首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation was performed to assess the importance of interaction in the bindings of selective and nonselective alpha(1)-antagonists to alpha(1)-adrenergic receptor (alpha(1)-AR) subtypes using molecular modeling. The alpha(1)-antagonists used in this study were prazosin, tamsulosin and KMD-3213. Molecular modeling was performed on Octane 2 workstation (Silicon Graphics) using Discover/Insight II software (Molecular Simulations Inc.). Through molecular modeling, possible binding sites for these drugs were suggested to lie between transmembrane domains (TM) 3, 4, 5 and 6 of the alpha(1)-AR subtypes. In prazosin, the 4-amino group, 1-nitrogen atom and two methoxy groups of quinazoline ring possibly interact with the amino acids in TM3, TM5 and TM6 of alpha(1)-ARs. In tamsulosin, amine group of ethanyl amine chain, methoxy group of benzene ring and sulfonamide nitrogen of benzene ring interacts in TM3, TM4 and TM5 of alpha(1)-ARs. In KMD-3213, amine of ethyl amine chain and indoline nitrogen of this compound possibly interact within TM3 and TM5 of alpha(1)-ARs. Amide nitrogen of KMD-3213 also interacts within TM4 of alpha(1A)-AR. The results of the present study suggested that prazosin has similar binding sites in all the alpha(1)-AR subtypes while tamsulosin interacts at higher number of sites with alpha(1D)-subtype than other alpha(1)-AR subtypes. KMD-3213 being an alpha(1A)-AR selective ligand, binds to higher number of sites of alpha(1A) subtype than to other subtypes. All these amino acids are located near the extracellular loop. These findings are consistent with the previous studies that antagonists bind higher in the pocket closer to the extracellular surface unlike agonist binding.  相似文献   

2.
3.
The function and distribution of alpha1-adrenergic receptor (AR) subtypes in prostate cancer cells is well characterized. Previous studies have used RNA localization or low-avidity antibodies in tissue or cell lines to determine the alpha1-AR subtype and suggested that the alpha1A-AR is dominant. Two androgen-insensitive, human metastatic cancer cell lines DU145 and PC3 were used as well as the mouse TRAMP C1-C3 primary and clonal cell lines. The density of alpha1-ARs was determined by saturation binding and the distribution of the different alpha1-AR subtypes was examined by competition-binding experiments. In contrast to previous studies, the major alpha1-AR subtype in DU145, PC3 and all of the TRAMP cell lines is the alpha1B-AR. DU145 cells contained 100% of the alpha1B-AR subtype, whereas PC3 cells were composed of 21% alpha1 A-AR and 79% alpha1B-AR. TRAMP cell lines contained between 66% and 79% of the alpha1B-AR with minor fractions of the other two subtypes. Faster doubling time in the TRAMP cell lines correlated with decreasing alpha 1B-AR and increasing alpha1 A- and alpha1D-AR densities. Transfection with EGFP-tagged alpha1B-ARs revealed that localization was mainly intracellular, but the majority of the receptors translocated to the cell surface after extended preincubation (18 hr) with either agonist or antagonist. Localization was confirmed by ligand-binding studies and inositol phosphate assays where prolonged preincubation with either agonist and/or antagonist increased the density and function of alpha 1-ARs, suggesting that the native receptors were mostly intracellular and nonfunctional. Our studies indicate that alpha1B-ARs are the major alpha1-AR subtype expressed in DU145, PC3, and all TRAMP cell lines, but most of the receptor is localized in intracellular compartments in a nonfunctional state, which can be rescued upon prolonged incubation with any ligand.  相似文献   

4.
The alpha2-adrenoceptors are G-protein-coupled receptors that mediate many of the physiological effects of norepinephrine and epinephrine. Mammals have three subtypes of alpha2-adrenoceptors, alpha2A, alpha2B and alpha2C. Zebrafish, a teleost fish used widely as a model organism, has five distinct alpha2-adrenoceptor genes. The zebrafish has emerged as a powerful tool to study development and genetics, with many mutations causing diseases reminiscent of human diseases. Three of the zebrafish adra2 genes code for orthologues of the mammalian alpha2-adrenoceptors, while two genes code for alpha2Da- and alpha2Db- adrenoceptors, representing a duplicated, fourth alpha2-adrenoceptor subtype. The three different mammalian alpha2-adrenoceptor subtypes have distinct expression patterns in different organs and tissues, and mediate different physiological functions. The zebrafish alpha2-adrenergic system, with five different alpha2-adrenoceptors, appears more complicated. In order to deduce the physiological functions of the zebrafish alpha2-adrenoceptors, we localized the expression of the five different alpha2-adrenoceptor subtypes using RT-PCR, mRNA in situ hybridization, and receptor autoradiography using the radiolabelled alpha2-adrenoceptor antagonist [ethyl-3H]RS-79948-197. Localization of the alpha2A-, alpha2B- and alpha2C-adrenoceptors in zebrafish shows marked conservation when compared with mammals. The zebrafish alpha2A, alpha2Da, and alpha2Db each partially follow the distribution pattern of the mammalian alpha2A: a possible indication of subfunction partitioning between these subtypes. The alpha2-adrenergic system is functional in zebrafish also in vivo, as demonstrated by marked locomotor inhibition, similarly to mammals, and lightening of skin colour induced by the specific alpha2-adrenoceptor agonist, dexmedetomidine. Both effects were antagonized by the specific alpha2-adrenoceptor antagonist atipamezole.  相似文献   

5.
Cells of the PC12 rat pheochromocytoma cell line acquire characteristics of sympathetic neurons under appropriate treatment. Stably transfected PC12 cells expressing individual alpha2-adrenergic receptor (alpha2-AR) subtypes were used to assess the role of alpha2-ARs in neuronal differentiation and to characterise the signalling pathways activated by the alpha2-AR agonist epinephrine in these cells. The effects of alpha2-AR activation were compared with the differentiating action and the signalling mechanisms of nerve growth factor (NGF). Epinephrine induced neuronal differentiation of PC12alpha2 cells through alpha2-AR activation in a subtype-dependent manner, internalization of all human alpha2-AR subtypes, and activation of mitogen-activated protein kinase (MAPK) and the serine-threonine protein kinase Akt. Epinephrine and NGF showed synergism in their differentiating effects. The MAPK kinase (MEK-1) inhibitor PD 98059 abolished the differentiating effect of epinephrine indicating that the differentiation is dependent on MAPK activation. Activating protein-1 (AP-1) DNA-binding activity was increased after epinephrine treatment in all three PC12alpha2 subtype clones. Evaluation of the potential physiological consequences of these findings requires further studies on endogenously expressed alpha2-ARs in neuronal cells.  相似文献   

6.
Mice with altered alpha(1)-adrenergic receptor (AR) genes have become important tools in elucidating the subtype-specific functions of the three alpha(1)-AR subtypes because of the lack of sufficiently subtype-selective pharmacological agents. Mice with a deletion (knockout, KO) or an overexpression (transgenic, TG) of the alpha(1A)-, alpha(1B)-, or alpha(1D)-AR subtypes have been generated. The alpha(1)-ARs are the principal mediators of the hypertensive response to alpha(1)-agonists in the cardiovascular system. Studies with these mice indicate that alpha(1A)-AR and alpha(1B)-AR subtypes play an important role in cardiac development and/or function as well as in blood pressure (BP) response to alpha(1)-agonists via vasoconstriction. The alpha(1B)- and alpha(1D)-subtypes also appear to be involved in central nervous system (CNS) processes such as nociceptive responses, modulation of memory consolidation and working memory. The ability to study subtype-specific functions in different mouse strains by altering the same alpha(1)-AR in different ways strengthens the conclusions drawn from these studies. Although these genetic approaches have limitations, they have significantly increased our understanding of the functions of alpha(1)-AR subtypes.  相似文献   

7.
Cloning of the genes encoding distinct subtypes of human alpha 2-adrenergic receptors (alpha 2-AR) allows the separate recombinant expression of each individual subtype in heterologous systems. We report here the transfection, selection and preliminary pharmacological characterization of two mammalian cell lines, adherent Shionogi S115 mouse mammary tumour cells and human B-lymphoblastoid IBW4 cells growing in suspension, expressing the human alpha 2-AR subtypes alpha 2-C4 and alpha 2-C10 at densities of approx. 2 x 10(5) receptors/cell. Transfection of the subtype genes was verified using a specific RNase protection assay. Pharmacological characterization was carried out with [3H]rauwolscine binding, which was inhibited by oxymetazoline and prazosin in a subtype-selective manner. The sensitivity of (-)-noradrenaline binding to the GTP-analogue 5'-guanylylimidodiphosphate suggested that the receptors are coupled to G-proteins. This was verified in S115 cells by efficient inhibition of forskolin-stimulated cAMP production by the alpha 2-AR agonists, (-)-noradrenaline and clonidine. These cell lines thus appear to be suitable for pharmacological studies on receptor function and ligand binding.  相似文献   

8.
Activation of alpha(1)-adrenergic receptors influences both the contractile activity and the growth potential of cardiac myocytes. However, the signaling pathways linking activation of specific alpha(1)-adrenergic receptor (AR) subtypes to these physiological responses remain controversial. In the present study, a molecular approach was used to identify conclusively the signaling pathways activated in response to the individual alpha(1A)- and alpha(1B)-AR subtypes in cardiac myocytes. For this purpose, a mutant alpha(1a)-AR subtype (alpha(1a)-S(290/293)-AR) was constructed based on analogy to the previously described constitutively active mutant alpha(1b)-AR subtype (alpha(1b)-S(288-294)-AR). The mutant alpha(1a)-S(290/293)-AR subtype displayed constitutive activity based on four criteria. To introduce the constitutively active alpha(1)-AR subtypes into cardiac myocytes, recombinant Sindbis viruses encoding either the alpha(1a)-S(290/293)-AR or alpha(1b)-S(288-294)-AR subtype were used to infect the whole cell population with >90% efficiency, thereby allowing the biochemical activities of the various signaling pathways to be measured. When expressed at comparable levels, the alpha(1a)-S(290/293)-AR subtype exhibited a significantly elevated basal level as well as agonist-stimulated level of inositol phosphate accumulation, coincident with activation of atrial natriuretic factor-luciferase gene expression. By contrast, the alpha(1b)-S(288-294)-AR subtype displayed a markedly increased serum response element-luciferase gene expression but no activation of atrial natriuretic factor-luciferase gene expression. Taken together, this study provides the first molecular evidence for coupling of the alpha(1a)-AR and the alpha(1b)-AR subtypes to different signaling pathways in cardiac myocytes.  相似文献   

9.
Cold constricts cutaneous blood vessels by increasing the reactivity of smooth muscle alpha(2)-adrenergic receptors (alpha(2)-ARs). Experiments were performed to determine the role of alpha(2)-AR subtypes (alpha(2A)-, alpha(2B)-, alpha(2C)-ARs) in this response. Stimulation of alpha(1)-ARs by phenylephrine or alpha(2)-ARs by UK-14,304 caused constriction of isolated mouse tail arteries mounted in a pressurized myograph system. Compared with proximal arteries, distal arteries were more responsive to alpha(2)-AR activation but less responsive to activation of alpha(1)-ARs. Cold augmented constriction to alpha(2)-AR activation in distal arteries but did not affect the response to alpha(1)-AR stimulation or the level of myogenic tone. Western blot analysis demonstrated expression of alpha(2A)- and alpha(2C)-ARs in tail arteries: expression of alpha(2C)-ARs decreased in distal compared with proximal arteries, whereas expression of the glycosylated form of the alpha(2A)-AR increased in distal arteries. At 37 degrees C, alpha(2)-AR-induced vasoconstriction in distal arteries was inhibited by selective blockade of alpha(2A)-ARs (BRL-44408) but not by selective inhibition of alpha(2B)-ARs (ARC-239) or alpha(2C)-ARs (MK-912). In contrast, during cold exposure (28 degrees C), the augmented response to UK-14,304 was inhibited by the alpha(2C)-AR antagonist MK-912, which selectively abolished cold-induced amplification of the response. These experiments indicate that cold-induced amplification of alpha(2)-ARs is mediated by alpha(2C)-ARs that are normally silent in these cutaneous arteries. Blockade of alpha(2C)-ARs may prove an effective treatment for Raynaud's Phenomenon.  相似文献   

10.
Two functional alpha(1)-adrenergic receptor (AR) subtypes (alpha(1A) and alpha(1B)) have been identified in the mouse heart. However, it is unclear whether the third known subtype, alpha(1D)-AR, is also present. To investigate this, we determined whether there were alpha(1)-AR responses in hearts from a novel mouse model lacking alpha(1A)- and alpha(1B)-ARs (double knockout) (ABKO). In Langendorff-perfused hearts, alpha(1)-ARs were stimulated with phenylephrine. For ABKO hearts, phenylephrine reduced left ventricular pressure and coronary flow (to 87 +/- 2% and 86 +/- 4% of initial, respectively, n = 11, P < 0.01). These effects were blocked by prazosin and 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-8-azaspirol[4,5]decane-7,9-dione] dihydrochloride, suggesting that alpha(1D)-AR-mediated responses were present. In contrast, right ventricular trabeculae from ABKO hearts did not respond to phenylephrine, suggesting that in ABKO perfused hearts, the effects of phenylephrine were not mediated by direct actions on cardiomyocytes. A novel finding was that alpha(1)-AR stimulation caused positive inotropy in the wild-type mouse heart, in contrast to negative inotropy observed in mouse cardiac muscle strips. We conclude that mouse hearts lacking alpha(1A)- and alpha(1B)-ARs retain functional alpha(1)-AR responses involving decreases of coronary flow and ventricular pressure that reflect alpha(1D)-AR-mediated vasoconstriction. Furthermore, alpha(1)-AR inotropic responses depend critically on the experimental conditions.  相似文献   

11.
We investigated the role of arrestins in the trafficking of human alpha2-adrenergic receptors (alpha2-ARs) and the effect of receptor trafficking on p42/p44 MAP kinase activation. alpha2-ARs expressed in COS-1 cells demonstrated a modest level of agonist-mediated internalization, with alpha2c > alpha2b > alpha2a. However, upon coexpression of arrestin-2 (beta-arrestin-1) or arrestin-3 (beta-arrestin-2), internalization of the alpha2b AR was dramatically enhanced and redistribution of receptors to clathrin coated vesicles and endosomes was observed. Internalization of the alpha2c AR was selectively promoted by coexpression of arrestin-3, while alpha2a AR internalization was only slightly stimulated by coexpression of either arrestin. Coexpression of GRK2 had no effect on the internalization of any alpha2-AR subtype, either in the presence or absence of arrestins. Internalization of the alpha2b and alpha2c ARs was inhibited by coexpression of dominant negative dynamin-K44A. However, alpha2-AR-mediated activation of either endogenous or cotransfected p42/p44 mitogen-activated protein (MAP) kinase was not affected by either dynamin-K44A or arrestin-3. Moreover, activation of p42/p44 MAP kinase by endogenous epidermal growth factor, lysophosphatidic acid, and beta2-adrenergic receptors was also unaltered by dynamin-K44A. In summary, our data suggest that internalization of the alpha2b, alpha2c, and to a lesser extent alpha2a ARs, is both arrestin- and dynamin-dependent. However, endocytosis does not appear to be required for alpha2-adrenergic, epidermal growth factor, lysophosphatidic acid, or beta2-adrenergic receptor-mediated p42/p44 MAP kinase activation in COS-1 cells.  相似文献   

12.
The 19-amino acid conopeptide (rho-TIA) was shown previously to antagonize noncompetitively alpha(1B)-adrenergic receptors (ARs). Because this is the first peptide ligand for these receptors, we compared its interactions with the three recombinant human alpha(1)-AR subtypes (alpha(1A), alpha(1B), and alpha(1D)). Radioligand binding assays showed that rho-TIA was 10-fold selective for human alpha(1B)-over alpha(1A)- and alpha(1D)-ARs. As observed with hamster alpha(1B)-ARs, rho-TIA decreased the number of binding sites (B(max)) for human alpha(1B)-ARs without changing affinity (K(D)), and this inhibition was unaffected by the length of incubation but was reversed by washing. However, rho-TIA had opposite effects at human alpha(1A)-ARs and alpha(1D)-ARs, decreasing K(D) without changing B(max), suggesting it acts competitively at these subtypes. rho-TIA reduced maximal NE-stimulated [(3)H]inositol phosphate formation in HEK293 cells expressing human alpha(1B)-ARs but competitively inhibited responses in cells expressing alpha(1A)- or alpha(1D)-ARs. Truncation mutants showed that the amino-terminal domains of alpha(1B)- or alpha(1D)-ARs are not involved in interaction with rho-TIA. Alanine-scanning mutagenesis of rho-TIA showed F18A had an increased selectivity for alpha(1B)-ARs, and F18N also increased subtype selectivity. I8A had a slightly reduced potency at alpha(1B)-ARs and was found to be a competitive, rather than noncompetitive, inhibitor in both radioligand and functional assays. Thus rho-TIA noncompetitively inhibits alpha(1B)-ARs but competitively inhibits the other two subtypes, and this selectivity can be increased by mutation. These differential interactions do not involve the receptor amino termini and are not because of the charged nature of the peptide, and isoleucine 8 is critical for its noncompetitive inhibition at alpha(1B)-ARs.  相似文献   

13.
The studies on the intrinsic structural determinants for export trafficking of G protein-coupled receptors (GPCRs) have been mainly focused on the C termini of the receptors. In this report we determined the role of the extracellular N termini of alpha(2)-adrenergic receptors (alpha(2)-ARs) in the anterograde transport from the endoplasmic reticulum (ER) through the Golgi to the cell surface. The N-terminal-truncated alpha(2B)-AR mutant is completely unable to target to the cell surface. A single Met-6 residue is essential for the export of alpha(2B)-AR from the ER, likely through modulating correct alpha(2B)-AR folding in the ER. The Tyr-Ser motif, highly conserved in the membrane-proximal N termini of all alpha(2)-AR subtypes, is required for the exit of alpha(2A)-AR and alpha(2B)-AR from the Golgi apparatus, thus representing a novel Tyr-based motif modulating GPCR transport at the Golgi level. These data provide the first evidence indicating an essential role of the N termini of GPCRs in the export from distinct intracellular compartments along the secretory pathway.  相似文献   

14.
Identification of Nogo-66 receptor (NgR) and homologous genes in fish   总被引:2,自引:0,他引:2  
The Nogo-66 receptor NgR has been implicated in the mediation of inhibitory effects of central nervous system (CNS) myelin on axon growth in the adult mammalian CNS. NgR binds to several myelin-associated ligands (Nogo-66, myelin associated glycoprotein, and oligodendrocyte-myelin glycoprotein), which, among other inhibitory proteins, impair axonal regeneration in the CNS of adult mammals. In contrast to mammals, severed axons readily regenerate in the fish CNS. Nevertheless, fish axons are repelled by mammalian oligodendrocytes in vitro. Therefore, the identification of fish NgR homologs is a crucial step towards understanding NgR functions in vertebrate systems competent of CNS regeneration. Here, we report the discovery of four zebrafish (Danio rerio) and five fugu (Takifugu rubripes) NgR homologs. Synteny between fish and human, comparable intron-exon structures, and phylogenetic analyses provide convincing evidence that the true fish orthologs were identified. The topology of the phylogenetic trees shows that the extra fish genes were produced by duplication events that occurred in ray-finned fishes before the divergence of the zebrafish and pufferfish lineages. Expression of zebrafish NgR homologs was detected relatively early in development and prominently in the adult brain, suggesting functions in axon growth, guidance, or plasticity.  相似文献   

15.
Phenoxybenzamine (PB), a classical alpha-adrenergic antagonist, binds irreversibly to the alpha-adrenergic receptors (ARs). Amino acid sequence alignments and the predicted helical arrangement of the seven transmembrane (TM) domains suggested an accessible cysteine residue in transmembrane 3 of the alpha(2)-ARs, in position C(3.36) (in subtypes A, B, and C corresponding to amino acid residue numbers 117/96/135, respectively), as a possible site for the PB interaction. Irreversible binding of PB to recombinant human alpha(2)-ARs (90 nm, 30 min) reduced the ligand binding capacity of alpha(2A)-, alpha(2B)-, and alpha(2C)-AR by 81, 96, and 77%. When the TM3 cysteine, Cys(117), of alpha(2A)-AR was mutated to valine (alpha(2A)-C117V), the receptor became resistant to PB (inactivation, 10%). The beta(2)-AR contains a valine in this position (V(3.36); position number 117) and a cysteine in the preceding position (Cys(116)) and was not inactivated by PB (10 microm, 30 min) (inactivation 26%). The helical orientation of TM3 was tested by exchanging the amino acids at positions 116 and 117 of the alpha(2A)-AR and beta(2)-AR. The alpha(2A)-F116C/C117V mutant was resistant to PB (inactivation, 7%), whereas beta(2)-V117C was irreversibly inactivated (inactivation, 93%), confirming that position 3.36 is exposed to receptor ligands, and position 3.35 is not exposed in the binding pocket.  相似文献   

16.
We report the cloning and pharmacological characterization of two neuropeptide Y (NPY) receptor subtypes, Y2 and Y7, in rainbow trout (Oncorhynchus mykiss). These subtypes are approximately 50% identical to each other and belong to the Y2 subfamily of NPY receptors. The binding properties of the receptors were investigated after expression in human HEK-293 EBNA cells. Both receptors bound the three zebrafish peptides NPY, PYYa, and PYYb, as well as porcine NPY and PYY, with affinities in the nanomolar range that are similar to mammalian Y2. The affinity of the truncated porcine NPY fragments, NPY 13-36 and NPY 18-36 was markedly lower compared to mammalian and chicken Y2. This suggests that mammalian and chicken Y2 are unique among NPY receptors in their ability to bind truncated peptide fragments. The antagonist BIIE0246, developed for mammalian Y2, did not bind either of the two rainbow trout receptors. Our results support the proposed expansion of this gene family by duplications before the gnathostome radiation. They also reveal appreciable differences in the repertoire and characteristics of NPY receptors between fish and tetrapods stressing the importance of lineage-specific gene loss as well as sequence divergence after duplication.  相似文献   

17.
Fish species such as medaka fish, fugu, and zebrafish contain more guanylyl cyclases (GCs) than do mammals. These GCs can be divided into two types: soluble GCs and membrane GCs. The latter are further divided into four subfamilies: (i) natriuretic peptide receptors, (ii) STa/guanylin receptors, (iii) sensory-organ-specific membrane GCs, and (iv) orphan receptors. Phylogenetic analyses of medaka fish GCs, along with those of fugu and zebrafish, suggest that medaka fish is a much closer relative to fugu than to zebrafish. Analyses of nucleotide data available on a web site (http://www.ncbi. nlm.nih.gov/) of GCs from a range of organisms from bacteria to vertebrates suggest that gene duplication, and possibly chromosomal duplication, play important roles in the divergence of GCs. In particular, the membrane GC genes were generated by chromosomal duplication before the divergence of tetrapods and teleosts.  相似文献   

18.
Psychostimulants including amphetamine and cocaine induce locomotion and stereotypy and suppress eating. Although the capacity of cocaine to alter locomotion is usually viewed as related to dopamine neurotransmission, recent studies suggest that norepinephrine, acting through alpha1-adrenergic receptors (alpha1-ARs) can facilitate cocaine-stimulated locomotion. Of the three alpha1-AR subtypes (alpha(1A), alpha(1B), and alpha(1D)) identified to date, inactivation of the alpha(1B)-AR subtype diminishes cocaine-stimulated locomotion, whereas the impact of inactivation of the alpha(1A)-AR subtype on either eating or locomotion is unknown. In the present study, we assessed the relative impact of ICV administration of the alpha(1B)-AR antagonist 5-methylurapidil (5-MU) on cocaine-stimulated hyperlocomotion and hypophagia, using a concurrent method [Wellman, P.J., Ho, D.H., Davis, K.W., 2005. Concurrent measures of feeding and locomotion in rats. Physiology of Behavior 84 (5), 769-774.]. Rats were infused ICV with one of 3 doses of 5-MU (0, 3, or 30 nmol) and then injected (i.p.) with 0, 2.5, 5.0, 10.0, or 20.0 mg/kg cocaine HCl on each of five tests. Rats always received the same 5-MU dose, but a different cocaine dose on each trial. Feeding and locomotion were assessed concurrently during a 45-min postinjection period. Significant suppression of eating was noted at 2.5 mg/kg cocaine, a dose that does not alter forward locomotion in the rat. Administration of 5-MU did not alter locomotion in rats treated with saline, but did significantly increase baseline food intake. Neither cocaine-induced hypophagia nor hyperlocomotion was altered by ICV administration of 5-MU. These results suggest that the capacity of alpha1-AR agonists (e.g. phenylpropanolamine) to suppress eating may be related to activation of the alpha(1A)-AR subtype, whereas cocaine does not act through the alpha(1A)-AR subtype to suppress eating nor does this subtype modulate cocaine-induced hyperlocomotion.  相似文献   

19.
Beta1- and beta2-adrenergic receptors (beta-ARs) co-exist in mammalian heart, and it is generally accepted that both activate adenylyl cyclase (AC), resulting in increased levels of cAMP and subsequent activation of L-type Ca2+ channels (CaCh). To investigate the contribution of each beta-AR subtype in AC and CaCh coupling, we stably expressed cardiac CaCh alpha1 and beta2 subunits along with either beta1-AR or beta2-AR in CHW fibroblasts. Co-expression of either beta-AR with CaCh subunits conferred responsiveness of AC and CaCh to isoproterenol (ISO), which was not observed in non-transfected cells. ISO-promoted cAMP formation occurred at a lower EC50 through the beta2-AR than through the beta1-AR (0.13 +/- 0.01 vs. 0.6 +/- 0.14 nM). In contrast, activation of CaCh was more efficacious via the beta1-AR than the beta2-AR (EC50 for CaCh activation = 238 +/- 33 vs. 1057 +/- 113 nM). Pre-treatment with pertussis toxin (PTX) had no effect upon the responsiveness of either cAMP formation or CaCh activation through either receptor. We conclude (1) that beta1-ARs exhibit preferential coupling to CaCh activation, versus that observed for the beta2-AR; (2) that this preferential coupling cannot be explained solely by cAMP-dependent processes; and (3) that the relative attenuation of beta2-AR-promoted CaCh activation is not due to receptor coupling to PTX-sensitive G proteins. Thus, it is likely that other subtype-specific, cAMP-independent coupling of the beta-AR to CaCh is present.  相似文献   

20.
Attenuation of early restenosis after percutaneous coronary intervention (PCI) is important for the successful treatment of coronary artery disease. Some clinical studies have shown that hypertension is a risk factor for early restenosis after PCI. These findings suggest that alpha(1)-adrenergic receptors (alpha(1)-ARs) may facilitate restenosis after PCI because of alpha(1)-AR's remarkable contribution to the onset of hypertension. In this study, we examined the neointimal formation after vascular injury in the femoral artery of alpha(1A)-knockout (alpha(1A)-KO), alpha(1B)-KO, alpha(1D)-KO, alpha(1A)-/alpha(1B)-AR double-KO (alpha(1AB)-KO), and wild-type mice to investigate the functional role of each alpha(1)-AR subtype in neointimal formation, which is known to promote restenosis. Neointimal formation 4 wk after wire injury was significantly (P < 0.05) smaller in alpha(1AB)-KO mice than in any other group of mice, while blood pressures were not altered in any of the groups of mice after wire injury compared with those before it. These results suggest that lack of both alpha(1A)- and alpha(1B)-ARs could be necessary to inhibit neointimal formation in the mouse femoral artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号