首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During insulin-dependent diabetes mellitus, immune cells infiltrate pancreatic islets progressively and mediate beta cell destruction over a prolonged asymptomatic prediabetic period. Apoptosis may be a major mechanism of beta cell loss during the disease. This process involves a proteolytic cascade in which upstream procaspases are activated which themselves activate downstream caspases, including caspase-3, a key enzyme involved in the terminal apoptotic cascade. Here dual-label immunohistochemistry was employed to examine the intra-islet expression, distribution and cellular sources of active caspase-3 in the non-obese diabetic (NOD) mouse given cyclophosphamide to accelerate diabetes. NOD mice were treated at day 95 and caspase-3 expression was studied at days 0, 4, 7, 11 and 14. Its expression was also correlated with advancing disease and compared with age-matched NOD mice treated with diluent alone. At day 0 (=day 95), caspase-3 immunolabelling was observed in several peri-islet and intra-islet macrophages, but not in CD4 and CD8 cells and only extremely rarely in beta cells. At day 4, only a few beta cells weakly expressed the enzyme, in the absence of significant insulitis. At day 7, caspase-3 expression was observed in a small proportion of intra-islet macrophages. At day 11, there was a marked increase in the number of intra-islet macrophages positive for caspase-3 while only a few CD4 cells expressed the enzyme. At day 14, caspase-3 labelling became prominent in a significant proportion of macrophages. Only a few CD4 and CD8 cells expressed the enzyme. Capase-3 labelling was also present in a proportion of macrophages in perivascular and exocrine regions. Surprisingly, beta cell labelling of caspase-3 at days 11 and 14 was rare. At this stage of heightened beta cell loss, a proportion of intra-islet interleukin-1-positive cells coexpressed the enzyme. Caspase-3 was also observed in numerous Fas-positive cells in heavily infiltrated islets. During this late stage, only a proportion of caspase-3-positive cells contained apoptotic nuclei, as judged by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). We conclude that during cyclophosphamide-accelerated diabetes in the NOD mouse, the predominant immunolabelling of caspase-3 in intra-islet macrophages suggests that apoptosis of macrophages may be an important mechanism for its elimination. The virtual absence of caspase-3 immunolabelling in most beta cells even during heightened beta cell loss supports their rapid clearance following their death during insulin-dependent diabetes mellitus.  相似文献   

2.
This study investigated the temporal expression and cell subtype distribution of activated caspase-3 following cortical impact-induced traumatic brain injury in rats. The animals were killed and examined for protein expression of the proteolytically active subunit of caspase-3, p18, at intervals from 6 h to 14 days after injury. In addition, we also investigated the effect of caspase-3 activation on proteolysis of the cytoskeletal protein alpha-spectrin. Increased protein levels of p18 and the caspase-3-specific 120-kDa breakdown product to alpha-spectrin were seen in the cortex ipsilateral to the injury site from 6 to 72 h after the trauma. Immunohistological examinations revealed increased expression of p18 in neurons, astrocytes, and oligodendrocytes from 6 to 72 h following impact injury. In contrast, no evidence of caspase-3 activation was seen in microglia at all time points investigated. Quantitative analysis of caspase-3-positive cells revealed that the number of caspase-3-positive neurons exceeded the number of caspase-3-positive glia cells from 6 to 72 h after injury. Moreover, concurrent assessment of nuclear histopathology using hematoxylin identified p18-immunopositive cells exhibiting apoptotic-like morphological profiles in the cortex ipsilateral to the injury site. In contrast, no evidence of increased p18 expression or alpha-spectrin proteolysis was seen in the ipsilateral hippocampus, contralateral cortex, or hippocampus up to 14 days after the impact. Our results are the first to demonstrate the concurrent expression of activated caspase-3 in different CNS cells after traumatic brain injury in the rat. Our findings also suggest a contributory role of activated caspase-3 in neuronal and glial apoptotic degeneration after experimental TBI in vivo.  相似文献   

3.
c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is activated in response to a number of extracellular stimuli, including inflammatory cytokines, UV irradiation and ischaemia. A large body of evidence supports a role for JNK signalling in stress-induced apoptosis. It has been hypothesized that JNK may contribute to the apoptotic response by regulating the intrinsic cell death pathway involving the mitochondria. Here, we examined the role of the JNK signalling pathway in hippocampal CA1 apoptotic neurones following transient ischaemia in gerbils. We showed early activation of death receptor-dependent apoptosis (caspase-8 activation 2 days after ischaemia) and a biphasic activation of caspase-3 and caspase-9 after ischaemia. Activation of the mitochondrial pathway, as measured by cytochrome c release, appeared as a late event (5-7 days after ischaemia). AS601245, a novel JNK inhibitor, antagonized activation of both pathways and significantly protected CA1 neurones from cell death. Our results suggest a key role of JNK in the control of death receptor and mitochondrial-dependent apoptosis after transient ischaemia.  相似文献   

4.
Canonical inflammasomes are multiprotein complexes that can activate both caspase-1 and caspase-8. Caspase-1 drives rapid lysis of cells by pyroptosis and maturation of interleukin (IL)-1β and IL-18. In caspase-1-deficient cells, inflammasome formation still leads to caspase-3 activation and slower apoptotic death, dependent on caspase-8 as an apical caspase. A role for caspase-8 directly upstream of caspase-1 has also been suggested, but here we show that caspase-8-deficient macrophages have no defect in AIM2 inflammasome-mediated caspase-1 activation, pyroptosis, and IL-1β cleavage. In investigating the inflammasome-induced apoptotic pathway, we previously demonstrated that activated caspase-8 is essential for caspase-3 cleavage and apoptosis in caspase-1-deficient cells. However, here we found that AIM2 inflammasome-initiated caspase-3 cleavage was maintained in Ripk3?/? Casp8?/? macrophages. Gene knockdown showed that caspase-1 was required for the caspase-3 cleavage. Thus inflammasomes activate a network of caspases that can promote both pyroptotic and apoptotic cell death. In cells where rapid pyroptosis is blocked, delayed inflammasome-dependent cell death could still occur due to both caspase-1- and caspase-8-dependent apoptosis. Initiation of redundant cell death pathways is likely to be a strategy for coping with pathogen interference in death processes.  相似文献   

5.
The purpose of this study is to evaluate, in an experimental model of spinal cord injury (SCI), the presence of apoptotic cell death after trauma and if early administration of a single bolus of methylprednisolone (MP) influences apoptosis in the zone of trauma and in adjacent spinal cord segments. For this study, a total of 96 adult female Wistar rats were subjected to spinal contusion at the T6-T8 level, producing immediate paraplegia. Forty-eight animals (treated group) received a single intraperitoneal injection of MP, at a dose of 30 mg/kg body weight, 10 minutes later. Cells undergoing apoptosis were detected by means of immunohistochemical labeling with the monoclonal antibody Apostain (anti-ssDNA MAb F7-26), in the injured spinal cord tissue, both in the zone of the lesion and in the adjacent spinal segments (rostral and caudal zones), 1, 4, 8, 24 and 72 hours and 1 week after injury. Apoptosis was detected in neurons and glial cells in the zone of the lesion 1 hour after trauma, with a pattern that showed no changes 4 hours later. Between 4 and 8 hours postinjury, the number of apoptotic cells increased, after which it decreased over the following days. In the adjacent spinal segments, apoptotic cells were detected 4 hours after trauma, and increased progressively over the remainder of the study, the number of apoptotic cells being similar in the lesion zone and in rostral and caudal zones one week after injury. When the group of MP-treated animals was considered, significant decreases in the number of apoptotic cells were detected in the lesion zone 24 hours after injury, and in the rostral and caudal zones, at 72 hours and at 1 week after trauma. These findings show that early administration of a single bolus of MP decreases apoptotic cell death after SCI, supporting the utility of MP in reducing secondary damage in injured spinal cord tissue.  相似文献   

6.
Sugawara T  Lewén A  Gasche Y  Yu F  Chan PH 《FASEB journal》2002,16(14):1997-1999
Defective Cu,Zn-superoxide dismutase (SOD1) is responsible for some types of amyotrophic lateral sclerosis, and ventral horn motor neurons (VMN) have been shown to die through a mitochondria-dependent apoptotic pathway after chronic exposure to high levels of reactive oxygen species (ROS). VMN are also selectively vulnerable to mild spinal cord injury (SCI); however, the involvement of SOD1, ROS, and apoptosis in their death has not been clarified. Mild compression SCI was induced in SOD1-overexpressing transgenic rats and wild-type littermates. Superoxide production, mitochondrial release of cytochrome c, and activation of caspase-9 were examined, and apoptotic DNA injury was also characterized. In the wild-type animals, increased superoxide production, mitochondrial release of cytochrome c, and cleaved caspase-9 were observed exclusively in VMN after SCI. Subsequently, a majority of VMN (75%) selectively underwent delayed apoptotic cell death. Transgenic animals showed less superoxide production, mitochondrial cytochrome c release, and caspase-9 activation, resulting in death of only 45% of the VMN. These results suggest that the ROS-initiated mitochondrial signaling pathway possibly plays a pivotal role in apoptotic VMN death after SCI and that increased levels of SOD1 in VMN reduce oxidative stress, thereby attenuating the activation of the pathway and delayed cell death.  相似文献   

7.
Many apoptotic pathways culminate in the activation of caspase cascades usually triggered by the apical caspases-8 or -9. We describe a paradigm where apoptosis is initiated by the effector caspase-3. Diethylmaleate (DEM)-induced apoptotic damage in Jurkat cells was blocked by the anti-apoptotic protein Bcl-2, whereas, a peptide inhibitor of caspase-3 but not caspase-9 blocked DEM-induced mitochondrial damage. Isogenic Jurkat cell lines deficient for caspase-8 or the adaptor FADD (Fas associated death domain) were not protected from DEM-induced apoptosis. Caspase-3 activation preceded that of caspase-9 and initial processing of caspase-3 was regulated independent of caspase-9 and Bcl-2. However, inhibitors of caspase-9 or caspase-6 regulated caspase-3 later in the pathway. We explored the mechanism by which caspase-3 processing is regulated in this system. DEM triggered a loss of Erk-1/2 phosphorylation and XIAP (X-linked inhibitor of apoptosis protein) expression. The phorbol ester PMA activated a MEK-dependent pathway to block caspase-3 processing and cell death. Constitutively active MEK-1 (CA-MEK) upregulated XIAP expression and exogenous XIAP inhibited DEM-induced apoptotic damage. Thus, we describe a pathway where caspase-3 functions to initiate apoptotic damage and caspase-9 and caspase-6 amplify the apoptotic cascade. Further, we show that MEK may regulate caspase-3 activation via the regulation of XIAP expression in these cells.  相似文献   

8.
In monolayer cultures of P19 EC cells treated with both all-trans retinoic acid (RA) and bone morphogenetic protein (BMP)-4 (RA/BMP-4 treatment), many non-adherent apoptotic cells and activated caspase-3-positive cells were observed, but they were not observed in cells treated with RA or BMP-4 alone. Consistent with the appearance of activated caspase-3-positive cells, BMP-4 and RA together induced processing of caspase-9, Ac-DEVD-MCA cleavage activity and DNA fragmentation. These three activities were observed infrequently or not at all when cells were treated with RA or BMP-4 alone. In the RA/BMP-4 treatment-induced apoptosis, caspase-9 was upstream of caspase-3 in the enzyme cascade, and the caspase-9 to -3 step was key in the apoptotic pathway. Bcl-xL inhibited processing of caspase-9, Ac-DEVD-MCA cleavage activity and DNA fragmentation induced by RA/BMP-4 treatment. However, unlike staurosporine-induced apoptosis, cytochrome c, which activates caspase-9, was not detected in the cytosol of RA/BMP-4-treated cells. RA and BMP-4 may activate caspase-9 through an apoptotic pathway other than the Apaf-1/cytochrome c pathway. The prominent decrease of X-chromosome-linked inhibitory apoptosis protein (XIAP) in the cytosol may explain the activation of caspase-9 induced by RA and BMP-4 treatment.  相似文献   

9.
Caspase-8 activation promotes cell apoptosis but is also essential for T cell activation. The extent of caspase activation and substrate cleavage in these divergent processes remains unclear. We show that murine effector CD4(+) T cells generated levels of caspase activity intermediate between unstimulated T cells and apoptotic populations. Both caspase-8 and caspase-3 were partially activated in effector T cells, which was reflected in cleavage of the caspase-8 substrates, c-FLIP(L), receptor interacting protein 1, and to a lesser extent Bid, but not the caspase-3 substrate inhibitor of caspase-activated DNase. Th2 effector CD4(+) T cells manifested more caspase activity than did Th1 effectors, and caspase blockade greatly decreased initiation of cell cycling. The current findings define the level of caspase activity and substrates during initiation of T cell cycling.  相似文献   

10.
Cai Y  Li J  Yang S  Li P  Zhang X  Liu H 《PloS one》2012,7(3):e33156
Spinal cord injury (SCI) induces both primary uncontrollable mechanical injury and secondary controllable degeneration, which further results in the activation of cell death cascades that mediate delayed tissue damage. To alleviate its impairments and seek for an effective remedy, mRNA differential display was used to investigate gene mRNA expression profiling in mice following SCI. A specific Zinc finger and BTB domain-containing protein, CIBZ, was discovered to implicate in the SCI process for the first time. Further researches indicated that CIBZ was extensively distributed in various tissues, and the expression level was highest in muscle, followed by spinal cord, large intestine, kidney, spleen, thymus, lung, cerebrum, stomach, ovary and heart, respectively. After injury, the CIBZ expression decreased dramatically and reached the lowest level at 8 h, but it gradually increased to the maximal level at 7 d. Caspase-3 and C-terminal-binding protein (CtBP), two CIBZ-related proteins, showed similar tendency. Interestingly, p53 expression remained constant in all groups. Via flow cytometry (FCM) analysis, it was found that the cell death rate in SCI group markedly increased and reached the highest value 1 d after surgery and the mitochondrial transmembrane potential (ΔΨm) at 1 d was the lowest in all groups. Taken together, it is suggested that: (i) in the presence of CtBP, CIBZ gene is involved in secondary injury process and trigger the activation of apoptotic caspase-3 and bax genes independent of p53; (ii) abrupt down-regulation of CtBP at 8 h is a sign of mitochondria dysfunction and the onset of cell death; (iii) it could be used as an inhibitor or target drug of caspase-3 gene to improve spinal cord function.  相似文献   

11.
RNA-binding motif protein 3 (RBM3) belongs to a very small group of cold inducible proteins with anti-apoptotic and proliferative functions. To elucidate the expression and possible function of RBM3 in central nervous system (CNS) lesion and repair, we performed a spinal cord injury (SCI) model in adult rats. Western blot analysis revealed that RBM3 level significantly increased at 1 day after damage, and then declined during the following days. Immunohistochemistry further confirmed that RBM3 immunoactivity was expressed at low levels in gray and white matters in normal condition and increased at 1 day after SCI. Besides, double immunofluorescence staining showed RBM3 was primarily expressed in the neurons and a few of astrocytes in the normal group. While after injury, the expression of RBM3 increased both in neurons and astrocytes at 1 day. We also examined the expression profiles of proliferating cell nuclear antigen (PCNA) and active caspase-3 in injured spinal cords by western blot. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many RBM3-expressing cells and rare caspase-3 was observed in RBM3-expressing cells at 1 day after injury. Our data suggested that RBM3 might play important roles in CNS pathophysiology after SCI.  相似文献   

12.
Rong W  Wang J  Liu X  Jiang L  Wei F  Hu X  Han X  Liu Z 《Neurochemical research》2012,37(8):1615-1623
The aim of this study was to determine the therapeutic efficacy of starting naringin treatment 1 day after spinal cord injury (SCI) in rat and to investigate the underlying mechanism. SCI was induced using the modified weight-drop method in Sprague-Dawley rats. The SCI animals were randomly divided into three groups: vehicle-treated group; 20 mg/kg naringin-treated group; 40 mg/kg naringin-treated group, and additionally with sham group (laminectomy only). Locomotors functional recovery was assessed during the 6 weeks post operation period by performing open-field locomotors tests and inclined-plane tests. At the end of the study, the segments of spinal cord encompassing the injury site were removed for histopathological analysis. Immunohistochemistry was performed to observe the expression of the brain-derived neurotrophic factor (BDNF). The expression of vascular endothelial growth factor (VEGF), B-cell CLL/lymphoma-2 (Bcl-2), BCL-2-associated X protein (Bax) and caspase-3 were detected by Western blot analysis. The apoptotic neural cells were assessed using the TUNEL method. The results showed that the naringin-treated animals had significantly better locomotor function recovery, less myelin loss, and higher expression of BDNF and VEGF. In addition, naringin treatment significantly increased in Bcl-2:Bax ratio, reduced the enzyme activity of caspase-3 and decreased the number of apoptotic cells after SCI. These findings suggest that naringin treatment starting 1 day after SCI can significantly improve locomotor recovery, and this neuroprotective effect may be related to the upregulation of BDNF and VEGF and the inhibition of neural apoptosis. Therefore, naringin may be useful as a promising therapeutic agent for SCI.  相似文献   

13.
Failure of axon regeneration after traumatic spinal cord injury (SCI) is attributable in part to the presence of inhibitory molecular interactions. Recent evidence demonstrates that activation of Eph signaling pathways leads to modulation of growth cone dynamics and repulsion through the activation of ephexin, a novel guanine nucleotide exchange factor (GEF). However, little is known about the expression and modulation of Eph molecular targets in the injured spinal cord. In this study, we determined the expression profile of ephexin after a moderate spinal cord contusion at thoracic level (T10) in young adult rats. Western-blot studies showed increased protein expression in injured rats at 4 and 7 days postinjury (DPI) when compared with control animals. The protein levels returned to normal at 14 DPI and remained steady until 28 DPI. However, immunoprecipitation studies of the phosphorylated ephexin demonstrated that this protein is activated by day 2 until 14 DPI. Expression of ephexin was noticeable in neurons, axons, microglia/macrophages, and reactive astrocytes, and co-localized with EphA3, A4, and A7. These results demonstrate the presence of ephexin in the adult spinal cord and its activation after SCI. Therefore, we show, for the first time, the spatiotemporal pattern of ephexin expression and activation after contusive SCI. Collectively, our data support our previous findings on the putative nonpermissive roles of Eph receptors after SCI and the possible involvement of ephexin in the intracellular cascade of events.  相似文献   

14.
Caspase activation throughout the first wave of spermatogenesis in the rat   总被引:7,自引:0,他引:7  
Early in postnatal life, the first wave of spermatogenesis is accompanied by an initial wave of germ cell apoptosis. This may reflect an adjustment in the number of germ cells that can be adequately maintained by Sertoli cells. Two major pathways (intrinsic and extrinsic) are involved in the process of caspase activation and apoptosis in mammalian cells. The extrinsic pathway is characterized by the oligomerization of death receptors such as FAS or tumor necrosis factor, followed by the activation of caspase-8 and caspase-3. The intrinsic pathway involves the activation of procaspase-9, which in turn activates caspase-3. Extensive information is available concerning apoptotic inducers and their possible mechanisms in the adult rat. However, no data exist regarding the molecular and cellular mechanisms governing physiological cell death during puberty in the male rat. We have studied caspase activation throughout the first wave of spermatogenesis in the rat under physiological conditions, by combining the TUNEL procedure with the localization of active caspases in germ cells. We observed TUNEL-positive germ cells in rats of 5–40 days of age, the highest number being found in 25-day-old rats. TUNEL-positive and caspase-3-positive germ cells appeared as long chains of interconnected germ cells in 25-day-old rats. Caspase activation was assayed by either immunohistochemistry with antibodies against active caspase-3, -8, and -9, or by determining enzymatic activity in seminiferous tubules extracts. Both techniques showed activation of caspase-3, -8, and -9 in 25-day-old rats and low enzymatic activity at other ages. Confocal scanning laser microscopy indicated that active caspase-3, -8, and -9 co-localized with TUNEL-positive cells. Thus, caspase-3, -8, and -9 are active in apoptotic germ cells during the first wave of rat spermatogenesis. The extrinsic pathway of apoptosis may therefore play an important role in germ cell apoptosis during puberty in the rat.This work was financed by a research grant from FONDECYT (1040800) to R.D.M.  相似文献   

15.
Caspases and c-Jun N-terminal kinase (JNK) are activated in tumor cells during induction of apoptosis. We investigated the signaling cascade and function of these enzymes in cisplatin-induced apoptosis. Treatment of Jurkat T-cells with cisplatin induced cell death with DNA fragmentation and activation of caspase and JNK. Bcl-2 overexpression suppressed activation of both enzymes, whereas p35 and CrmA inhibited only the DEVDase (caspase-3-like) activity, indicating that the activation of these enzymes may be differentially regulated. Cisplatin induced apoptosis with the cytochrome c release and caspase-3 activation in both wild-type and caspase-8-deficient JB-6 cells, while the Fas antibody induced these apoptotic events only in wild-type cells. This indicates that caspase-8 activation is required for Fas-mediated apoptosis, but not cisplatin-induced cell death. On the other hand, cisplatin induced the JNK activation in both the wild-type and JB-6 cells, and the caspase-3 inhibitor Z-DEVD-fmk did not inhibit this activation. The JNK overexpression resulted in a higher JNK activity, AP-1 DNA binding activity, and metallothionein expression than the empty vector-transfected cells following cisplatin treatment. It also partially protected the cells from cisplatin-induced apoptosis by decreasing DEVDase activity. These data suggest that the cisplatin-induced apoptotic signal is initiated by the caspase-8-independent cytochrome c release, and the JNK activation protects cells from cisplatin-induced apoptosis via the metallothionein expression.  相似文献   

16.
Bid, a member of the pro-apoptotic Bcl-2 protein family, is activated through caspase-8-mediated cleavage into a truncated form (p15 tBid) during TNF-α(tumor necrosis factor α)-induced apoptosis. Activated tBid can induce Bax oligomerization and translocation to mitochondria, triggering the release of cytochrome c, caspase-3 activation and cell apoptosis. However, it is debatable that whether Bid and tBid can interact directly with Bax in living cells. In this study, we used confocal fluorescence microscope, combined with both FRET (fluorescence resonance energy transfer) and acceptor photobleaching techniques, to study the dynamic interaction between Bid and Bax during TNF-α-induced apoptosis in single living cell. In ASTC-a-1 cells, full length Bid induced Bax translocation to mitochondria by directly interacting with Bax transiently in response to TNF-α treatment before cell shrinkage. Next, we demonstrated that, in both ASTC-a-1 and HeLa cells, Bid was not cleaved before cell shrinkage even under the condition that caspase-8 had been activated, but in MCF-7 cells Bid was cleaved. In addition, in ASTC-a-1 cells, caspase-3 activation was a biphasic process and Bid was cleaved after the second activation of caspase-3. In summary, these findings indicate that, FL-Bid (full length-Bid) directly regulated the activation of Bax during TNF-α-induced apoptosis in ASTC-a-1 cells and that the cleavage of Bid occurred in advanced apoptosis.  相似文献   

17.
This study aimed to investigate the correlation between ginkgolide B (GB) and the JAK/STAT signaling pathway and to explore its regulating effect on secondary cell apoptosis following spinal cord injury (SCI), to elucidate the protective mechanism GB against acute SCI. Sprague–Dawley rats were randomly divided into a sham-operated group, an SCI group, an SCI + GB group, an SCI + methylprednisolone (MP) group, and an SCI + specific JAK inhibitor AG490 group. A rat model of acute SCI was established using the modified Allen’s method. At 4 h, 12 h, 1 day, 3 days, 7 days and 14 days after injury, injured T10 spinal cord specimens were harvested. GB significantly increased inclined plane test scores and Basso, Beattie, and Bresnahan scale scores in SCI rats from postoperative day 3 to day 14. The effect was equal to that of the positive control drug, MP. Western blot analysis showed that JAK2 was significantly phosphorylated from 4 h after SCI, peaked at 12 h and gradually decreased thereafter, accompanied by phosphorylation of STAT3 with a similar time course. GB was shown to significantly inhibit the phosphorylation of JAK2 and STAT3 in rats with SCI. It significantly increased the ratio of B cell CLL/lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax) protein expression at 24 h, led to an obvious down-regulation of caspase-3 gene and protein expression at 3 days, and significantly decreased the cell apoptosis index at each time point after SCI. This effect was similar to that obtained with the JAK-specific inhibitor, AG490. Our experimental findings indicated that GB can protect rats against acute SCI, and that its underlying mechanism may be related to the inhibition of JAK/STAT signaling pathway activation, improvement of the Bcl-2/Bax ratio, decreased caspase-3 gene and protein expression and further inhibition of secondary cell apoptosis following SCI.  相似文献   

18.
Apoptosis plays an important role in the pathogenesis of many viral infections. Despite this fact, the apoptotic pathways triggered during viral infections are incompletely understood. We now provide the first detailed characterization of the pattern of caspase activation following infection with a cytoplasmically replicating RNA virus. Reovirus infection of HEK293 cells results in the activation of caspase-8 followed by cleavage of the pro-apoptotic protein Bid. This initiates the activation of the mitochondrial apoptotic pathway leading to release of cytochrome c and activation of caspase-9. Combined activation of death receptor and mitochondrial pathways results in downstream activation of effector caspases including caspase-3 and caspase-7 and cleavage of cellular substrates including PARP. Apoptosis is initiated by death receptor pathways but requires mitochondrial amplification producing a biphasic pattern of caspase-8, Bid, and caspase-3 activation.  相似文献   

19.
Xin is a striated muscle-specific actin-binding protein whose mRNA expression has been observed in damaged skeletal muscle. Here we demonstrate increased Xin protein expression early postinjury (≤ 12 h) and localization primarily to the periphery of damaged myofibers. At 1 day postinjury, Xin is colocalized with MyoD, confirming expression in activated satellite cells (SCs). By 5 days postinjury, Xin is evident in newly regenerated myofibers, with a return to preinjury levels by 14 days of regeneration. To determine whether the increased Xin expression is functionally relevant, tibialis anterior muscles of wild-type mice were infected with Xin-short hairpin RNA (shRNA) adenovirus, whereas the contralateral tibialis anterior received control adenovirus (Control). Four days postinfection, muscles were harvested or injured with cardiotoxin and collected at 3, 5, or 14 days thereafter. When compared with Control, Xin-shRNA infection attenuated muscle regeneration as demonstrated by Myh3 expression and fiber areas. Given the colocalization of Xin and MyoD, we isolated single myofibers from infected muscles to investigate the effect of silencing Xin on SC function. Relative to Control, SC activation, but not proliferation, was significantly impaired in Xin-shRNA-infected muscles. To determine whether Xin affects the G0-G1 transition, cell cycle reentry was assessed on infected C2C12 myoblasts using a methylcellulose assay. No difference in reentry was noted between groups, suggesting that Xin contributes to SC activation by means other than affecting G0-G1 transition. Together these data demonstrate a critical role for Xin in SC activation and reduction in Xin expression results in attenuated skeletal muscle repair.  相似文献   

20.
The relationship between caspase-3 activation and delayed neuronal death after ischemia was examined. Expression of caspase-3 was evaluated by colorimetric assay, immunoblotting and by immunohistochemistry. Apoptosis was characterised by terminal desoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labelling. Immunohistochemistry showed caspase-3 activation in the whole hippocampus as early as 30 min after ischemia with exclusive localisation in fiber systems, especially in the perforant path and mossy fibers, Schaffer-collaterals, as well as apical and basal dendrites of pyramidal cells. One day post-ischemia, the 18 kDa cleavage product of caspase-3 (p18) was seen in all cell compartments (nucleus, cytosol and dendrites) throughout the entire subfields and the dentate gyrus with high distribution in mossy fibers. Two days post-ischemia, p18 kDa was only seen in the nuclei and cytosol of hippocampal cells without specific regional differences among hippocampal subfields. A significant number of apoptotic cells appeared only in the CA1 pyramidal cells at 2-3 days post-ischemia. Our data provides the first evidence that caspase-3 activation was detectable in the trisynaptic pathway fiber bundles which probably correspond to perforant path, alvear path and collaterals of Schaffer, and that activation of caspase-3 led to execution of apoptotic cell death program in selectively vulnerable areas, but not in the resistant area of the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号