首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Bacillus subtilis 168 is resistant to phenolic acids by expression of an inducible enzyme, the phenolic acid decarboxylase (PadC), that decarboxylates these acids into less toxic vinyl derivatives. In the phenolic acid stress response (PASR), the repressor of padC, PadR, is inactivated by these acids. Inactivation of PadR is followed by a strong expression of padC. To elucidate the functional interaction between PadR and the padC promoter, we performed (i) footprinting assays to identify the region protected by PadR, (ii) electrophoretic mobility shift assays (EMSAs) with a modified padC promoter protected region to determine the interacting sequences, and (iii) random mutagenesis of padR to identify amino acid residues essential for the function of PadR. We identified an important consensus dyad sequence called IR1-2 (ATGT-8N-ACAT) overlapping a second dyad element (GTGT-8N-ACAT) that we named dIR1-2bis. The entire dIR1-2bis/IR1-2 sequence permits binding of two PadR dimers in EMSAs, which may be observed for bacteria grown under noninduced conditions where the padC promoter is completely repressed. Three groups of modified PadRs giving a PASR phenotype were characterized in vivo. The DNA sequences of certain mutant padR alleles indicate that important residues are all located in the region containing the coiled-coil leucine zipper domain that is involved in dimerization. These substitutions reduce the affinity of PadR binding to the padC promoter. Of particular interest are residue L128, located at the center of the putative coiled-coil leucine zipper domain, and residue E97, which is conserved among all PadRs.  相似文献   

6.
7.
Ralstonia solanacearum can metabolize ferulic acid (FA) and salicylic acid (SA), two representative phenolic acids, to protect it from toxicity of phenolic acids. Here, we genetically demonstrated a novel phenolic acid decarboxylase regulator (PadR)-like regulator PrhP as a positive regulator on detoxification of SA and FA in R. solanacearum. Although the ability to degrade SA and FA enhances the infection process of R. solanacearum toward host plants, PrhP greatly contributes to the infection process besides degradation of SA and FA. Our results from the growth assay, promoter activity assay, RNA-seq and qRT-PCR revealed that PrhP plays multiple roles in the virulence of R. solanacearum: (1) positively regulates expression of genes for degradation of SA and FA; (2) positively regulates expression of genes encoding type III secretion system (T3SS) and type III effectors both in vitro and in planta; (3) positively regulates expression of many virulence-related genes, such as the flagella, type IV pili and cell wall degradation enzymes; and (4) is important for the extensive proliferation in planta. The T3SS is one of the essential pathogenicity determinants in many pathogenic bacteria, and PrhP positively regulates its expression mediated with the key regulator HrpB but through some novel pathway to HrpB in R. solanacearum. This is the first report on PadR regulators to regulate the T3SS and it could improve our understanding of the various biological functions of PadR regulators and the complex regulatory pathway on T3SS in R. solanacearum.  相似文献   

8.
9.
10.
【背景】酚酸脱羧酶催化分解酚酸产生的4-乙烯基酚类物质可用于食品添加剂及香精香料行业,而酚酸脱羧酶的表达水平相对较低,因此,高水平的酚酸脱羧酶是工业规模生产4-乙烯基酚类物质的先决条件。【目的】克隆解淀粉芽胞杆菌的酚酸脱羧酶基因,实现在大肠杆菌中的高效异源表达,分析酚酸脱羧酶的底物特异性,并对其表达条件进行优化。【方法】通过PCR技术获得酚酸脱羧酶的基因,构建重组基因工程菌,将测序结果与其他酚酸脱羧酶序列进行比对,利用IPTG诱导方法高效表达蛋白。将重组酚酸脱羧酶与4种不同的底物进行反应,设计响应面试验对诱导条件进行优化。【结果】酚酸脱羧酶对对香豆酸、阿魏酸、咖啡酸、芥子酸的比酶活比率为:100:23.33:15.39:10.51。结合与其他酚酸脱羧酶比对结果发现酚酸脱羧酶家族的C末端区域氨基酸序列的变异率最高,这与酚酸脱羧酶的底物特异性和催化机制有关。通过单因素和响应面试验得到酚酸脱羧酶诱导表达的最佳条件为:2×YT培养基,诱导温度30°C,接种量1.78%,诱导时机3.8 h,IPTG1.25mmol/L,诱导时间18h,此时预测酶活和实际酶活分别为47.61IU/mL和47.55...  相似文献   

11.
The universal stress protein (UspA) superfamily encompasses a conserved group of proteins that are found in bacteria, archaea, and eukaryotes. Escherichia coli harbors six usp genes--uspA, -C, -D, -E, -F, and -G--the expression of which is triggered by a large variety of environmental insults. The uspA gene is important for survival during cellular growth arrest, but the exact physiological role of the Usp proteins is not known. In this work we have performed phenotypic characterization of mutants with deletions of the six different usp genes. We report on hitherto unknown functions of these genes linked to motility, adhesion, and oxidative stress resistance, and we show that usp functions are both overlapping and distinct. Both UspA and UspD are required in the defense against superoxide-generating agents, and UspD appears also important in controlling intracellular levels of iron. In contrast, UspC is not involved in stress resistance or iron metabolism but is essential, like UspE, for cellular motility. Electron microscopy demonstrates that uspC and uspE mutants are devoid of flagella. In addition, the function of the uspC and uspE genes is linked to cell adhesion, measured as FimH-mediated agglutination of yeast cells. While the UspC and UspE proteins promote motility at the expense of adhesion, the UspF and UspG proteins exhibit the exact opposite effects. We suggest that the Usp proteins have evolved different physiological functions that reprogram the cell towards defense and escape during cellular stress.  相似文献   

12.
13.
Resistance to sorbic and cinnamic acids is mediated by a phenylacrylic acid decarboxylase (PadA1) in Aspergillus niger. A. niger ΔpadA1 mutants are unable to decarboxylate sorbic and cinnamic acids, and the MIC of sorbic acid required to inhibit spore germination was reduced by ~50% in ΔpadA1 mutants.  相似文献   

14.
15.
16.
High concentrations of CO2 block or delay the ripening of fruits. In this study we investigated the effects of high CO2 on ripening and on the expression of stress- and ripening-inducible genes in cherry tomato (Lycopersicon esculentum Mill.) fruit. Mature-green tomato fruits were submitted to a high CO2 concentration (20%) for 3 d and then transferred to air. These conditions effectively inhibited ripening-associated color changes and ethylene production, and reduced the protein content. No clear-cut effect was observed on the expression of two proteolysis-related genes, encoding polyubiquitin and ubiquitin-conjugating enzyme E2, respectively. Exposure of fruit to high CO2 also resulted in the strong induction of two genes encoding stress-related proteins: a ripening-regulated heat-shock protein and glutamate decarboxylase. Induction of these two genes indicated that high CO2 had a stress effect, most likely through cytosolic acidification. In addition, high CO2 blocked the accumulation of mRNAs for genes involved in the main ripening-related changes: ethylene synthesis (1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase), color (phytoene synthase), firmness (polygalacturonase), and sugar accumulation (acid invertase). The expression of ripening-specific genes was affected by CO2 regardless of whether their induction was ethylene- or development-dependent. It is proposed that the inhibition of tomato fruit ripening by high CO2 is due, in part, to the suppression of the expression of ripening-associated genes, which is probably related to the stress effect exerted by high CO2.  相似文献   

17.
18.
19.
20.
Lactobacillus delbrueckii ssp. bulgaricus ( L. bulgaricus ) genome sequence analysis revealed the presence of two genes that encode histone-like HU proteins ( hlbA and hlbB ) showing extensive similarity to other bacterial homologues. These genes were found to be extremely conserved among several L. bulgaricus strains. The hlbA gene was shown to be constitutively transcribed from a unique promoter ( phlbA ) during normal growth, whereas hlbB did not seem to be expressed under usual laboratory conditions. Using a reporter cassette in which the staphylococcal nuclease was fused at its N-terminus to the lactococcal signal peptide Usp45 (SP Usp45), we have demonstrated that phlbA promotes high expression of the reporter in L. bulgaricus , which correlated with an abundant secretion of the mature nuclease in the supernatant fraction. Quantification of the exported enzyme reveals a secretion level approximately threefold higher when the expression of the reporter was under the control of phlbA compared with the lactococcal usp45 promoter. Together, these results indicate that phlbA is suitable for gene expression in L. bulgaricus , that SP Usp45 is functionally recognized and processed by the L. bulgaricus secretion machinery and that the nuclease reporter gene can be used for the identification of exported products in this bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号