首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The synthesis of two new analogs of 2'-deoxyguanosine, 6-amino-1-(2-deoxy-beta-D-erythro-pentofuranosyl)-1H-pyrrolo[3,2-c] pyridin-4(5H)-one (8) and 6-amino-1-beta-D-arabinofuranosyl-1H-pyrrolo[3,2-c]-pyridin-4(5H)-one (13) has been accomplished by glycosylation of the sodium salt of ethyl 2-cyanomethyl-1H-pyrrole-3-carboxylate (4c) using 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-alpha-D-erythro-pentofuranose( 5) and 1-chloro-2,3,5-tri-O-benzyl-alpha-D-arabinofuranose (9), respectively. The resulting blocked nucleosides, ethyl 2-cyanomethyl-1-(2-deoxy-3,5-di-O-p-toluoyl-beta-D-erythro- pentofuranosyl)-1H-pyrrole-3-carboxylate (6) and ethyl 2-cyanomethyl-1-(2,3,5-tri-O-benzyl-beta-D-arabinofuranosyl)- 1H-pyrrole-3-carboxylate, were ring closed with hydrazine to form 5-amino-6-hydrazino-1-(2-deoxy-beta-D-erythro-pentofuranosyl)-1H- pyrrolo[3,2-c]-pyridin-4(5H)-one (7) and 5,6-diamino-1-(2,3,5-tri-O-benzyl-beta-D-arabinofuranosyl)-1H- pyrrolo[3,2-c]pyridin-4(5H)-one (11), respectively. Treatment of 7 with Raney nickel provided the 2'-deoxyguanosine analog 8 while reaction of 11 with Raney nickel followed by palladium hydroxide/cyclohexene treatment gave the 2'-deoxyguanosine analog 13. The anomeric configuration of 8 was assigned as beta by proton NMR, while that of 13 was confirmed as beta by single-crystal X-ray analysis of the deblocked precursor ethyl 2-cyanomethyl-1-beta-D-arabinofuranosyl-1H-pyrrole-3-carboxylate (10a).  相似文献   

2.
3-Amino-6-(beta-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). A series of 5-amino-1-(5-O-tert-butyldimethylsilysilyl-2,3-O-isopropylidene-beta-D-ribofuranosyl)-4-(1,2,4-oxadiazol-3-yl)imidazoles (6a-d), with different substituents at the 5-position of the 1,2,4-oxadiazole, were synthesized from 5-amino-1-(beta-D-ribofuranosyl)imidazole-4-carboxamide (AICA Ribose, 3). It was found that 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-beta-D-ribofuranosyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)imidazole (6a) underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleoside(s) (7b and/or 7a) in good yields. A direct removal of the acetyl group from 3-acetamidoimidazo[4,5-c]pyrazoles under numerous conditions was unsuccessful. Subsequent protecting group manipulations afforded the desired 3-amino-6-(beta-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) as a 5:5 fused analog of adenosine (1).  相似文献   

3.
A facile synthesis of 7-amino-5-chloro-3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine (5-chloroformycin A, 6), 7-amino-5-chloro-3-(2-deoxy-beta-D-erythro-pentofuranosyl) pyrazolo [4,3-d]-pyrimidine (5-chloro-2'-deoxyformycin A, 13) and certain related 5,7-disubstituted pyrazolo[4,3-d]pyrimidine ribonucleosides is described starting with formycin A. Thiation of tri-O-acetyloxoformycin B (4b) with phosphorus pentasulfide, followed 3-beta-D-ribofuranosyl-7-thioxopyrazolo[4,3-d] pyrimidin-5(1H,4H,6H)-one (3b) in excellent yield. Chlorination of 4b with either phosphorus oxychloride or phenyl phosphonicdichloride furnished the key intermediate 5,7-dichloro-3-(2,3, 5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo[4,3-d]pyrimidine (5a), which on deacetylation afforded 5,7-dichloro-3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine (5b). Ammonolysis of 5a with liquid ammonia gave 6, whereas with MeOH/NH3, a mixture of 6 and 7-methoxy-5-chloro-3-beta-D-ribofuranosylpyrazolo[4,3-d]pyrimidine (7) was obtained. Reaction of 6 with lithium azide and subsequent hydrogenation afforded 5-aminoformycin A (10). Treatment of 5a with thiourea gave 5-chloro-3-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl) pyrazolo[4,3-d]pyrimidine-7(1H,6H)-thione (8a), which on further reaction with sodium hydrosulfide furnished 3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine-5,7(1H,4H,6H)-dithione (11). The four-step deoxygenation procedure using phenoxythiocarbonylation of the 2'-hydroxy group of the 3', 5'-protected 6 gave 5-chloro-2'-deoxyformycin A (13).  相似文献   

4.
A series of novel pyrimido and other fused quinoline derivatives like 4-methyl pyrimido [5,4-c]quinoline-2,5(1H,6H)-dione (4a), 4-methyl-2-thioxo-1,2-dihydropyrimido [5,4-c]quinoline-5(6H)-one (4b), 2-amino-4-methyl-1,2-dihydropyrimido [5,4-c]quinolin-5(6H)-one (4c), 3-methylisoxazolo [4,5-c]quinolin-4(5H)-one (4d), 3-methyl-1H-pyrazolo [4,3-c]quinoline-4(5H)-one (5e), 5-methyl-1H-[1,2,4] triazepino [6,5-c]quinoline-2,6(3H,7H)-dione (5f), 5-methyl-2-thioxo-2,3-dihydro-1H-[1,2,4]triazepino [6,5-c]quinolin-6(7H)-one (5 g) were synthesized regioselectively from 4-hydroxy-3-acyl quinolin-2-one 3. They were screened for their in vitro antioxidant activities against radical scavenging capacity using DPPH(), Trolox equivalent antioxidant capacity (TEAC), total antioxidant activity by FRAP, superoxide radical (O(2)(°-)) scavenging activity, metal chelating activity and nitric oxide scavenging activity. Among the compounds screened, 4c and 5 g exhibited significant antioxidant activities.  相似文献   

5.
Treatment of 5-amino-1-(9-methyl-5,6-dihydronaphtho[1',2':4,5]thieno[2,3-d]pyrimidin-11-yl)-1H-pyrazole-4-carbonitrile (1) with formic acid afforded pyrazolo[3,4-d]pyrimidin-4-one derivative 2. The sodium salt of the latter compound (generated in situ) was treated with some alkyl halides to afford the corresponding N-substituted compounds 3-7. The siloxy derivative 8 (generated also in situ from 2) was ribosylated and glycosylated to yield compounds 9 and 11, respectively. Deprotection of compounds 9 and 11 in methanolic ammonia produced the free nucleosides 10 and 12, respectively. Moreover, the prepared compounds were tested for antiviral activity against H5N1 virus [A/chicken/Egypt/1/2006] and some of them revealed moderate results compared with the other tested compounds.  相似文献   

6.
Abstract

A short and simple synthesis of 5-amino-3-β-D-ribofuranosylpyrazolo[4,3-d]pyrimidin-7(6H)-one, (7) was achieved from 7-amino-5-chloro-3-β-D-ribofuranosylpyrazolo[4,3-d]pyrimidine (5), in two steps, first deamination of 5 with NOCI, followed by amination of 6 with MeOH/NH3. Also, an efficient synthesis of 5-amino-1(or 2)-methyl-3-β-D-ribofuranosylpyrazolo[4,3-d]pyrimidin-7(6H)-one was accomplished from the corresponding 1 (or 2)-methyloxoformycin B in four steps by a sequence consisting of (i) 2′,3′,5′ acetylation with AC2O, (ii) 5,7-chlorination with PhP(O)Cl2, (iii) selective hydrolysis of the 7-chloro group with aqueous Na2CO3, (iv) followed by amination of the 5-chloro group with MeOH/NH3. Single crystal X-ray analysis off 11 confirmed position 7 as the site of selective hydrolysis with Na2CO3. The three guanosine C-nucleosides prepared were evaluated for their ability to inhibit certain RNA and DNA viral replication in vitro and Semliki Forest virus infection in vivo. Only 5-amino-1-methyl-3-β-D-ribofuranosylpyrazolo[4,3-d]pyrimidin-7(6H)-one (13) provided protection (67% survivors, compared to 0% for placebo controls) against a lethal dose of Semliki Forest virus infection in mice. The antiviral effect of 13 is believed to be due to the enhancement of the host immune function.  相似文献   

7.
By a modification of a previously established reaction-sequence involving successive oxidation with methyl sulfoxide-acetic anhydride, oximation, and reduction with lithium aluminum hydride, 6-O-tritylamylose (1) was converted into a 6-O-tritylated (1→4)-α-D-linked glucan (3) containing 2-amino-2-deoxy-D-glucose residues and some O-(methylthio)methyl groups. Removal of the ether groups from this product gave a 2-aminated amylose (4) of degree of substitution (d.s.) by amine of 0.54 that underwent cleavage by fungal alpha-amylase to give oligosaccharides containing amino sugar residues. N-Trifluoroacetylation of 3 followed by removal of the ether groups, oxidation at C-6 with oxygen-platinum, and removal of the N-substituent, gave a (1 →4)-2-amino-2-deoxy-α-D-glucopyranuronan 7 having d.s. by amine of up to 0.65, and by carboxyl, of 0.46. Sulfation of this product with sulfur trioxide-pyridine and then with chlorosulfonic acid-pyridine gave a (1→4)-2-deoxy-2-sulfoamino-α-D-glucopyranuronan, isolated as its sodium salt 8, which showed appreciable blood-anticoagulant activity.  相似文献   

8.
By a modification of a previously established reaction-sequence involving successive oxidation with methyl sulfoxide-acetic anhydride, oximation, and reduction with lithium aluminum hydride, 6-O-tritylamylose (1) was converted into a 6-O-tritylated (1→4)-α-D-linked glucan (3) containing 2-amino-2-deoxy-D-glucose residues and some O-(methylthio)methyl groups. Removal of the ether groups from this product gave a 2-aminated amylose (4) of degree of substitution (d.s.) by amine of 0.54 that underwent cleavage by fungal alpha-amylase to give oligosaccharides containing amino sugar residues. N-Trifluoroacetylation of 3 followed by removal of the ether groups, oxidation at C-6 with oxygen-platinum, and removal of the N-substituent, gave a (1 →4)-2-amino-2-deoxy-α-D-glucopyranuronan 7 having d.s. by amine of up to 0.65, and by carboxyl, of 0.46. Sulfation of this product with sulfur trioxide-pyridine and then with chlorosulfonic acid-pyridine gave a (1→4)-2-deoxy-2-sulfoamino-α-D-glucopyranuronan, isolated as its sodium salt 8, which showed appreciable blood-anticoagulant activity.  相似文献   

9.
Alkylation of 2-methylthiopyrimidin-4(1H)-one (1a) and its 5(6)-alkyl derivatives 1b-d as well as theophylline (7) with 2,2-bis(bromomethyl)-1,3-diacetoxypropane (2) under microwave irradiation gave the corresponding acyclonucleosides 1-[(3-acetoxy-2-acetoxymethyl-2-bromomethyl)prop-1-yl]-2-methyl-thio pyrmidin-4(1H)-ones 3a-d and 7-[(3-acetoxy-2-acetoxymethyl-2-bromomethyl)prop-1-yl]theophylline (8), which upon further irradiation gave the double-headed acyclonucleosides 1,1 '-[(2,2-diacetoxymethyl)-1,3-propylidene]-bis[(2-(methylthio)-pyrimidin-4(1H)-ones] 4a-c, and 7,7 '-[(2,2-diacetoxymethyl)-1,3-propylidene]-bis(theophylline) (9). The deacetylated derivatives were obtained by the action of sodium methoxide. The activity of deacetylated nucleosides against Hepatitis B virus was evaluated. Compound 5b showed moderate inhibition activity against HBV with mild cytotoxicity.  相似文献   

10.

3-Amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). A series of 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl-4-(1,2,4-oxadiazol-3-yl)imidaz-oles (6a-d), with different substituents at the 5-position of the 1,2,4-oxadiazole, were synthesized from 5-amino-1-(β-D-ribofuranosyl)imidazole-4-carboxamide (AICA Ribose, 3). It was found that 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)imidazole (6a) underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleoside(s) (7b and/or 7a) in good yields. A direct removal of the acetyl group from 3-acetamidoimidazo[4,5-c]pyrazoles under numerous conditions was unsuccessful. Subsequent protecting group manipulations afforded the desired 3-amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) as a 5:5 fused analog of adenosine (1).  相似文献   

11.
A series of potential bioactive compounds, 1-glucopyranosyl- 1,2,3-triazole-4,5-dimethylcarboxylate, 1-glucopyranosyl-1,2,3-triazole-4,5-N-dicarboxamide,-dialkyl-dicarboxamide-N-nucleosides and 6-amino-4H-1-(beta-D-glucopyranosyl)-8-hydroxy-1,2.3-triazolo[4,5-e][1,3]-diazepin-4-one, were synthesized. Primary activity screening of the novel nucleosides showed poor or no anticancer activity against breast, lung and CNS tumors.  相似文献   

12.
Treatment of the sodium salt of compounds 1, 7 or 12 with chloroethyl methyl ether, 2-chloroethyl toluoylate or 2-(2-chloro ethoxy)ethyl acetate afforded the corresponding derivatives 2, 3, 4, 8, 9, 13 and 14. Ammonolysis of 3, 4, 9 and 14 at room temperature gave the corresponding hydroxyalkyl derivatives 5, 6, 10, 11, and 15, respectively. Alkylation of 2,4-dithiouracil gave 2,4-dialkylthio pyrimidine.  相似文献   

13.
An efficient, short synthesis of a ring-expanded nucleoside analogue containing a novel 5:7-fused, planar, and potentially aromatic imidazo[4,5-e][1,3]diazepine heterocyclic ring system is reported. The target compound, 6-amino-8-hydroxy-4H-1-beta-D- ribofuranosylimidazo[4,5-e][1,3]diazepin-4-one (2) was synthesized in a single step in > or = 90% yield by condensation of guanidine with either methyl 1-beta-D-ribofuranosylimidazole-4,5- dicarboxylate(1a) or its 2',3',5'-tri-O-benzoyl derivative (1b). Compound 2 showed potent anti-hepatitis B virus (anti-HBV) activity with an EC50 value of 0.17 microM in the transfected hepatoma cell line 2.2.15, and a low cellular toxicity with a CC50 value of 2.4 mM (TI > 14,000).  相似文献   

14.
Alkylation of 6-chloropurine and 2-amino-6-chloropurine with bromoacetaldehyde diethyl acetal afforded 6-chloro-9-(2,2-diethoxyethyl)purine (3a) and its 2-amino congener (3b). Treatment of compounds 3 with primary and secondary amines gave the N6-substituted adenines (5a-5c) and 2,6-diaminopurines (5d-5f). Hydrolysis of 3 resulted in hypoxanthine (6a) and guanine (6b) derivatives, while their reaction with thiourea led to 6-sulfanylpurine (7a) and 2-amino-6-sulfanylpurine (7b) compounds. Treatment with diluted acid followed by potassium cyanide treatment and acid hydrolysis afforded 6-substituted 3-(purin-9-yl)- and 3-(2-aminopurin-9-yl)-2-hydroxypropanoic acids (8-10). Reaction of compounds 3 with malonic acid in aqueous solution gave exclusively the product of isomerisation, 6-substituted 4-(purin-9-yl)-3-butenoic acids (15).  相似文献   

15.
Classical antifolates (4-7) with a tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold and a flexible and rigid benzoylglutamate were synthesized as dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. Oxidative aromatization of ethyl 2-amino-4-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (±)-9 to ethyl 2-amino-4-methyl-1-benzothiophene-3-carboxylate 10 with 10% Pd/C was a key synthetic step. Compounds with 2-CH? substituents inhibited human (h) TS (IC?? =0.26-0.8 μM), but not hDHFR. Substitution of the 2-CH? with a 2-NH? increases hTS inhibition by more than 10-fold and also affords excellent hDHFR inhibition (IC?? = 0.09-0.1 μM). This study shows that the tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold is highly conducive to single hTS or dual hTS-hDHFR inhibition depending on the 2-position substituents. The X-ray crystal structures of 6 and 7 with hDHFR reveal, for the first time, that tricyclics 6 and 7 bind with the benzo[4,5]thieno[2,3-d]pyrimidine ring in the folate binding mode with the thieno S mimicking the 4-amino of methotrexate.  相似文献   

16.
E Mappus  C Y Cuilleron 《Steroids》1979,33(6):693-718
The 3-(O-carboxymethyl)oximino derivative of 17β-hydroxy-5α-androstan-3-one (5α-dihydrotestosterone) was prepared. Thin-layer chromatography of the corresponding methyl ester showed the presence of two syn (60%) and anti (40%) geometrical isomers of the oxime chain to the C-4 position, which were characterized by 13C nmr. The 3β-hemisuccinami-do-5α-androstan-17β-ol was obtained after selective saponification with potassium carbonate of the 17β-hemisuccinate group of the 3,17-dihemi-succinoylated derivative of the previously described 3β-amino-5α-androstan-17β-ol. This 3β-hemisuccinamide was purified as the corresponding methyl ester-17β-acetate and was regenerated after saponification. The 3,3'-ethylenedioxy-7-oxo-5α-androstan-17β-yl acetate was obtained in quantitative yield by catalytic hydrogenation over 10% palladium-oncharcoal of the Δ5-7-oxo precursor in a dioxane-ethanol mixture containing traces of pyridine. The exclusive 5α-configuration of this hydrogenated product was established from nmr data and was confirmed by the synthesis of methyl 3,3'-ethylenedioxy-7-oxo-5β-cholan-24-oate as 5β-H-reference compound. The preceding 5α-H-7-ketone was converted into the 7-(O-carboxymethyl)oximino derivative (syn isomer to the C-6 position, exclusively) which was esterified into the corresponding methyl ester. The selective hydrolysis of the 3-ethyleneketal group was achieved by a short treatment with a formic acid-ether 1:1 (v/v) mixture at 20°C. Saponification of the latter reaction product with ethanolic potassium hydroxide gave the 7-(O-carboxymethyl)oximino-17β-hydroxy-5α-androstan-3-one derivative, which was characterized as the corresponding methyl ester. The reduction of the oxime of the 5α-H-7-ketone with sodium in ethanol or with lithium-aluminium hydride gave respectively the 7β-amine or the 7α-amine as the major product. The 7β- and 7α-configurations were established from nmr spectra of the corresponding 7-acetamido derivatives. The 7β- and 7α-hemisuccinamido derivatives were prepared from the mixture of 7β- and 7α-amines, as described above for 3-derivatives and were isolated after thin-layer chromatography of the methyl esters, followed by saponification of the corresponding 17β-acetates.  相似文献   

17.
A synthesis of the C-nucleoside, 2-amino-7-(2-deoxy-beta-D-erythro- pentofuranosyl)-3H,5H-pyrrolo[3,2-d]pyrimidin-4-one (9-deaza-2'-deoxyguanosine) was achieved starting from 2-amino-6-methyl-3H-pyrimidin-4-one (5) and methyl 2-deoxy-3,5-di-O-(p-nitrobenzoyl)-D-erythro-pento-furanoside (11). The anomeric configuration of the C-nucleoside was established by 1H NMR, NOEDS and ROESY. This C-nucleoside did not inhibit the growth of T-cell lymphoma cells.  相似文献   

18.
The synthesis and anti-inflammatory activity of 4,5-dihydroxy-3-methyl-1H-pyrazolo[3,4-c]pyridazine (4), 4,5-dichloro-3-methyl-1H-pyrazolo[3,4-c]pyridazine (5), 4,-benzoyloxy-3-methyl-1-benzoyl-1H-pyrazolo[3,4-c]pyridazin-5yl benzoate (6), 3-methyl-N4,N5-bis(4-methylphenyl)-1H-pyrazolo[3,4-c]pyridazine-4,5-diamine (7), 4[[5-(4-carboxyanilino)-3-methyl-1H-pyrazolo[3,4-c]pyridazin-4yl]amino]benzoic acid (8), N-[5-(benzoylamino)-3-methyl-1H-pyrazolo[3,4-c]pyridazin-4-yl]benzamide (9) and 3-methyl-N4,N5-bis[4-(1H-benzimidazol-2yl)phenyl]-1H-pyrazolo[3,4-c]pyridazine-4,5-diamine (10) are being reported.  相似文献   

19.
(3R,4R,5R)-3-[(tert-Butyl-dimethylsilyl)oxy]-4,5-(isopropylidenedioxy)-1-cyclohexanone (2) reacted with carbon disulfide and methyl iodide in the presence of sodium hydride to furnish (3R,4R,5R)-5-[(tert-butyl-dimethylsilyl)oxy]-3,4-(isopropylidenedioxy)-2-[bis(methylthio)methylene]-1-cyclohexanone (3). 2 and N,N-dimethylformamide dimethyl acetal afforded (2E,3R,4R,5R)-5-[(tert-butyl-dimethylsilyl)oxy]-2-(dimethylaminomethylene)-3,4-(isopropylidenedioxy)-1-cyclohexanone (4). These push-pull activated methylenecyclohexanones 3 and 4 underwent a ring closure reaction with hydrazine hydrate and methylhydrazine, respectively, to give pyrazoloanellated carbasugars. Treatment of 3 with formamidinium, acetamidinium and benzamidinium salts, respectively, in the presence of sodium methanolate yielded three (5R,6R,7R)-7-[(tert-butyl-dimethylsilyl)oxy]-5,6,7,8-tetrahydro-5,6-(isopropylidenedioxy)benzo[d]pyrimidines.  相似文献   

20.
Coupling suitable sugars (D- or L-ribofuranose, 2' or 3-deoxysugar, branched sugars) with 2-aminoimidazo[1,2-a]-s-triazin-4-one was carried out using the different reaction conditions: 1) condensation in the presence of sodium hydride; or 2) condensation using Vorbrüggen's methods. The 5-aza- 7-deazaguanine nucleoside analogues obtained were evaluated in cell culture experiments for the inhibition of the replication of a number of RNA viruses, including BVDV, YFV, and WNV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号