAP-Tac into the medium was greatly influenced by its O-linked glycosylation status. For a number of PM proteins, delivery to lysosomes and ectodomain shedding represent distinct parallel mechanisms to determine protein half-life.  相似文献   

17.
How are the asymmetric distributions of proteins, lipids, and RNAs established and maintained in various cell types? Studies from diverse organisms show that Par proteins, GTPases, kinases, and phosphoinositides participate in conserved signaling pathways to establish and maintain cell polarity.The asymmetric distribution of proteins, lipids, and RNAs is necessary for cell fate determination, differentiation, and specialized cell functions that underlie morphogenesis (St Johnston 2005; Gonczy 2008; Knoblich 2008; Macara and Mili 2008; Martin-Belmonte and Mostov 2008). A fundamental question is how this asymmetric distribution is established and maintained in different types of cells and tissues. The formation of a specialized apical surface on an epithelial cell seems quite different from the specification of axons versus dendrites in a neuron, or the asymmetric division of a nematode zygote. Yet, remarkably, a conserved molecular toolbox is used throughout the metazoa to establish and maintain cell polarity in these and many other contexts. This toolbox consists of proteins that are components of signal transduction pathways (Goldstein and Macara 2007; Assemat et al. 2008; Yamanaka and Ohno 2008). However, our understanding of these pathways, and their intersection with other signaling networks, remains incomplete. Moreover, the regulation and cross talk between the polarity proteins and other signaling components varies from one context to another, which complicates the task of dissecting polarity protein function. Nonetheless, rapid progress is being made in our understanding of polarity signaling, which is outlined in this article, with an emphasis on the Par proteins, because these proteins play major roles integrating diverse signals that regulate cell polarity (Fig. 1) (see Munro and Bowerman 2009; Prehoda 2009; Nelson 2009).Open in a separate windowFigure 1.An overview of Par complex signaling, showing inputs (bottom) and outputs (top) with cellular functions that are targeted by these pathways (italics).  相似文献   

18.
Cells can maintain their functions despite fluctuations in intracellular parameters, such as protein activities and gene expression levels. This commonly observed biological property of cells is called robustness. On the other hand, these parameters have different limitations, each reflecting the property of the subsystem containing the parameter. The budding yeast cell cycle is quite fragile upon overexpression of CDC14, but is robust upon overexpression of ESP1. The gene products of both CDC14 and ESP1 are regulated by 1∶1 binding with their inhibitors (Net1 and Pds1), and a mathematical model predicts the extreme fragility of the cell cycle upon overexpression of CDC14 and ESP1 caused by dosage imbalance between these genes. However, it has not been experimentally shown that dosage imbalance causes fragility of the cell cycle. In this study, we measured the quantitative genetic interactions of these genes by performing combinatorial “genetic tug-of-war” experiments. We first showed experimental evidence that dosage imbalance between CDC14 and NET1 causes fragility. We also showed that fragility arising from dosage imbalance between ESP1 and PDS1 is masked by CDH1 and CLB2. The masking function of CLB2 was stabilization of Pds1 by its phosphorylation. We finally modified Chen''s model according to our findings. We thus propose that dosage imbalance causes fragility in biological systems.  相似文献   

19.
The fission yeast pob1 gene encodes a protein of 871 amino acids carrying an SH3 domain, a SAM domain, and a PH domain. Gene disruption and construction of a temperature-sensitive pob1 mutant indicated that pob1 is essential for cell growth. Loss of its function leads to quick cessation of cellular elongation. Pob1p is homologous to two functionally redundant Saccharomyces cerevisiae proteins, Boi1p and Boi2p, which are necessary for cell growth and relevant to bud formation. Overexpression of pob1 inhibits cell growth, causing the host cells to become round and swollen. In growing cells, Pob1p locates at cell tips during interphase and translocates near the division plane at cytokinesis. Thus, this protein exhibits intracellular dynamics similar to F-actin patches. However, Pob1p constitutes a layer, rather than patches, at growing cell tips. It generates two split discs flanking the septum at cytokinesis. The pob1-defective cells no longer elongate but swell gradually at the middle, eventually assuming a lemon-like morphology. Analysis using the pob1-ts allele revealed that Pob1p is also essential for cell separation. We speculate that Pob1p is located on growing plasma membrane, possibly through the function of actin patches, and may recruit proteins required for the synthesis of cell wall.  相似文献   

20.
Fission yeast and budding yeast are the two distantly related species with common ancestors. Various studies have shown significant differences in metabolic networks and regulatory networks. Cell cycle regulatory proteins in both species have differences in structural as well as in functional organization. Orthologous proteins in cell cycle regulatory protein networks seem to play contemporary role in both species during the evolution but little is known about non-orthologous proteins. Here, we used system biology approach to compare topological parameters of orthologous and non-orthologous proteins to find their contributions during the evolution to make an efficient cell cycle regulation. Observed results have shown a significant role of non-orthologous proteins in fission yeast in maintaining the efficiency of cell cycle regulation with less number of proteins as compared to budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号